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ABSTRACT 

This paper considers rank of a rhotrix and characterizes its properties, as an extension of ideas to the rhotrix theory 
rhomboidal arrays, introduced in 2003 as a new paradigm of matrix theory of rectangular arrays. Furthermore, we pre-
sent the necessary and sufficient condition under which a linear map can be represented over rhotrix. 
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1. Introduction 

By a rhotrix A of dimension three, we mean a rhomboi-
dal array defined as 

,

a

A b c d

e

  

where, . The entry c  in rhotrix , , , ,a b c d e A  is 
called the heart of A  and it is often denoted by  h A . 
The concept of rhotrix was introduced by [1] as an ex-
tension of matrix-tertions and matrix noitrets suggested by 
[2]. Since the introduction of rhotrix in [1], many re-
searchers have shown interest on development of concepts 
for Rhotrix theory that are analogous to concepts in Ma-
trix theory (see [3-9]). Sani [7] proposed an alternative 
method of rhotrix multiplication, by extending the concept 
of row-column multiplication of two dimensional matri-
ces to three dimensional rhotrices, recorded as follows: 

   

   

a f

A B b h A d g h B i

e j

af dg
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bi ej




  



 

, 

where, A and  belong to set of all three dimensional 
rhotrices, . 

B
 3

The definition of rhotrix was later generalized by [6] to 
include any finite dimension .n  Thus; by a 
rhotrix A of dimension we mean a rhom- 

R

2   
2 1, 

1
n 

boidal array of cardinality  2 1
2

n 
1

. Implying a rhotrix  

R of dimension n can be written as  
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The element  , 1, 2, ,ija i j t   and  
 , , 1t, 1, 2c k lkl    are called the major and minor 

entries of R respectively. A generalization of row-column 
multiplication method for n-dimensional rhotrices was 
given by [8]. That is, given any n-dimensional rhotrices  

,n ij klR a c  and ,n ij klQ b d , the multiplication of 
 and  is as follows: nR nQ

     1

, 1 , 1

1
, , .

2

t t

n n ij ij kl kl
i j k l

n
R Q a b c d t



 


    

The method of converting a rhotrix to a special matrix 
called “coupled matrix” was suggested by [9]. This idea 
was used to solve systems of  and n n    1 1n n    
matrix problems simultaneously. The concept of vectors 
and rhotrix vector spaces and their properties were in-
troduced by [3] and [4] respectively. To the best of our 
knowledge, the concept of rank and linear transformation 
of rhotrix has not been studied. In this paper, we consider 
the rank of a rhotrix and characterize its properties. We 
also extend the idea to suggest the necessary and suffi-
cient condition for representing rhotrix linear transforma-
tion.  

2. Preliminaries 

The following definitions will help in our discussion of a 
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useful result in this section and other subsequent ones. 

2.1. Definition 

Let ,n ij klR a c  be an n-dimensional rhotrix. Then,  

ija  is the -entries called the major entries of    ,i j  nR

and  is the -entries called the minor entries of 
. 

klc  ,k l

nR

2.2. Definition 2.2 [7] 

A rhotrix ,n ij klR a c  of n-dimension is a coupled of  

two matrices  and   consisting of its major   ija klc

and minor matrices respectively. Therefore,  ija  and 
 are the major and minor matrices of .  klc nR

2.3. Definition 

Let ,n ij klR a c  be an n-dimensional rhotrix. Then, 
rows and columns of   (ija  klc ) will be called the 
major (minor) rows and columns of  respectively.  nR

2.4. Definition 

For any odd integer n, an  matrix   is called a 
filled coupled matrix if  for all  whose sum 

 is odd. We shall refer to these entries as the null 
entries of the filled coupled matrix.  

n n
0ija 

ija
,i j

i j

2.5. Theorem 

There is one-one correspondence between the set of all 
n-dimensional rhotrices over F  and the set of all n n  
filled coupled matrices over F . 

3. Rank of a Rhotrix 

Let ,n ij klR a c , the entries  and  1rra r  t
11ssc s t    in the main diagonal of the major and  

minor matrices of R  respectively, formed the main 
diagonal of R. If all the entries to the left (right) of the 
main diagonal in  are zeros,  is called a right (left) 
triangular rhotrix. The following lemma follows trivially.  

R R

3.1. Lemma 

Let ,n ij klR a c ,  is a left (right) triangular rhotrix if  

and only if  and  are lower (upper) triangu-  ija  klc

lar matrices.  
Proof  
This follows when the rhotrix n  is being rotated 

through 45˚ in anticlockwise direction.  
R

In the light of this lemma, any n-dimensional rhotrix 
 can be reduce to a right triangular rhotrix by reducing 

its major and minor matrix to echelon form using ele-

mentary row operations. Recall that, the rank of a matrix 

R

A  denoted by  rank A  is the number of non-zero 
row(s) in its reduced row echelon form. If ,n ij klR a c , 
we define rank of  denoted by  as: R  rank R

   rank ijR a   rank klcrank .         (3) 

It follows from Equation (3) that many properties of 
rank of matrix can be extended to the rank of rhotrix. In 
particular, we have the following: 

3.2. Theorem  

Let , ,n ij kl  and R a c ,n ij kldQ b
1
, be any two 

n-dimensional rhotrices, where .  Then 2n   
1)  rank R n ; 

2)     rank ank rankR S R S r  ; 

3)     rank rankR S n R    Srank ; 

4)       rank n rank , rankR S R S mi . 

Proof  
The first two statements follow directly from the defi-

nition. To prove the third statement, we apply the corre-
sponding inequality for matrices, that is,  

     k rank rankran AB A  B n , where A  is  
m n  and  is B pn . Thus, 

       

   

   

   

rank rank

rank
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rank

rank

1
rank

2

1
k rank 1

2

rank .

ij ij kl kl

ij ij

kl kl

RS a b c d

n
a b

n
c d

R S n

       
       

 


 
       

 
  

For the last statement, consider 

 
     

         
        

  

rank

rank rank

min , min , rank

min k , rank

min rank rank .

ij kl kl

ij ij kl kl

ij kl ij kl

RS

c d

a b c d

a c b d

R S

       

 

  



 

rank

ran

ija b

 

 

3.3. Example  

Let 
1

0 2 2

1 1 3 1 2

2 1 1

2

A


 


.  

Then, the filled coupled matrix of A  is given by  
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 

1 0 2 0 2

0 2 0 1 0

0 0 3 0 1

0 1 0 1 0

1 0 2 0 2

m A

 
 
 
 
 

 
  

. 

Now reducing  to reduce row echelon form 
, we obtain  

 m A
rref 







 







  

1 0 2 0 2

0 2 0 1 0

0 0 3 0 1

0 0 0 3 0

0 0 0 0 0

rref m A



 
 
 


 

,  

which is a coupled of  and  matrices, i.e.  2 2 3 3
1 2

 
2 0

say
0 3

A


 
 

 and  respec-  
2

say 0 3 1

0 0 0

B

 
 
 
 

tively.  
Notice that,  

   
   

rank rank

2 2 4 rank .

A B

rref m A



   
 

Hence, .  rank 4A 

4. Rhotrix Linear Transformation 

One of the most important concepts in linear algebra is 
the concept of representation of linear mappings as ma-
trices. If  and W  are vector spaces of dimension  
and  respectively, then any linear mapping  from 

 to  can be represented by a matrix. The matrix 
representation of  is called the matrix of  denoted 
by . Recall that, if 

V



n
m

m T

T
V W

T T
F  is a field, then any vector 

space  of finite dimension n  overV   F  is isomor-
phi  nc to F . Therefore, a n  matrix ov  ny n er F  can 
be considered as a linear operator on the vector space 

nF  in the fixed standard basis. Following this ideas, we 
study in this section, a rhotrix as a linear operator on the 
vector space nF . Since the dimension of a rhotrix is 
always odd, it follow that, in representing a linear map 

 on a vector space  by a rhotrix, the dimension of 
 is necessarily odd. Therefore, throughout what fol-

lows, we shall consider only odd dimensional vector 
spaces. For any  and 

T
V

V

2   1n F  be an arbitrary 
field, we find the coupled 1t,tF F  of tF   

  1 2 1, , , , ,t t
tF F        and  

  1 1
1 2 1 2 1, , , , , ,t t

t tF F      
    by  

   


1
1 2 1 2 1

1 2 1 2 1

, , , , , , , ,

, , , , , , ,

t t
t t

t
t t

F F :

.F

     

     










 

 
 

It is clear that  1,t tF F   coincides with nF  and so, 
if 2n  1   , any n-dimensional vector spaces   1V

and  is of dimensions 2V
1

2

n 
 and 

1
1

2

n 
  respec- 

tively. Less obviously, it can be seen that not every linear 
map  of T nF  can be represented by a rhotrix in the 
standard basis. For instance, the map 

3 3:T F F  

defined by  

   , , , ,T x y z x y x z y z     

is a linear mapping on 3F  which cannot be represented 
by a rhotrix in the standard basis. The following theorem 
characterizes when a linear map  on T nF  can be rep-
resented by a rhotrix. 

4.1. Theorem  

Let 2n  1    and F  be a field. Then, a linear map 
 can be represented by a rhotrix with re-

spect to the standard basis if and only if  is defined as 
: n nT F F

T

 
   
  
   

1 1 2 2 1

1 1 2 1 1 2 1

2 1 2 2 1 2 1

1 1 2 1 1 2

, , , , , ,

, , , , , , , ,

, , , , , , , , ,

, , , , , , , ,

t t

t t

t t

t t t

T x y x y y x

x x x y y y

x x x y y y

y y y x x x

 

 

 







 





 

 

 


t


 

where 1

1
, , ,

2 t

n
t  
   and 1, , t 1    are any linear 

map on tF  and 1tF   respectively. 
Proof: 
Suppose  is defined by  : nT F F n

 
   
  
   

1 1 2 2 1

1 1 2 1 1 2 1

2 1 2 2 1 2 1

1 1 2 1 1 2

, , , , , ,

, , , , , , , ,

, , , , , , , , ,

, , , , , , , ,

t t

t t

t t

t t t

T x y x y y x

x x x y y y

x x x y y y

y y y x x x

 

 

 







 





 

 

 


t


 

where, 1

1
, , ,

2 t

n
t  
   and 1, , t 1    are any lin- 

ear map on t F  and 1t F   respectively, and consider 
the standard basis  

      1,0, ,0 , 0,1,0, ,0 , , 0,0, ,1    . Note that, for  

1 i t   and 1 1j t   . Since i j,   are linear maps, 
   0, ,0i j 0, ,0 0  . Thus,  
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     
     

     
    

1

1 1

1 1

1

1,0, ,0 1,0, ,0 ,0, , 1,0, ,0

1,0, ,0 0, 1,0, ,0 , , 1,0, ,0

0, ,0,1 0, 0, ,0,1 , , 0, ,0 ,1

0, ,0,1 0, ,0,1 ,0, , 0,0, ,0,1

t

t

t

t

T

T

T

T

 

 

 

 





  




    

    
   

   

   


   

   

 (5

Let   for 

 and 



for . Then from (5), we have the matrix 

1

0

0

) 

th position
0, , 1 , ,0ij j

i
 



  
 
 

 1 ,i j t 
th position

0, , 1 , ,0kl l
j

 


 

   

 1 , 1k l t  
 is  of T

11 12 1 1 1

11 1 1

1 1

1 2 1

0 ... 0

0 0 ... 0

0 0 ... 0

0 ... 0

t t

t

t t t t

t t tt tt

   
 

 
  





 



 
 



 
 
 
 
 


      
      
      




.     (6) 

This is a filled coupled matrix from which we obtain 
th







e rhotrix representation of T  as ,ij kl  . 
Conversely: 
Suppose :T F n nF  has a rhotrix representation  

,ij kl   in basis. Then, the corresponding 
presentation of T  is the filled coupled given in 

(6) above. Thus, we obtain e system 

 the standard 
matrix re

 th

    (7) 

From this system, it follows that for each  

   
   

   
   

11 12 1 1 1

1 1 1 1

1 1 1

1 2 1

1,0, ,0 ,0, , , ,0,

1,0, ,0 0, ,0, , ,0

0, ,0,1 0, ,0, , ,0

0, ,0,1 ,0, , , ,0,

t t

t t

t t t t

t t tt tt

T

T

T

T

   

 

 

   



 

  






 


 
 

 

 


 

 

 

 1 1 2 2 1, , , , , , n
t tx y x y y x F   we have the l

 

inear trans-

t



where, 

formation T  defined by  

   
   
   

1 1 2 2 1

1 1 2 1 1 2 1

2 1 2 2 1 2 1

1 1 2 1 1 2

, , , , , ,

, , , , , , , ,

, , , , , , , , ,

, , , , , , , ,

t t

t t

t t

t t t

T x y x y y x

x x x y y y

x x x y y y

y y y x x x

 

 

 







 





 

 

 

 

1

1
, , ,

2 t

n
t  
   and 11, , t    are any lin- 

ear map on tF  with th position
0, , 1 , ,0j ij

i
 



 

  




 for 

 1 ,i j t   and 0l th position
, , 1 , ,0

j
kl 


 




  



 for

 11 ,k l t  

4.2. Examp

. 

le

ne by 

  

Consider the linear mappings :T   defi
   , 4 , 3 .z y x z  To find the rh

e proceed
. Thus,  

, , 2T x y z x  otrix of 
T  relative to the standard basis. W  by finding 
the matrices of T

   
 
1,0,0 2,0,1

0,1,0

T

T



  
   

0,4,0

0,0,1 1,0, 3T   

 

definition of matrix of T  with
s, we have 

4 0 ,

1 0 3



   

 

 coupled matrix from which 

Therefore, by
to the standar

which is a filled

  respect 
d basi

we obtain  

 
2 0 1

0m T

 
  

the rhotrix of T  in 3R ,  
2

1 4 1r T   . 

3

Now starting   
2

 with the rhotrix 1 4 1

3

r T  


pled matrix of  r T  is

 

the filled cou

2 0 1

0 4 0

1 0 3

 
 
 
   

. 

And so, defining 3 3:T R  R  

       
     

      

1,0,0 0 0,1,0 1 0,0,1

1,0,0 4 0,1,0 0 0,0,1

0,1 1 1,0,0 0 0,1,0 3 0,0,1



  

   

 


1,0

0,1

0,

T

T

T

Thus, if 


,0 2

,0 0

 

       , , 1,0,0 0,1,0 0,0,1 .x y z x y z     
Therefore,  

      
     

1,0,0 0,1,0 0,0,1

2,0,1 0,4,0 1,0, 3

xT yT zT

x y z

  

      



d the rank of a rhotrix and characterize 
 extension of ideas to the rhotrix theory 

 2 , 4 , 3x z y x z  

,T x y, z

5. Conclusion 

We have considere
its properties as an
rhomboidal arrays. Furthermore, a necessary and suffi-
cient condition under which a linear map can be repre-
sented over rhotrix had been presented.   
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