
Open Journal of Statistics, 2012, 2, 547-556 
http://dx.doi.org/10.4236/ojs.2012.25070 Published Online December 2012 (http://www.SciRP.org/journal/ojs) 

Data Fusion Using Empirical Likelihood 

Hsiao-Hsuan Wang, Yuehua Wu, Yuejiao Fu, Xiaogang Wang 
Department of Mathematics and Statistics, York University, Toronto, Canada 

Email: stevenw@mathstat.yorku.ca 
 

Received September 28, 2012; revised October 30, 2012; accepted November 15, 2012 

ABSTRACT 

The authors propose a robust semi-parametric empirical likelihood method to integrate all available information from 
multiple samples with a common center of measurements. Two different sets of estimating equations are used to im- 
prove the classical likelihood inference on the measurement center. The proposed method does not require the knowle- 
dge of the functional forms of the probability density functions of related populations. The advantages of the proposed 
method are demonstrated through extensive simulation studies by comparing the mean squared errors, coverage proba- 
bilities and average lengths of confidence intervals with those from the classical likelihood method. Simulation results 
suggest that our approach provides more informative and efficient inference than the conventional maximum likelihood 
estimator if certain structural relationship exists among the parameters of relevant samples. 
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1. Introduction 

A common problem in clinical trials and other medical 
research is how to accurately and efficiently estimate 
parameters of interest when the current sample size is too 
small due to cost and time constraints. Usually there 
might exist certain surrogate populations with low sampl- 
ing cost that could provide relevant information for the 
population of direct inferential interest. In this article, we 
propose a robust semi-parametric method to integrate re- 
lated information from different sources to improve the 
classical likelihood method. 

The classical likelihood approach is arguably the most 
widely used method in statistical inference. It has been 
routinely applied in almost all the statistical applications. 
Despite a great success and excellent asymptotic pro- 
perties, the classical likelihood has known limitations as- 
sociated with making inference for small sample sizes. 
Consider a thought experiment as follows. Suppose that a 
random experiment is to toss a coin twice. The parameter 
of interest, denoted as 1 , is the probability of turning 
up head for this coin. The maximum likelihood estimator 
(MLE) of 1  is denoted as 1̂ . If the coin is a fair one,  
the MLE will obtain the following:  1̂P  0 or 1 1 2   

and  1 1 2 1 2 ˆP  . Thus, the MLE would have 50%  

chance to make a nonsensical decision by using the MLE 
when the sample size is only two. In addition, suppose 
that for some reason we cannot use this coin any more 
but we can flip another coin instead. In this situation, the 
classical likelihood approach would not consider the se- 

cond experiment since it comes from a different popu- 
lation unless a functional relationship between the two 
parameters is known. If the second population is related 
to the first one due to some connection between these 
two parameters, one should be able to utilize this con- 
nection and make better statistical inference. 

Different statistical methodologies have been proposed 
in the literature to integrate information from different 
sources (or populations) in a very general setting, see [1] 
and [2], and referees therein. Most of these methods, 
however, face the challenge of accurately validating or 
evaluating the relevance of all related information to 
guard against the possibility of introducing a significant 
bias or contaminating the current sample. In other words, 
the magnitude of integration must be controlled carefully 
and in addition likelihood weights must be chosen judi- 
ciously in order to achieve any desired improvement in 
statistical inference. We propose to tackle this difficult 
problem using a robust semi-parametric empirical like- 
lihood method to achieve more accurate and robust in- 
ferential results. 

Empirical likelihood, which was first introduced in [3], 
is a nonparametric method of inference based on a data- 
driven likelihood ratio function. It allows the statistician 
to employ likelihood methods, without specifying a para- 
metric model for the data. It enjoys both the flexibility of 
nonparametric methods and the efficiency of parametric 
likelihood. As shown in [4], empirical likelihood is a pro- 
minent efficient tool in estimating parameters by in- 
corporating estimating equations into constrained maxi- 
mization of the empirical likelihood function. In the  
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problem we consider, the relevant information from dif- 
ferent sources could be used by incorporating extra set of 
estimating equations in the empirical likelihood frame- 
work. 
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To obtain robust estimates, we use median as an esti- 
mate of center instead of mean. We propose here using 
two different kinds of estimating equations; one uses me- 
dian and the other one uses a smoothed version of me- 
dian. The smoothing technique is the one proposed in [5] 
to improve the coverage accuracy. Our method can be 
easily generalized to multiple samples with relevant in- 
formation. Without loss of generality, we consider data 
with two populations in the sequel. 

The rest of the paper is organized as follows. The me- 
thodology framework, the proposed empirical likelihood 
approach, and its theoretical properties are presented in 
Section 2. Results of simulation studies demonstrating 
the empirical performance are provided in Section 3. Con- 
clusion and some discussion are provided in Section 4. 

2. Methodology 

Suppose there are two groups of data from different po- 
pulation but sharing the same parameter of interest. As- 
sume that 
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Our goal is to estimate   by using both samples. Di- 
rectly using the log-likelihood  
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we might get a biased estimation due to the difference 
between the two populations. 

We propose a semi-parametric empirical likelihood 
method which only requires the independence of these two 
samples. To combine the second sample with the first one, 
we use the following semi-parametric empirical likeli- 
hood  

 log ,f n p
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 is an estimating function. From the empi- 
rical likelihood theory, we know  is maximized by  

 T
in    g y21 1 , , where   is the Lagrange mul-  

tiplier. We can rewrite the log likelihood function as  

  (1) 

and 

 ˆ arg max . 


  

ˆWe call   the robust semi-parametric empirical likeli- 
hood estimate (RSPELE). 

The advantage of the log profile likelihood function is 
that it does not depend on the likelihood weights which 
could be difficult to choose. In our propose method, we 
do not require that the probability density function of the 
second population is identical to the first population. By 
using the empirical likelihood method, we do not even 
need to specify the functional form of the underlying 
distribution of the second population. Therefore, we can 
gain robust estimates in the sense that model mis-speci- 
fication problem is avoided. Consequently, our method 
can be employed in a relatively wide range of applica- 
tions when the functional form of the probability den- 
sity function is not known. 

In the following, the theoretical properties of the pro- 
posed RSPELE estimator will be presented. For clarity, 
all proofs are postponed to the Appendix. Theorem 1 
below shows that under some regularity conditions, the 
RSPELE estimator ̂  is consistent to 0 . 

 ,fTheorem 1 Let 
11 n  be i.i.d. from , ,x x x

2
, ,y y

 
and 1 n  be i.i.d. from an unknown distribution. 
Assume that  ,f x

0

 satisfies the regularity conditions 
given in Shao (2003) on the normality of the maximum 
likelihood estimator in parametric models. Let   be 
the true parameter. We further assume that 
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Then, it follows that  

0

 in probability in the  

  such that   . 1 2
0: n   

ˆ

neighborhood of 

ˆThe asymptotic distribution of the   and   is 
shown in Theorem 2. 

Theorem 2 In addition to the conditions of Theorem 1,  

we assume that 1n
b

n
 , where b is a constant. We also 

assume that 
 ,


g y 


 exists with probability one and 

the set of its discontinuity points has zero probability. 
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Then 
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and 0  is the Fisher information about 0  con- 
tained in X. 

The asymptotic distribution of  
is given in Theorem 3. 
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We note that other test statistics, for example, a test 
statistic based on Theorem 2, may also be used. 

Estimating equations provide a very flexible way to 
specify how the parameters of a statistical model should 
be estimated. They serve as constraints in maximizing 
the empirical likelihood. It was shown in [5] that the em- 
pirical likelihood method is an efficient tool for point es- 
timation through estimating equations. In this section, we 
consider two different kinds of estimating equations us- 
ing the information of median, since median is robust 
with respect to the outliers, one may use  

    1 , 1 2i i m  1g y y   

as estimating function based on the second group data, 
where  m  ,f   is the median of x  and ·1  is 
the usual indicator function. It is easy to verify that 
  1 i , 0E g y  . 
Due to the discontinuity of 1g , we may use the smo- 

othed version of the constraint which was motivated by 
Shi and Lau (1999). First of all, we define the estimat- 
ing equation for the smoothed empirical likelihood. In 
general, let   be the -order kernel (Shi and Lau, 
1999), such that 

thr
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where r is a positive integer. Define 

     < d .u t I t u t   > 0h For any , let  

   u u h h  where h is called the smoothing 
parameter. The kernel   is a symmetric probability 
density with bounded and compact support. Let the esti- 
mating function     2 h . There- 
fore, 

, , 1 2h m  g y y 
 , , hg y 2  is continuous with respect to y, but it 

is not a fixed function as the smoothing parameter varies. 
See Shi and Lau (1999) for details. In addition, by using 
the arguments similar to those stated in the Theorems 1-3 
and Shi and Lau (1999), we may get the similar asymp- 
totic results. 

3. Numerical Experiments 

3.1. Data Fusion with Conventional Empirical 
Likelihood 

Simulation studies are carried out by performing data fu- 
sion when two samples are available. The first sample  

 11, , n X X X

 21, , n  Y

1n

2n

 is generated from standard normal 

distribution and the second sample Y Y  is 

generated from normal, double exponential, or t-distri-  
bution respectively. The sample size of first sample, , 
is 10 and for the second sample, the sample size, , 
varies from 10, 20 to 30. 

First of all we use the median constraint, so the log 
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same as the one used in [6],  likelihood function of the simulation model is 
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The simulation model is identical to the first experi- 
ment. Four values of the smoothed parameter are used 
which are 2  to the power of −1, −3/4, −1/2 and −1/4. 
The log likelihood function of the simulation model is 

We present the mean square error (MSE) ratio of 
RSPELE to MLE based on 1000 replications in Table 1. 
The simulation results show that RSPELE performs well 
except in the situation when the second population is nor- 
mally distributed with large variation as the first one. 
When the second sample size is increasing, the RSPELE 
becomes more accurate. Moreover, we have smaller MSE 
of RSPELE when the data of the second population is 
more concentrated around the center, for example, the 
double exponential distribution. 

 

3.2. Smoothed Empirical Likelihood 

In this section we demonstrate the smoothed version of 
the estimating equations. The kernel we chose is the 
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  x x  is the MLE variance. 

We provide the MSE ratio of RSPELE to MLE based 
on 1000 replications in Table 2. Results of the smoothed 
version are slightly better than the results of the median 
version, no matter which smoothing parameter is chosen. 
When the underlying distribution of the second popu- 
lation is not the same as the first population, the RSPELE  

 
Table 1. MSE ratio of RSPELE to MLE based on 1000 replications. 

Distribution of sample 2 

2n  0,1N  0,1.25N  0,1.5N  0, 2N    0,3N 3t 5t   0,0.5DE  0,1DE   0,1.5DE

10 0.776 0.857 0.929 1.017 1.028 0.787 0.747 0.431 0.717 0.875 

20 0.569 0.693 0.769 0.871 0.956 0.621 0.580 0.209 0.515 0.705 

30 0.453 0.559 0.661 0.789 0.926 0.462 0.467 0.137 0.387 0.582 

 
Table 2. MSE Ratio of RSPELE to MLE with the smoothing parameter h = n2 to the power of −1, −3/4, −1/2 and −1/4. 

 Distribution of sample 2 

 0,1N  0,1.25N N  0,1.5    0,3N 3t 5t   0,0.5DE    0, 2N 0,1DE  0,1.5DE  n2 
1

2=h n   

10 0.739 0.841 0.922 1.019 1.039 0.747 0.719 0.364 0.664 0.847 

20 0.539 0.658 0.759 0.863 0.955 0.609 0.560 0.187 0.487 0.697 

30 0.432 0.555 0.649 0.770 0.922 0.442 0.437 0.120 0.362 0.572 

 3 4

2=h n  

10 0.700 0.810 0.878 0.987 1.036 0.730 0.692 0.339 0.645 0.821 

20 0.503 0.624 0.734 0.853 0.941 0.588 0.512 0.172 0.466 0.662 

30 0.405 0.528 0.624 0.765 0.892 0.418 0.413 0.107 0.333 0.552 

 1 2

2=h n  

10 0.666 0.780 0.856 0.959 1.038 0.702 0.665 0.326 0.625 0.795 

20 0.453 0.579 0.674 0.802 0.916 0.543 0.475 0.162 0.433 0.616 

30 0.356 0.476 0.580 0.726 0.855 0.385 0.369 0.101 0.319 0.524 

 1 4

2=h n  

10 0.616 0.752 0.842 0.943 1.036 0.664 0.630 0.329 0.630 0.779 

20 0.403 0.532 0.635 0.773 0.899 0.504 0.438 0.174 0.419 0.600 

30 0.320 0.434 0.532 0.682 0.838 0.356 0.338 0.111 0.315 0.506 
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estimate performs better than the MLE. When the sample 
size of the second population is increasing, the RSPELE 
estimate is more accurate. 

3.3. Confidence Intervals 

In this subsection, we construct the confidence interval 
for the median by bootstrapping. In this simulation study, 
the first sample X is generated from standard normal 
distribution and the second sample Y is generated from 
normal, double exponential, or t-distribution. The sample 
size of X is 10 and of Y varies from 10, 20, to 30. The 
size of the bootstrapped sample is 200 and the number of 
iterations is set to be 1000. First of all, we use the me- 
dian estimating equation and record the coverage pro- 
babilities and the simulated average confidence interval 
lengths (AL) in Table 3 for nominal levels of 80, 90, 95, 
and 99 percent. The coverage probabilities and the AL of 
using the smoothed version of the estimating equation 

are recorded in Tables 4 and 5 with different smoothing 
parameters which are 2  to the power of –1 and –1/2. 
We report the results of MLE in Table 6. Since the 
results of MLE do not depend on the second population, 
we further compare the coverage probabilities and AL as 
in Tables 3-5 with Table 6. 

n

The results of smoothed version are better than median 
version in terms of the coverage probabilities. The cove- 
rage probabilities of RSPELE and MLE are very close 
but the confidence intervals of RSPELE are about 10% 
narrower than of MLE. The results of RSPELE when the 
underlying distribution of the second population is either 
t or double exponential distribution are better than the 
results of RSPELE when underlying distribution is nor- 
mal distribution. That is because normal distribution is 
flatter than t and double exponential. Consequently, if the 
second population provides a good information about the 
center we can use it to get better estimates. 

 
Table 3. Coverage probability of RSPELE with different distributions of second population by using median estimating 
equation, numbers show in the brackets are AL, α = nominal level. 

α 0.800 0.900 0.950 0.990  0.800 0.900 0.950 0.990 0.800 0.900 0.950 0.990 

n2  0,1N    0, 2N  0,0.5DE  

10 0.754 0.846 0.902 0.963  0.746 0.839 0.898 0.960 0.759 0.854 0.909 0.951 

 (0.725) (0.930) (1.102) (1.435)  (0.744) (0.949) (1.126) (1.471) (0.716) (0.919) (1.094) (1.441)

20 0.771 0.868 0.913 0.964  0.756 0.855 0.908 0.958 0.780 0.872 0.918 0.966 

 (0.708) (0.910) (1.085) (1.415)  (0.754) (0.961) (1.138) (1.482) (0.678) (0.878) (1.055) (1.401)

30 0.805 0.888 0.935 0.976  0.791 0.873 0.925 0.970 0.780 0.883 0.920 0.971 

 (0.679) (0.874) (1.047) (1.389)  (0.754) (0.957) (1.135) (1.483) (0.643) (0.843) (1.018) (1.368)

  0,1.5N 3t  0,1DE

 0, 2N 5t  0, 2DE

    

10 0.748 0.845 0.899 0.962  0.758 0.848 0.908 0.964 0.758 0.848 0.907 0.951 

 (0.735) (0.945) (1.116) (1.457)  (0.733) (0.938) (1.112) (1.460) (0.736) (0.941) (1.119) (1.460)

20 0.761 0.864 0.911 0.961  0.766 0.851 0.892 0.951 0.770 0.859 0.912 0.962 

 (0.731) (0.938) (1.111) (1.447)  (0.711) (0.911) (1.080) (1.411) (0.711) (0.911) (1.086) (1.425)

30 0.799 0.882 0.936 0.973  0.771 0.869 0.916 0.966 0.772 0.866 0.915 0.965 

 (0.715) (0.912) (1.084) (1.422)  (0.700) (0.897) (1.068) (1.402) (0.685) (0.882) (1.053) (1.392)

     

10 0.748 0.842 0.899 0.960  0.734 0.840 0.897 0.963 0.755 0.847 0.904 0.951 

 (0.741) (0.948) (1.120) (1.464)  (0.744) (0.949) (1.124) (1.467) (0.743) (0.952) (1.132) (1.470)

20 0.753 0.858 0.909 0.958  0.761 0.858 0.906 0.974 0.762 0.859 0.908 0.963 

 (0.743) (0.951) (1.127) (1.462)  (0.716) (0.916) (1.096) (1.441) (0.731) (0.935) (1.109) (1.445)

30 0.798 0.879 0.931 0.972  0.766 0.877 0.929 0.971 0.770 0.866 0.906 0.961 

 (0.736) (0.936) (1.111) (1.456)  (0.693) (0.892) (1.065) (1.403) (0.712) (0.913) (1.086) (1.416)
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Table 4. Coverage probability of RSPELE with different distributions of second population, and the smoothing parameter 
, numbers show in the brackets are AL, α = nominal level. 1

2=h n

α  0.800 0.900 0.950 0.990  0.800 0.900 0.950 0.990 0.800 0.900 0.950 0.990 

n2   0,1N    0, 2N  0,0.5DE  

10  0.763 0.861 0.920 0.973  0.752 0.840 0.902 0.966 0.787 0.889 0.934 0.979 

  (0.687) (0.886) (1.058) (1.394)  (0.754) (0.963) (1.139) (1.483) (0.626) (0.829) (1.009) (1.368)

20  0.797 0.875 0.915 0.968  0.765 0.863 0.907 0.956 0.813 0.903 0.941 0.979 

  (0.649) (0.840) (1.006) (1.344)  (0.756) (0.963) (1.138) (1.477) (0.568) (0.766) (0.945) (1.311)

30  0.816 0.912 0.941 0.980  0.802 0.885 0.926 0.968 0.821 0.901 0.946 0.979 

  (0.610) (0.796) (0.965) (1.305)  (0.751) (0.956) (1.130) (1.478) (0.523) (0.718) (0.892) (1.263)

   0,1.5N 3t  0,1DE

 0, 2N 5t  0, 2DE

    

10  0.756 0.855 0.914 0.972  0.782 0.873 0.923 0.968 0.777 0.869 0.920 0.965 

  (0.726) (0.930) (1.104) (1.448)  (0.709) (0.910) (1.082) (1.441) (0.703) (0.909) (1.084) (1.438)

20  0.786 0.873 0.913 0.966  0.774 0.869 0.911 0.958 0.794 0.875 0.927 0.970 

  (0.707) (0.908) (1.077) (1.415)  (0.668) (0.861) (1.028) (1.361) (0.660) (0.856) (1.029) (1.370)

30  0.803 0.899 0.935 0.974  0.793 0.880 0.924 0.971 0.785 0.878 0.926 0.971 

  (0.684) (0.874) (1.041) (1.377)  (0.648) (0.836) (1.001) (1.341) (0.622) (0.811) (0.981) (1.320)

      

10  0.752 0.846 0.910 0.970  0.765 0.865 0.911 0.964 0.774 0.862 0.915 0.958 

  (0.743) (0.948) (1.123) (1.473)  (0.716) (0.914) (1.091) (1.436) (0.732) (0.943) (1.121) (1.467)

20  0.771 0.871 0.909 0.961  0.785 0.881 0.922 0.976 0.780 0.868 0.919 0.966 

  (0.732) (0.936) (1.112) (1.453)  (0.666) (0.855) (1.028) (1.376) (0.707) (0.907) (1.078) (1.417)

30  0.798 0.893 0.934 0.973  0.799 0.893 0.939 0.974 0.780 0.874 0.917 0.965 

  (0.720) (0.917) (1.087) (1.433)  (0.637) (0.822) (0.990) (1.334) (0.677) (0.873) (1.043) (1.381)

 
Table 5. Coverage probability of RSPELE with different distributions of second population, and the smoothing parameter 

, numbers show in the brackets are AL, α = nominal level. 1
2=h n

α 0.800 0.900 0.950 0.990  0.800 0.900 0.950 0.990 0.800 0.900 0.950 0.990 

n2  0,1N    0, 2N  0,0.5DE  

10 0.770 0.855 0.918 0.974  0.750 0.846 0.908 0.970 0.773 0.877 0.933 0.980 

 (0.630) (0.814) (0.977) (1.310)  (0.756) (0.965) (1.143) (1.491) (0.508) (0.685) (0.861) (1.240)

20 0.777 0.870 0.921 0.973  0.773 0.865 0.902 0.954 0.797 0.899 0.945 0.982 

 (0.551) (0.713) (0.862) (1.176)  (0.745) (0.953) (1.127) (1.459) (0.391) (0.531) (0.676) (1.051)

30 0.805 0.904 0.936 0.980  0.800 0.887 0.933 0.972 0.795 0.893 0.943 0.987 

 (0.491) (0.636) (0.770) (1.079)  (0.732) (0.933) (1.106) (1.442) (0.313) (0.431) (0.568) (0.910)

  0,1.5N 3t  0,1DE

 0, 2N 5t  0, 2DE

    

10 0.763 0.849 0.911 0.970  0.782 0.874 0.923 0.966 0.758 0.876 0.925 0.969 

 (0.702) (0.903) (1.074) (1.416)  (0.662) (0.853) (1.021) (1.375) (0.649) (0.845) (1.019) (1.377)

20 0.780 0.864 0.911 0.964  0.782 0.862 0.916 0.967 0.791 0.889 0.923 0.975 

 (0.657) (0.844) (1.003) (1.327)  (0.589) (0.763) (0.918) (1.241) (0.566) (0.740) (0.897) (1.235)

30 0.816 0.900 0.934 0.976  0.797 0.881 0.928 0.978 0.777 0.885 0.928 0.978 

 (0.611) (0.787) (0.939) (1.258)  (0.538) (0.698) (0.845) (1.152) (0.493) (0.649) (0.795) (1.123)

     

10 0.753 0.852 0.905 0.970  0.766 0.862 0.920 0.967 0.755 0.864 0.908 0.967 

 (0.733) (0.940) (1.113) (1.461)  (0.662) (0.854) (1.021) (1.365) (0.708) (0.910) (1.087) (1.446)

20 0.774 0.865 0.906 0.959  0.786 0.880 0.936 0.972 0.786 0.866 0.922 0.963 

 (0.706) (0.906) (1.073) (1.402)  (0.578) (0.747) (0.900) (1.226) (0.649) (0.836) (1.002) (1.342)

30 0.809 0.899 0.935 0.973  0.803 0.901 0.940 0.975 0.785 0.875 0.919 0.968 

 (0.677) (0.862) (1.026) (1.359)  (0.520) (0.679) (0.823) (1.137) (0.596) (0.774) (0.934) (1.264)
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Table 6. Coverage probability of MLE with the distribution of second population normal, t3, t5 and double exponential, 
numbers show in the brackets are AL, α = nominal level. 

α  0.800 0.900 0.950 0.990 0.800 0.900 0.950 0.990 

n2  Normal t3 

10  0.774 0.864 0.913 0.972 0.774 0.854 0.915 0.973 

  (0.774) (0.994) (1.184) (1.557) (0.777) (0.998) (1.189) (1.563) 

20  0.773 0.871 0.913 0.976 0.769 0.849 0.901 0.964 

  (0.784) (1.007) (1.200) (1.577) (0.777) (0.997) (1.188) (1.562) 

30  0.810 0.888 0.932 0.983 0.760 0.858 0.912 0.972 

  (0.788) (1.011) (1.204) (1.583) (0.786) (1.009) (1.203) (1.581) 

  t5 Double Exponential 

10  0.737 0.858 0.913 0.966 0.771 0.863 0.913 0.962 

  (0.789) (1.013) (1.207) (1.586) (0.781) (1.002) (1.194) (1.569) 

20  0.759 0.862 0.915 0.975 0.771 0.863 0.913 0.962 

  (0.795) (1.020) (1.216) (1.598) (0.781) (1.002) (1.194) (1.569) 

30  0.769 0.880 0.928 0.977 0.771 0.863 0.913 0.962 

  (0.790) (1.015) (1.209) (1.589) (0.781) (1.002) (1.194) (1.569) 

 
4. Discussion 

In this paper, we propose a robust semi-parametric em- 
pirical likelihood in a multiple-sample model with com- 
mon measurement of center. We use two different kind 
of estimating equations of information about the median. 
Simulation studies have shown that the second popu- 
lation could provide very useful information on the para- 
meter of interest by comparing the performance of va- 
rious commonly used measures for evaluations. 
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Appendix: Proofs   
Proof of Theorem 1 

We rewrite the Equation (1) as      1 2      , 
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Proof of Theorem 3 
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Combining Equations (5)-(7), we have 
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