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ABSTRACT

People with neurological disorders like Cerebral
Palsy (CP) and Multiple Sclerosis (MS) suffer associ-
ated functional gait problems. The symptoms and
sign of these gait deficits are different between sub-
jects and even within a subject at different stage of
the disease. Identifying these gait related abnormali-
ties helps in the treatment planning and rehabilitation
process. The current gait assessment process does not
provide very specific information within the seven
gait phases. The objective of this study is to investi-
gate the possible application of granular computing to
guantify gait parameters within the seven gait phases.
In this process we applied fuzzy-granular computing
on the vertical ground reaction force (VGRF) and
surface electromyography (SEMG) data to obtain
respective characteristic values for each gait phase. A
fuzzy similarity (FS) measure is used to compare pa-
tient values with age and sex matched control able-
bodied group. We specifically applied and tested this
approach on 10 patients (4 Cerebral Palsy and 6 Mul-
tiple Sclerosis) to identify possible gait abnormalities.
Different FS values for VGRF for right and left leg is
observed. The VGRF analysis shows smaller FS values
during the swing phase in CP and MS subjects that
are evidence of associated stability problem. Similarly,
FS values for muscle activates of the four-selected
muscle display a broad range of values due to diffe-
rence between subjects. Degraded FS values for dif-
ferent muscles at different stage of the gait cycle are
reported. Smaller FS values are sign of abnormal ac-
tivity of the respective muscles. This approach pro-
vides individual centered and very specific informa-
tion within the gait phases that can be employed for
diagnosis, treatment and rehabilitation process.
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1. INTRODUCTION

For people with mobility disabilities gait analysis is used
to provide diagnosis, evaluation and treatment planning
information. The benefit of gait analysis is well estab-
lished that it has now become a part of routine process in
many rehabilitation centers [1]. People with Multiple Sc-
lerosis (MS) may suffer from significant gait impairment
even at early stage of the disease [2,3]. Gait analysis has
been used to identify associated gait deficit with MS
[2,4]. Gait variability study in people with MS revealed
slower walking speed and more fatigue than control heal-
thy group [5]. In the study [6], the effect of MS on the
frequency content of vertical ground reaction force
(VGRF) during walking was investigated. Compared with
health controls significantly lower frequency content in
VGRF and no difference in frequency content in ante-
rior-posterior ground reaction forces [6].

Lee EH et al. [7] emphasized the importance of gait
analysis in critical surgical decision-making in children
with Cerebral Palsy (CP). In this study [7] surgical
decisions on children with CP, based on clinical evalu-
ation and gait analysis was shown to help improve gait
quality after surgery compared to decisions solely made
on clinical assessment. According to [8] gait analysis has
been used to make surgical procedure decisions in
patients with CP. There are a growing number of lite-
ratures [9-15] related to gait analysis and Cerebral Palsy
in diagnosis and treatment planning decisions making
process. Wavelet analysis was applied to study surface
electromyography (SEMG) signals acquired from lower
extremity muscles in children with CP [14]. Probabilistic
gait classification in children with CP reported in [15].
Cluster analysis was used for identification of sagittal
gait patterns [16]. Principal component analysis was ap-
plied to extract gait patterns in children with CP [12].
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Mark J. et al. [17] employed fuzzy-clustering to classify
temporal-distance and kinematic gait parameters for CP
children.

The dynamic behavior of gait parameters is cyclic and
the “normal” or expected pattern (or values) of these
parameters over a gait cycle is well known. Studying
dynamic gait parameters over a gait cycle helps identify
alteration or deviation from the expected reference
pattern or values. Specifically, quantifying kinematic,
kinetic and surface electromyography (SEMG) gait para-
meters over a given gait cycle play a crucial role in re-
cognizing associated neurological related gait deficits.
Additional techniques and measurements that enable
quantification and representation into the seven gait
phases add more reliability and specificity to the analysis
process. For example, monitoring of the SEMG activity
over a gait cycle or a gait phases gives valuable infor-
mation for diagnosis and treatment decisions [18].

Most gait study techniques are limited to full gait cy-
cle analysis, which focuses on comparison of reference
patterns or values with the respective parameters of neu-
rological impaired subjects. Few studies [19-21] investi-
gated gait parameters by decomposing the full gait cycle
into its seven phases. In [19-21] the authors implemented
fuzzy-ruled approach to divide a gait cycle into its seven
phases and make very specific comparisons and analysis
within each gait phase. In these studies averaging gait
variables values in each phase was used for quantifica-
tion and representation. Mean value representation may
be a good way and works well for slowly time-varying
signals. However, averaging is not a good choice for
non-smoothly time-varying signals with typical peaks
and valleys. Ground reaction forces and muscle activity
signal are examples of such rapidly time-varying signals
with characteristic shape and peak amplitudes. We be-
lieve that a more accurate representation and quantifica-
tion could be possible by employing granular representa-
tion scheme in each phase. Quantification of gait pa-
rameter value in each phase based on data-driven granule
representation helps to capture the information in each
sub-cycle and preserve the experimental significance and
justifiability of the signal. We present a possible applica-
tion of fuzzy-granular computing to investigate the dy-
namic behavior of the VGRF and SEMG over the seven
gait phases. In this regard, we build an information gra-
nule based on fuzzy-triangular membership function to
characterize, quantify and represent gait parameters values
in each sub-cycle. The proposed technique is tested and
used to identify and distinguish gait deficits among MS
and CP subjects.

2. GAIT TERMINOLOGIES

Michael (2007) [1], defined gait cycle as “the time inter-
val between two successive occurrence of one of the re-
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petitive events of walking”. We can define the gait cycle
using any event in the walking process; the most com-
mon way of defining a cycle is to use the instance of
“initial contact” of one foot. Accordingly, a gait cycle
begins at the instant one-foot strikes/contacts ground,
and the instant when the same foot strikes the ground
again, marks the end of the gait cycle. Based on the ma-
jor events happening during a gait cycle [1], a full gait
cycle is divided into seven gait phases [1]: Loading re-
sponse (0% - 10% of the full cycle), mid stance (10% -
30%), terminal stance (30% - 50%), pre-swing (50% -
60%), initial swing (60% - 70%), mid swing (70% - 85%)
and terminal swing (85% - 100%) [1].

3. GRANULAR REPRESENTATION OF
GAIT PHASES

To minimize the effect of individual differences in speed
of walking and to allow inter-subject comparisons norma-
lization [22] was performed before granulation. The data
were normalized as,
Sy —min(S,)
 max(S,)—min(S,)

€]

where S, is the original time-series data, max is maxi-
mum, and min is minimum. Normalized VGRF and So-
leus SEMG are shown for one complete gait cycle in Fig-
ure 1.

Given data sample points for one complete gait cycle,
one can use the percentage of each phase from the com-
plete cycle to divide the samples into seven segments or
granules (phases in this case). Next we seek granular re-
presentation of those samples that fall within each phase.
In this paper, we present fuzzy-triangular membership-
based method that optimally represent data points in each
granule. The triangular fuzzy set membership function is
designed according to the method outlined in [22-24].
For each segment, in the interval [a,b] the membership
function is established as

Amplitude
o O O

L Il 1 1

L

| LT W
10 20 30 40 50 60 70 80 90 100
% of Gait

Figure 1. VGRF and soleus SEMG over one complete gait cycle.
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,uamb(x)zﬂ for a<x<m (2a)
i m-a

yamb(x)zu for m<x<b (2b)
o b—-m

where a is the left bound, m is the modal or core value,
and b is the right bound. The median of each segment is
taken as a modal value [23]. To obtain the fuzzy
parameters a and b, Equation (3) is solved for each
segment [23,24]. This equation provides the optimal
value of a and b that satisfies the experimental sig-
nificance and specificity requirement we need to have in
each granule.

k
Z/ua,m,b(xi)
Q(a,b) = maX"’lb— @)
where k is the number of data points in each segment and
X; is data point in the respective segment or phase.
Figure 2 represents an example of Soleus SEMG signal

granulated into seven phases.

3.1. Granular Matrix and Calculation of Fuzzy
Similarity

We form the granular matrix, G for each gait phase
represented by (a, m, b) [22], an example of such 3 x 7
matrix is shown in Equation (4).

| Pl PZ P3 I34 P5 PG P7

where P(i=1,---7) represent gait phases.
The fuzzy similarity (FS) [19] between two granulated
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Figure 2. Granulated soleus SEMG represented through the
fuzzy-parameters a, m, and b.
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gait variables represented by G=g; and H=h; can
be calculated as

_ min(g;,hy )

G*H =
max( gy )

®)
where the symbol “*” stands for the fuzzy-correlation
operator, “min” for the fuzzy-intersection and “max” for
fuzzy-union. In this study G represent the granulated gait
variable for reference group and H could mean the res-
pective granulated variable for a subject with MS or CP.
And the FS defines the similarity between the reference
and test subject in each gait phases. The FS is within a
range between 0 and 1. FS value of zero signifies no
similarity at all and 1 represents 100% similarity. An FS
value closer to 1 indicates higher degree of similarity and
FS values close to zero show little or no similarity. FS
measure is chosen to make it consistent with the fuzzy-
granulation algorithm; otherwise any similarity measure
that scales between 0 and 1 could as well be used.

4. EXPERIMENTAL DESIGN AND
METHODS

4.1. Participants

The institutional review board (IRB) of The University
of Texas at El Paso approved this study. Subjects ob-
tained explanations about the study and are asked to sign
informed consent prior to participation. Twenty-two
male (Age: 24.5 = 4.0 years; Weight: 74.6 + 14.6 Kg;
Height: 173.0 = 8.4 cm) and twelve female control
able-bodied subjects (Age: 25.2 + 5.5 years; Weight: 63.7 +
9.7 kg; Height: 164 + 5.8 cm) with no history of gait
abnormalities are recruited from the EI Paso community.
Table 1 shows the six MS patients (2 female and 4 male),
and four CP (1 female and 3 male) subjects selected for
this study.

Table 1. Patient anthropometric data.

Patient Gender Age  Weight (kg) Height (cm) BMI
“cPo1 Female 26 44.9 151 26.6
CP02 Male 17 69.5 162 26.5
CP03 Male 17 68.3 164 254
CP04 Male 55 88.9 172 30.1
"MS01 Female 55 66.1 150 294
MS02 Female 40 61.2 165 225
MS03 Male 62 7.7 162 29.6
MS04 Male 37 130.7 181 39.9
MSO05 Male 45 124.2 178 39.2
MS06 Male 28 82.5 1945 21.8

“CP = Cerebral palsy; "MS = Multiple sclerosis.
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4.2. Data Acquisition and Processing

All subjects in this study able-bodied, MS and CP sub-
jects, performed free barefoot treadmill walking at their
comfortable speed for 180 seconds. The speed of the
treadmill is controllable and can be set at the subject’s
comfortable speed. A dual-belt treadmill (Bertec, Cor-
porations, USA) is used to measure the ground reaction
forces (GRFs) in three-dimensions. The force plates
measure the ground reaction forces at 100 Hz sampling
frequency. VGRF was filtered using a second order But-
terworth low pass filter with cut-off frequency of 20 Hz
to remove the noise. VGRF component was used to de-
fine the gait cycles. To represent each cycle (stride) in
percentage, time-normalization was done by re-sampling
[25]. An average VGRF for one cycle was calculated
from 100 strides. To allow inter-subject comparison, the
VGRF was normalized by the weight in kilograms of
respective subject. Male and female ablebodied subjects
VGRF data were analyzed separately and averaged to
establish a separate reference for male and female.

The dynamic SEMG data for four selected muscles for
right side: soleus (SOL), tibialis anterior (TA), gas-tro-
cnemius laterialis (LG), and vastus laterialis (VL), are
measured by the Delsys Myomonitor wirless EMG sys-
tem (Delsys Inc., Boston, MA, USA). The sEMG data
acquisition was sampled at 1000 Hz and electrodes were
placed according to [26]. All SEMG signal data were
filtered by band pass 3rd order Butterworth filter with
cutoff frequency between 20 and 250 Hz to remove low
and high frequency noise. Re-sampling was done to
convert into percentage of gait cycle and to make the
length of each SEMG signal the same for each stride [27].
The average SEMG for each muscle was determined
from 100 cycles SEMG data. The amplitudes of SEMG
were normalized based on the maximum average to al-
low comparison between individuals. Male and female
SEMG reference was then built separately by averaging
the respective gender group SEMG. The reference VGRF
and sEMG are divided into seven parts based on the per-
centage of each gait phases. The triangular fuzzy-mem-
bership function parameters a, m, and b were constructed
for each segment using Equations (1) and (2). Each
phase of a given gait cycle is now represented by the
parameters (a, m, b) and a 3 x 7 granular matrices that
represents the full gait cycle. Reference granular ma-
trixes that represent the able-bodied group are built for
VGRF and the SEMG data. For each MS and CP patient
similar data processing scheme is followed and repre-
sentative granular matrix for each patient subject is con-
structed. The fuzzy similarity of the reference matrix and
that of a patient (CP and MS in this case) is then deter-
mined by Equation (4).

Copyright © 2012 SciRes.

5. RESULTS AND DISCUSSION

The proposed method is applied to establish similarity of
VGRF and sEMG data of the reference able-bodied and
patients group (CP and MS) in each gait phases. Each
entry in the result table expresses the similarity of fuzzy
parameters (a, m, b) of patients and control group.

5.1. Vertical Ground Reaction Force

The fuzzy similarity of the of right and left VGRF in
each gait phase for the 4 CP and 6 MS subjects are
presented in Tables 2 and 3. Different FS values are
reported for left and right VGRF, which can help assess
both legs separately. The values in the tables express
how similar the patient fuzzy parameters (a, m, and b)
are with the corresponding reference values. A smaller
FS values signifies deviation or variations from the
expected behaviors. On the other hand a bigger FS
values, imply sign of closeness to the normal patterns
and functioning. We observe lower FS values in gait
phase 5 (initial-swing), 6 (mid-swing), and 7 (terminal
swing) for most of CP and MS patients. Relatively, most
patient subjects have degraded FS values in phase 6.
Phase 7 FS values are comparatively higher than phase 5
and 6 values. The fuzzy parameter, b (right bound) has
higher FS values compared with the corresponding fuzzy
parameters a (left bound), and m (the core) in phases 5-7.
Smaller FS values in phase 5-7 signify that most of
patients have gait problems during swing phase.

5.2. Muscle Activity

The degree of FS for the right leg for four lower-ex-
tremity muscles of CP patients’ and the able-bodied
group is presented in Table 4.

Each CP patient has different FS values that depend on
individual impairment level and intervention or therapy
undergone. The FS values for the right-soleus muscle are
smaller during Ps, Pg, and P;. Particularly CPO1 and
CP02 have lowered FS values for soleus in Ps and Ps.
CPO04 has relatively higher FS values in the swing phase
for soleus-muscle. The soleus muscle is expected to be
activated at the start of the stance phase (loading-re-
sponse) and attains its maximum during the final phase
of the stance (pre-swing). Soleus remains relaxed during
the swing phase. CP01 has noticeable, very low FS for
soleus during the first three phases where this muscle is
expected to achieve full activation. This is sign for ab-
normal or under normal activation of the respective mus-
cle.

CP02 and CP03 have smaller FS values for P; (load-
ing-response), this may be an indication of delayed So-
leus muscle activation. Tibialis anterior (TA) of CP01,
CP02, and CPO03 have very small FS values in the first
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Table 2. FS values for VGRF for the CP patients.
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Table 3. FS values for VGRF for the MS patients.

P P, P Py Ps Ps P,
Right VGRF
0.987 0.904
0981 0.863
0982 0.877
Left VGRF
0.896 0.744
0.988 0.895
0.896 0.315
Right VGRF
0.853 0.579
0937 0.995
0920 0.884
Left VGRF
0872 0.824
0931 0.868
0820 0.826
Right VGRF
0939 0538
0980 0.975
0862 0.543
Left VGRF
0.876 0.599
0.975 0.985
0.790 0.757
Right VGRF
0.892 0.903
0.995 0.843
0.748 0.663
Left VGRF

0.884
m  0.908
0.022

0.679
0.864
0.951

0.800
0.253
0.900

0.272
0.325
0.704

0.778
0.482
0.737

CPO1

a 0911
m 0.745
b 0725

0.956
0.946
0.875

0.545
0.138
0.977

0.206
0.133
0.903

0.289
0.927
0.996

0.773
m 0.651
0.789

0.775
0.936
0.825

0.046
0.057
0.779

0.025
0.002
0.816

0.295
0.357
0.855

CP02

0.719
m 0.512
b 0536

0.671
0.805
0.960

0.082
0.084
0.726

0.010
0.003
0.537

0.088
0.268
0.538

a 0501
m 0.876
0.119

0.688
0.983
0.897

0.064
0.063
0.803

0.006
0.004
0.290

0.358
0.438
0.703

CPO3

0.582
m 0.833
b 0.627

0.537
0.859
0.960

0.101
0.079
0.899

0.006
0.005
0.820

0.514
0.397
0.786

a 0.773
m 0.739

b 0.853
CPO4

0.983
0.978
0.935

0.452
0.226
0.111

0.430
0.791
0.555

0.926
0.488
0.585

a 0523 0.735 0.851 0.618 0.286 0.519 0.534

m 0.681 0.965 0.937 0.982 0.224 0.821 0.625

b 0249 0816 0.927 0.933 0.845 0.284 0.333

three phase of the cycle. TA muscle is activated in the
first phase and stays relaxed until the first part of the
swing-phase. The smaller FS values during the first
phase are evidence of improper activation of the respec-
tive muscle. Generally smaller FS values are indication
of unusual muscle activity and that need to be addressed
in the treatment process. This kind of quantification of
muscle activity within the seven gait phases provides an
individual based assessment tool that can be tailored for
treatment planning and interventions. Similar analysis
can be done for the remaining two muscles from Table 4
for CP patients.
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P

P,

Pa Py

Ps

Ps

P7

MS01

Right VGRF

0.940
0.831
0.632

0.941
0.911
0.826

0.799 0.460
0.885 0.868
0.897 0.995

0.538
0.084
0.998

0.327
0.234
0.356

0.096
0.808
0.360

Left VGRF

0.705
0.871
0.925

0.999
0.904
0.951

0.884 0.750
0917 0.733
0.952 0.900

0.969
0.830
0.841

0.399
0.499
0.710

0.551
0.469
0.709

MS02

Right VGRF

0.629
0.950
0.900

0.790
0.984
0.951

0.880 0.419
0.939 0.847
0.982 0.995

0.097
0.055
0.577

0.589
0.278
0.793

0.692
0.864
0.830

Left VGRF

0.746
0.832
0.583

0.767
0.937
0.951

0.873 0.938
0.937 0.763
0.952 0.995

0.514
0.349
0.920

0.579
0.706
0.932

0.973
0.825
0.937

MS03

Right VGRF

0.098
0.523
0.746

0.580
0.786
0.960

0.870 0.537
0.916 0.938
0.960 0.817

0.027
0.044
0.820

0.002
0.001
0.868

0.999
0.801
0.189

Left VGRF

0.185
0.528
0.811

0.584
0.710
0.725

0.938 0.464
0.917 0.926
0.948 0.933

0.027
0.041
0.552

0.005
0.001
0.603

0.100
0.575
0.444

MS04

Right VGRF

0.681
0.539
0.563

0.768
0.874
0.960

0.849 0471
0.938 0.925
0.744 0.933

0.044
0.048
0.565

0.004
0.006
0.891

0.753
0.662
0.503

Left VGRF

0.465
0.504
0.660

0.485
0.925
0.840

0.833 0.799
0.908 0.831
0.636 0.933

0.092
0.086
0.549

0.013
0.019
0.888

0.486
0.488
0.794

MS05

Right VGRF

0.032
0.996
0.633

0.954
0.947
0.764

0.879 0.713
0.952 0.982
0.963 0.827

0.427
0.362
0.219

0.062
0.887
0.007

0.660
0.615
0.010

Left VGRF

0.348
0.906
0.015

0.982
0.939
0.933

0.850 0.882
0.934 0.964
0.927 0.811

0.717
0.815
0.350

0.403
0.960
0.238

0.958
0.817
0.240

MS06

Right VGRF

0.949
0.571
0.939

0.596
0.937
0.943

0.833 0.621
0.915 0.998
0.858 0.760

0.469
0.102
0.917

0.128
0.133
0.781

0.194
0.411
0.733

Left VGRF

0.758
0.616
0.776

0.504
0.995
0.960

0.913 0.504
0.963 0.937
0.707 0.705

0.212
0.074
0.853

0.030
0.033
0.814

0.342
0.701
0.840
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Table 4. FS values for four muscles of CP patients.

P

P,

P: P

Ps

Ps

P7

RSOL

a 0.263
0.297
b 0.379

0.054
0.108
0.642

0.068 0.894
0.131 0.600
0.232  0.983

0.131
0.101
0.127

0.006
0.092
0.136

0.022
0.040
0.190

RTA

a 0.012
0.049

0.143
CP01

0.631
0.228
0.429

0.012 0.011
0.076 0.031
0.123 0.077

0.058
0.322
0.228

0.046
0.028
0.061

0.025
0.065
0.034

RLG

a 0121
0.165
b 0.228

0.889
0.727
0.559

0.024 0.132
0.145 0.825
0.332 0.704

0.015
0.025
0.049

0.004
0.033
0.049

0.010
0.030
0.094

RVL

a 0.728
0.624
b 0544

0.779
0.675
0.453

0.156  0.025
0.201 0.040
0.430 0.438

0.005
0.005
0.244

0.002
0.009
0.065

0.178
0.804
0.350

RSOL

a 0.340
0.391
b 0.342

0.704
0.950
0.866

0.952 0.394
0.793 0.707
0.791 0.907

0.088
0.176
0.384

0.035
0.176
0.168

0.059
0.080
0.601

RTA

a 0.039
0.042
0.184

0.385
0.401
0.176

0.362 0.074
0.925 0.184
0.851 0.606

0.232
0.079
0.051

0.011
0.032
0.481

0.977
0.866
0.828

CP02

RLG

a 0.087
0.373
b 0.303

0.552
0.540
0.642

0.414 0.576
0.515 0.730
0.644 0.579

0.085
0.175
0.415

0.009
0.121
0.108

0.044
0.049
0.217

RVL

a 0.089
0.335
b 0476

0.078
0.490
0.150

0.018 0.005
0.074 0.011
0.354 0.014

0.003
0.009
0.996

0.046
0.045
0.114

0.466
0.101
0.235

RSOL

a 0277
0.322
b 0334

0.658
0.779
0.652

0.930 0.315
0.877 0.724
0.879 0.918

0.098
0.121
0.258

0.088
0.758
0.211

0.979
0.581
0.739

RTA

a 0.022
m  0.090
0.152

0.283
0.302
0.200

0.328 0.075
0.969 0.205
0.717  0.589

0.325
0.113
0.073

0.085
0.151
0.771

0.706
0.960
0.828

CP0O3

RLG

a 0.872
0.435
b 0.458

0.511
0.389
0.932

0.542 0.551
0.569 0.673
1.000 0.970

0.050
0.096
0.218

0.233
0.065
0.057

0.543
0.209
0.845

RVL

a 0.148
0.734

b 0771

0.152
0.785

0.577

0.054 0.046
0.225 0.075

1.000 1.000

0.012
0.017

0.282

0.001
0.003

0.087

0.247
0.880

0.865
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Continued

RSOL
0.888 0.952 0.935 0.634 0.686 0.206 0.054
m 0621 0916 0930 0458 0.728 0.761 0.052
b 0477 0890 1.000 0491 0.893 0.979 0.312
RTA
0.697 0.373 0.205 0.003 0.102 0.644 0.522
m 0.603 0.204 0.267 0.008 0.394 0.785 0.525
0.764 0.410 0.138 0.080 0.633 0.820 0.978
RLG
0.173 0.161 0.854 0.261 0.318 0.074 0.121
m 0318 0949 0968 0.650 0.161 0.520 0.171
b 0503 0.733 1.000 0918 0.232 0.352 0.829
RVL
0.476 0.263 0.090 0.057 0.023 0.029 0.653
m 0.605 0561 025 0119 0.049 0.077 0.913
b 0775 0974 1000 1.000 0.282 0420 0.393

CP0O4

The comparison of muscle activity of MS patients and
able-bodied group is displayed in Table 5. Again, in the
case of MS subjects, wide ranges of FS values are ob-
served. This variation is due to individual difference in
gait deficit and the level of MS disease progression. FS
values for MS01 and MS03 in swing phase (Ps, Ps, and
P;) is relatively lower than the other MS subjects for the
four muscles. MS02 has shown relatively improved FS
values in most of the seven gait phases. We present mus-
cle activity of the right leg, however the same analysis
could also be done on the left leg.

The objective of this study is to investigate the possi-
ble application of granular computing to quantify gait
parameters within the seven gait phases. The result of
this study has shown to be effective in providing indi-
vidual specific information about impairment level of CP
and MS patients in comparison with age and sex matched
able-bodied group. Analysis of VGRF revealed most of
CP and MS subjects have smaller degree of similarity
during the swing (Ps, Ps, and P;) phase. This is the part
of the gait cycle where the respective leg is in the air to
switch to the other leg. A smaller FS value at this part of
the gait cycle signifies subject’s difficulty to alternatively
switch between the right and the left leg that may lead to
gait instability and reduced balance. This result is in
agreement with previous studies [3,27,28], where reduce-
speed, and impaired balance has been reported even in
early MS subjects. On the other hand smaller FS values
may also imply abnormal or altered patterns in the pa-
tients” VGRF signal that could change the frequency
content of the signal. Frequency content analysis of
VGRF of MS patients has shown significantly lower than
able-bodied group [6].
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Table 5. FS values for four muscles of MS patients.

P P, Ps P, P P P;
soL

a 0092 0851 0993 0758 0.171 0020 0.052

m 0438 0701 0878 0.873 0233 0.267 0.669

b 0.891 0851 1000 0.881 0486 0316 0.558
TA

a 0971 0062 0119 0207 0211 0463 0.223

m 0959 0234 0592 0276 0113 0933 0476

MSOL b 0994 0574 0672 0.405 0078 0.880 0.891
LG

a 0038 0584 0524 0024 0122 0927 0.094

m 0.198 0.962 0647 0197 0118 0428 0357

b 0437 0713 0936 0481 0121 0522 0.386
VL

a 0356 0659 0.875 0279 0003 0760 0.101

m 0457 0729 0849 0963 0160 0.318 0.038

b 0540 0916 1.000 0632 0.08 0307 0.070
soL

a 0723 0599 0870 0190 0390 0155 0.201

m 0415 0552 0769 0624 0081 0604 0884

b 0484 0729 0.805 0967 0.127 0623 0.955
TA

a 0551 0978 0052 0037 0588 0693 0.417

m 0778 0998 0437 0.19 0080 0774 0951

\iggp D 1000 0605 0548 0310 0225 0889 0551
LG

a 0954 0529 0969 0047 0.161 0143 0.465

m 0405 0455 0954 0292 0047 0.805 0334

b 0318 0568 1000 0481 0.132 0159 0.281
VL

a 0579 0082 0.38 0909 0354 0075 0.694

m 0799 0984 0600 0247 0599 0040 0563

b 0.667 0453 1000 0.632 0085 0327 0.346
soL

a 0092 0250 0710 0510 0.149 0006 0.630

m 0141 0462 0992 0787 0280 0135 0384

b 0.129 0656 1000 0908 0525 0210 0.946
TA

a 0944 0337 0310 0172 0004 0000 0.185

m 0870 0395 0836 0285 0030 0004 0943

visgs D 1000 0697 0779 0503 0021 0022 0828
LG

a 0249 0999 0967 0403 0071 0004 0.024

m 0542 0955 0886 0959 0160 0.066 0589

b 0.851 0904 1000 0937 0393 0109 0.641
VL

a 0113 0042 0015 0007 0003 0003 0.067

m 0135 0328 0065 0015 0012 0005 0041

b 0472 0418 0966 0.693 0553 0115 0.920
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Continued

SOL

a 0.175 0.052 0538 0232 0.080 0.046 0.650

m 0.303 0.093 0.617 0539 0.131 0339 0.176

b 0.962 0467 0.937 0877 0217 0157 0.982
TA

a 0.789 0467 0.075 0.120 0.083 0.493 0.097

0.954 0.842 0.437 0195 0.061 0.745 0.728

0.995 0.696 0.706 0.885 0.075 0.771 0.970
LG

a 0054 0061 0225 0.881 0.633 0.391 0.643

m 0.197 0.316 0554 0.747 0489 0.694 0.159

b 0.660 0.429 1.000 0.877 0.651 0.640 0.304
VL

a 0.700 0.081 0.034 0.017 0.008 0.006 0.179

m 0.846 0.597 0.144 0.028 0.027 0.017 0.861

b 0.829 0.022 1.000 1.000 0.887 0.476 0.604
SOL

a 0499 0762 0981 0584 0.667 0.057 0.946

m 0.894 0.857 0956 0952 0.604 0.833 0.341

b 0.715 0.843 1.000 0.805 0.584 0.859 0.429
TA

a 0779 0.125 0.745 0.707 0.686 0.677 0.191

m 0.626 0.399 0.463 0.309 0.892 0.821 0.545

0.676 0970 0.391 0.883 0.741 0.771 0.769
LG

a 0292 0972 1.000 0.498 0.034 0989 0.888

m 0472 0973 0961 0.617 0.843 0437 0.398

b 0691 0.825 1.000 0.754 0.738 0.741 0.557
VL

a 0979 0.069 0.132 0.079 0.040 0.082 0.337

0.927 0.461 0.184 0.062 0.031 0.076 0.831

0.153 0.769 1.000 0.824 0.049 0.469 0.074
SOL

a 0569 0.735 0.89% 0.732 0.211 0.054 0.170

m 0.430 0.769 0.983 0.920 0.615 0.441 0.212

b 0597 0.680 0.997 0.957 0.687 0.439 0.560
TA

a 0.096 0.030 0.024 0042 0.234 0953 0.486

m 0359 0.127 0.052 0.041 0415 0890 0.774

0.528 0.133 0.212 0.232 0.633 0.975 0.459
LG

a 0.764 0.567 0.867 0.765 0.795 0.137 0.045

m 0.301 0.855 0.958 0.851 0.748 0.746 0.055

b 0.338 0.754 1.000 0.858 0.808 0.683 0.441
VL

a 0676 0.899 0.870 0.933 0.804 0.257 0.765

m 0.864 0900 0.653 0.712 0.781 0.721 0.863

b 0.725 0.974 1.000 1.000 0.904 0.703 0.826

T 3

MS04

MS05

T 3

MS06

FS values for muscle activities of the four-selected
muscle display a broad range of values due to difference
between subjects. However, one can infer important indi-
vidual information from the given FS values. Smaller FS
values are symptoms of irregularities and deviation from
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the expected normal activity. Since, each CP and MS
subject is different in the type of gait deficit and the level
of impairment, the calculated FS values for one muscle
may not follow the same trend in all subjects. For
example, lower FS values in phases 5-7 are observed, for
most CP subjects, however CP04 has relatively higher
FS values in the swing phase. This process of measuring
similarity within the seven gait phases, furnishes indi-
vidual centered information that can relate more to the
individual. Further, since the information is available for
each phase, it is easier to identify specific problem with-
in gait phases. ldentifying specific problems at a par-
ticular part of the walking process helps to single out the
type of treatment and rehabilitation procedure needed.

One possible limitation to this study is that FS values
could be affected by the speed of walking on the
treadmill, because subjects walk at different speed over
ground and treadmill. However, an effort has been made
to minimize this effect and allow inter-subject compa-
rison by normalizing the data using Equation (1) before
granulation. Further, the VGRF data are normalized by
the body weight, and SEMG data are normalized by the
maximum value to permit comparisons between subjects.
In this research, the authors employed an automatic de-
tection of the gait cycles using VGRF values. A heel-
strike was defined at the point where the VGRF records a
value above a threshold based on the noise-level of the
signal. A toe-off is marked when VGRF drops below the
threshold. A complete gait cycle then covers the whole
period from the initial rise of VGRF to the next above
threshold value. This is very robust method compared
with other automatic gait cycle detection algorithms
based on inertial sensors [29]. Because, inertial sensors,
like accelerometers, usually are very sensitive and the
reading highly depends on the orientation and have an
associated offsets.

The proposed method is not a diagnostic tool like the
one presented in [30,31]; rather it is an assessment or
evaluation model. It provides valuable information re-
garding the relative impairment level compared to heal-
thy control group. It can’t be used to detect the pre-
sence of CP or MS or classify CP and MS. This approach
can be extended for assessment of gait related problems
due to other neurological disorder as well.

6. CONCLUSION

We apply fuzzy-granular computing to quantify VGRF
and SEMG values within the seven gait phases for the
purpose of assessing and identifying specific gait deficits
associated with CP and MS subjects. The proposed ap-
proach is shown to be effective in providing individual
based assessment information for specific part of the gait
cycle. We demonstrated the possible use of fuzzy simi-
larity measure values between age and sex matched con-

Copyright © 2012 SciRes.

trol able-bodied group and patient group (MS and CP) as
a way of quantifying assessment of impairment level or
identifying associated gait deficit. This approach not
only enables to evaluate very specific gait defects but
also pinpoints where the problem is within the gait cycle.
Identification of abnormalities at specific point provides
valuable information on the kind of treatment or inter-
vention that can be prescribed. This individual based gait
assessment information, can be integrated in clinical
setting and provide crucial knowledge for individual fol-
low up and rehabilitation process.
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