
American Journal of Operations Research, 2012, 2, 519-526 
http://dx.doi.org/10.4236/ajor.2012.24061 Published Online November 2012 (http://www.SciRP.org/journal/ajor) 

Chance-Constrained Approaches for Multiobjective  
Stochastic Linear Programming Problems 

Justin Dupar Busili Kampempe1, Monga Kalonda Luhandjula2 
1Department of Mathematics and Computer Science, University of Kinshasa, Kinshasa, D.R. Congo 

2Department of Decision Sciences, University of South Africa, Pretoria, South Africa 
Email: kampempe@yahoo.fr, luhanmk@unisa.ac.za 

 
Received July 30, 2012; revised August 31, 2012; accepted September 13, 2012 

ABSTRACT 

Multiple objective stochastic linear programming is a relevant topic. As a matter of fact, many practical problems rang-
ing from portfolio selection to water resource management may be cast into this framework. Severe limitations on ob-
jectivity are encountered in this field because of the simultaneous presence of randomness and conflicting goals. In such 
a turbulent environment, the mainstay of rational choice cannot hold and it is virtually impossible to provide a truly 
scientific foundation for an optimal decision. In this paper, we resort to the bounded rationality principle to introduce 
satisfying solution for multiobjective stochastic linear programming problems. These solutions that are based on the 
chance-constrained paradigm are characterized under the assumption of normality of involved random variables. Ways 
for singling out such solutions are also discussed and a numerical example provided for the sake of illustration. 
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1. Introduction 

Decision makers are intendedly rational. They are goal 
directed and they are intended to pursue those goals in 
conformity with the classic homo-economicus model [1]. 
They do not always succeed because of the complexity of 
some environments that impose both procedural and sub-
stantive limits. This is the case when dealing with mul-
tiobjective stochastic linear programming (MSLP) prob-
lems. 

In such a turbulent environment the notion of “opti-
mum optimorum” is not clearly defined and satisficing 
rather than optimal search behavior seems to be the most 
appropriate option. A look at the literature reveals that 
most existing solution concepts for MSLP problems rely 
heavily on the expected, pessimistic and optimistic val-
ues of involved random variables [2,3]. A finding from 
several research work [4-7] leave no doubt about the fact 
that these values may be useful in providing the range of 
possible outcomes. Nevertheless, they ignore such im-
portant factors as the size and the probability of devia-
tions outside the likely range as well as other aspects 
concerning the dispersion of the probabilities. 

In this paper, we discuss satisfying solution concepts 
for MSLP problems. These concepts are based on the 
chance-constrained philosophy [8]. Chance-constrained 
applied for the purpose of limiting the probability that 
constraint will be violated. In this form, it adds consid-

erably to both the flexibility and reality of the stochastic 
model under consideration. Mathematical characteriza-
tion of the above mentioned solution concepts are also 
provided along with ways for singling them out. A nu-
merical example is supplemented for the sake of illustra-
tion. 

The remainder of the paper is organized as follows. In 
the next section we clearly formulate the problem under 
consideration. In Section 3, we present some satisfying 
solution concepts for this problem. In Section 4, we 
characterize these solution concepts. In Section 5, we 
discuss ways for solving resulting problems. In Section 6, 
we present the methods for solving this problem. An il-
lustrative example is given in Section 7. We end up with 
some concluding remarks along with lines for further 
developments in the field of MSLP. 

2. Multiobjective Stochastic Linear  
Programming 

Problem Formulation 

A multiobjective stochastic linear programming is a 
problem of the following type: 
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   1 , , Kc x c x  are random vectors defined where 
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where    are random variables defined on 
the same probability space. 

(P1) is an ill-defined problem because of the simulta-
neous presence of different objective functions and of 
randomness surrounding data. In such a turbulent envi-
ronment, neither the notion of feasibility nor that of op-
timality is clearly defined. One then has to resort to the 
Simon’s bounded rationality principle [9] and seek for a 
satisfying solution instead of an optimal one. 

Several solution concepts have been described in the 
literature, see for instance [10,11]. Most of these solution 
concepts rely on the first two moments of involved ran-
dom variables. As mentioned earlier, these values often 
offer a short-sighted view of uncertainty surrounding 
data under consideration. In what follows, we discuss 
some satisfying solution concepts based on the chance- 
constrained approach [12-14]. 

3. Satisfying Solutions for Problem (P1) 

Definition 3.1  , 

 c x * n

-satisfying solution of type 1 
Assume that objective functions of (P1) are aggregated 

in the form of . We say that x R  is an 
 ,   -
 ,

satisf


ying solution of type 1 for  if   1P
x s   is optimal for the following optimization prob-

lem: 
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where  m     with  0,1 i  and 
   1 , ,i i 



0,1  m   and β are probability levels a 
priori fixed by the Decision Maker. 

Definition 3.2 ,  -satisfying solution of type 2 
We say that * nx R  is an  ,  -satisfying solution 

of type 2 for (P1) if  ,x s  , where * ks R

1, ,i m  

, is efficient 
for the following multiobjective optimization problem: 
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Here 0,1i  i  and k   are threshold fixed 

by the Decision Maker. 
 ,Definition 3.3  

* n
-satisfying solution of type 3  

R  , is an We say that x   -satisfying solution 
of type 3 for (P1) if  , K *, where x s s R
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, is optimal 
for the following mathematical program: 

 

k

Here k , k  and kt  are respectively the upper devia-
tions of the  goal, the weight of k

v
thk   and the target 

associated with the  objective function.  thk
  0,1  ii  0,1k k  and   k  are as in Defi-

nition 3.2. 

Interpretation 

Intuitive ways of thinking about the above solution con-
cepts are given below. 
 An  ,  -satisfying solution of type 1 for  1P  is 

an alternative that keeps the probability of the aggre-
gate  c x  of the objective functions  
   Kc x1 , ,c x   of this problem, lower than a 

variable s to a desired extend β, while the variable s is 
itself minimized. Moreover the chance of meeting the 

thi  constraint of the problem is requested to be higher 
than fixed thresholds i



 . It is clear that for i  and β 
close to 1, such an alternative is an interesting one. As 
a matter of fact, it maintains the probability of keeping 
the aggregation of objective functions low, while 
keeping the probabilities of realization of constraints 
to desired extents.  

 An  ,  -satisfying solution of type 2 for  1P  is 
an action that keeps the probability of the thk  ob-
jective  kc x  of the problem be less than some 
variable ks  to a level k : while the vector 
 1, Ks s  is minimized in the Pareto sense. In the 
meantime, the chance of having the thi  constraint of 
the problem be satisfied is greater than i . Again for 

k , 1, , Kk    and i , , m   close to 1, 
such a solution is interesting from the stand points of 
feasibility and efficiency. 

 1,i

 Finally, an  ,  -satisfying solution of type 3 for 
 1P  minimizes the weighted sum of derivations 
from given targets while maintaining the probability 
of each objective to be close to the corresponding 
target, to some desired levels. It also meets the re-
quirement of being feasible with high probability. 
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4. Characterization of Satisfying Solutions 

 
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       

In what follows, we provide necessary and sufficient 
conditions for a potential action to be a satisfying one, in 
the above described sense. These conditions rely heavily 
on the hypothesis of normality of distributions of in-
volved random variables. 
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We recall that random vector  is said to 
have the multivariate normal distribution if any linear 
combination of its components is normally distributed. 
The following Lemma due to Kataoka [13] will be 
needed in the sequel. 
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  1E Y    respectively. 
Then for  0,1i 

 1 1Y Y
 ,  the aggregation 1, ,i n 

 n nY      

  n nE Y

 is normally distributed 
with mean 

     1 1E Y E Y     

   2ar

 

and variance   
1

var v
n

j jY Y
j

  

   , ,Y



   

2) Suppose nY Y  1  

   , , nE Y 

    ,Y Y

  has a multi-
variate normal distribution with mean 

     1E Y E Y    
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We are now in position to characterize an  , 

 K
K c x

- 
satisfying solution of type 1. 

Proposition 4.1 
Assume that objective functions of (P1) is aggregated 

as follows    1
1c x c x  
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Proof  
Assume that x  is a satisfying solution of type 1 for 
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Let’s show that the first constraint of (P2) is equiva-
lent to 
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is normally distributed with mean 0 and variance 1. 
Therefore the first constraint of  becomes 
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That is 
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And we have established that the first constraint of 
2P  is equivalent to relation (1). 
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  are independent and normally distributed [15]. 
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

  
This problem is equivalent to (P2)' as desired. 

 ,As far as   -satisfying solution of type 2 is con-
cerned we have the following result. 

Proposition 4.2 
Consider (P1) and assume that the random variables 
 kc j 1, ,k K 1, ,j n;      are independent and 

normally distributed. Assume further that the random 
variables  aij  ; , ,j n 1, ,i m ;  and bi  ; 

1, ,i m 
* n

 are also normally distributed and independ-
ent. Then a point R , is an x  

*
-satisfying solu-

tion of type 2 for (P1) if and only if x  is efficient for 
the following mathematical program: 

 

       
      

     
       

1 1 1
1

1

1

min 'var , ,

( ) ' var

3

var ' var 0;

1, ,

0

K K
K

i i

i i i

E c x x c x

E c x x c x

E A x E bP

b x A x

i m

x

  

  

 

  







 

 

 

  



 





1, ,a
 

where m ; 1 K  and  iA, , 0,1    de-
notes the  row of the matrix thi    ij ij

A a 

 

 and 

2 21
e d

2π

x
yx y



   . 

Proof 
As shown in the proof of Proposition 4.1, the chance 
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constraints  in (P3) 
are equivalent to 

  k
k kP c x s   ; 1, ,k K 

      1 var

1, ,

kE c x x c

k K

   

 

,k
k kx s 

0 ; 1, ,i i k  

  

 
and the chance constraints: 

   
1

n

ij j i
j

P a x b 


 
  

 
  

are equivalent to 

     
    1 var 'var

 1, ,

i i

i i

E A x E b

b x

i m

 

 



 

 

0;iA x 

  

 
Then (P3) is equivalent to the following program: 

 

    

     
       

1

1

1

min , ,

' var

1, ,

var ' var

1, ,

0

K

k
k

i i

i i

s s

E c x x

k K

E A x E b

b x

i m

x

 

 

 







 

 
 

 



 







;

0;

k
k

i

c x s

A x









 
And clearly, this problem is equivalent to (P3)' in the 

sense that they have the same efficient solutions. Finally, 
a characterization of an  ,  -satisfying solution of 
type 3 is given below. 

Proposition 4.3 
Consider (P1) and assume that the random variables 
 k

jc  , ;  are independent and 
normally distributed. Then a point  is an 

1, ,k K  1, ,j n 
* nx 

 ,  -satisfying solution of type 3 for problem (P1) if 
and only if *x  is optimal for the following mathemati-
cal program: 

 

       

     
       

1

1

1

min

'var

1, ,

4

var ' var

, ,

0; 0, 1, ,

K

k k
k

k k

i i

i i

k

v s

E c x x c

k K

P E A x E b

b x

i m

x s k K

 

 

 







  
  

 
 
 
 

 



   









;

0;

k k k

i

x t s

A x





 



k

 
  is the upper deviation variable of the  

goal, 

thk

1, , Kv v
, ,

 are weights of the upper deviation vari-
ables, 1 Kt t  are targets associated with the objective 
functions;  iA   denotes the i  row of the th

where 

matrix      ij ij
A a    

2 21
e d

2π

x
yx y



  

,

 

and 1 m ,  1  K  are desired thresholds 
fixed by the Decision Maker. 

, 0, ,1  

 
  

   

1

1

min

, , ,
4

0 , 1, ,

0; 0, 1, , .

K

k k
k

k
k k k

n

ij j i i
j

k

v s

P c x t s k K
P

P a x b i m

x s k K

 

  





  
  

 
    


 
    

 
   











Proof. 
Consider 

 

As discussed in the proof of Proposition 4.2, the 
chance constraints 

    , 1, ,k
k k kP c x t s k K     

 

 

are equivalent to 

      1 var ,

1, ,

k k
k k kE c x x c x t s

k K

     

 

   
1

 , 1, ,0
n

ij j i i
j

P a x i mb  


 
 


 


 

 
As shown in the proof of Proposition 4.1, we have that 

 

can be written as follow: 

     
     1 var( 0,

1, , .

i i

i i i

E A x E b

varb x A x

i m

 

  



  

 

 

Therefore, program 4P

       

 reads: 

     
       

1

1

1

min

var ;

1, ,

var var 0,

1, ,

0; 0, 1, ,

k

k k
k

k
i k k k

i i

i i i

k

v s

E A x x c x t s

k K

E A x E b

b x A x

i m

x s k K

  

 

  







  
  

 
   
 
 


  



   









 
which is exactly (P4)'. 

Copyright © 2012 SciRes.                                                                                AJOR 



J. D. B. KAMPEMPE, M. K. LUHANDJULA 524 

5. Singling out Satisfying Solution for  
Problem (P1) 

Problem to be solved to single out a satisfying solution 
(in the sense of definitions given in, §2 for (P1) are (P2)', 
(P3)' and (P4)' depending on the type of solution chosen. 
(P2)' and (P4)' are standard mathematical programs 
about which a great deal is known. In the case, when 
these programs are convex, one may use algorithms of 
convex programming [16], the conjugate gradient 
method [17], the exterior or interior penalty functions 
methods [18]. For the non convex case, one may use ap-
proximation type algorithms or metaheuristics [19]. (P3)' 
is a multiobjective program. A rich array of methods for 
solving it may be found in [20]. 

6. Methods for Solving (P1) 

6.1. Method for Yielding a Satisfying Solution of 
Type 1 

Step 1: Fix  1, , m     and  ;  0,1i   
 0,1  ;  

Step 2: Compute  1
i


1

; ;  1, ,i m
Step 3: Compute  ; 

Step 4: Agregate    c c1 , , K   c  to  ; 
Step 5: Compute   E c  ,   r cva  ,   var ib  , 

  iAvar  ; 
Step 6: Write the Program ;   2P 

Step 7: Solve   using a mathematical program-
ming method. Let 


*
2P

x  is solution; 
Step 8: Print: “ *x  is a satisfying solution of type1 for 

(P1)”; 
Step 9: Stop. 

6.2. Method for Yielding a Satisfying Solution of 
Type 2 

The same as 6.1; except that in Step 1   should be re-
placed by    ,1

   ,E c 
, ,   K

In Step 4,  


   ,c var  should be replaced 
by   kE c    and 1, , k K   var kc  ,  

 respectively. 1, ,k   K
Steps 5-7 should be as follow: 
Step 5: Write the Program ;  3P 


*

Step 6: “Solve ” and in;  3P
Step 7, “ x  is a satisfying solution of type 2”;  
Step 8: Stop. 

6.3. Method for Yielding a Satisfying Solution of 
Type 3 

Step 1: Fix  1, , m    1, , and K   
1, ,k K 

;  
Step 2: Fix ,  and , ;  k

Step 3: Compute: 
t 1, ,k K v k

 1
k

 , , 1, ,k K  1
i


1, 

 

, 
; ,i m

 var kcStep 4: Compute:  , ;  1, ,k K 
  var ib  ,  var iA   iE A   iE b ,  ,  , 
1, ,i m

 4P
; 

Step 5: Write  ; 
 4P   let *x  its solution; Step 6: Solve 

*x  is a satisfying solution of type 3”; Step 7: Print: “
Step 8: Stop. 

7. Numerical Example 

Consider the following multiobjective stochastic linear 
program: 

 

    
    

     
     
     

1 1
1 1 2 2

2 2
1 1 2 2

11 1 12 1 1

21 1 22 2 2

31 1 32 1 3

1 2

min

max

5

0; 0.

c x c x

c x c x

a x a x bP
a x a x b

a x a x b

x x

 

 

  

  

  

 

 
  

  

  


 

 

 kc j 1, 2j 1,2,3iwhere  ,     are independent nor- 
mally distributed random variables, with the following 
parameters: 

       
       
       
       
       
   
   
   

1 1
1 2

2 2
1 2

11 12

21 22

31 32

1

2

3

20,25 , 40,100 ,

50, 400 , 100,2500 ,

10,36 , 5,16 ,

4,16 , 10, 49 ,

1, 4 , 1.5,9 ,

2500,250000 ,

2000,160000 ,

450, 25000 .

c N c N

c N c N

a N a N

a N a N

a N a N

b N

b N

b N

 

 

 

 

 







 

 

 

 

 







0.99

 

if the decision maker is interested in a satisfying solution 
of type 1 with i    and i 0.99 0.4 1    
and 2 0.6   then by virtue of Proposition 4.1, he has 
to solve the following problem. 


 

 

2 2
1 2 1 2

2 2
1 2 1 2

2 2
1 2 1 2

2 2
1 2 1 2

2 2
1 2 1 2

1 2

min 20 40 2.33 25 100 0.4

50 100 2.33 400 2500 0.6

10 5 2.33 36 16 250000 2500 06

4 10 2.33 16 49 160000 2000 0

1.5 2.33 4 9 2500 450 0

0; 0

x x x x

x x x x

x x x xP

x x x x

x x x x

x x

    

    

      


 

     


     
  

solving this optimization problem using MATLAB, we  
obtain the following solution: 
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* *
1 214.37158, 48.2759, withx x  * 5450.045z   . 

Assume now that a satisfying solution of type 2 is 
sought with 0.99 0.99  and i  k . i k

Then by Proposition 4.2, one has to solve the follow-
ing problem: 

 

 
 

2 2
1 2 1

1 2 1

2 2
1 2 1 2

2 2
1 2 1 2

2 2
1 2 1 2

1 2

min 20 40 2.33 25 100

min 50 100 2.33 400

10 5 2.33 36 16 25007

4 10 2.33 16 49 160000

1.5 2.33 4 9 2500

0, 0

x x x

x x x

x x x xP

x x x x

x x x x

x x

   


  

    


   


   
  

2

2 2
22600

00 2500 0

2000 0

450 0

x

x

 

 

 

* *
1 2 48.81265 

 

using the global criterion method [21] and solving the 
resulting problem by MATLAB, we obtain the following 
solution: 

11.95851,x x  

Suppose that a satisfying solution of type 3 is desirable 
for i 0.99  0.99  and ki   k . Suppose further 
that the decision maker goals are 2,000 and 15,000 for 
objectives 1 and 2 respectively. Using equal weights (i.e. 

1 2 0.5    for the two objectives, we have to solve 
the following problem: 

 

 1 2

2 2
1 2 1 2

2 2
1 2 1

2 2
1 2 1 2

2 2
1 2 1 2

2 2
1 2 1 2

1

min 0.5 0.5

20 40 2.33 25 100 2

50 100 2.33 400 2600

8 10 5 2.33 36 16 2500

1

2 2

000

1500

00 2500

4 10 2.33 16 49 160000 2000 0

1.5 2.33 4 9 2500 450 0

0

x x x x

x x x x

P x x x x

x x x x

x x x x

x

 



0





    

    

     

     

     

 2, 0x












 

* 3694.803

 

using MATLAB to solve this problem, we obtain the 
following solution: , 2   

, , with optimal value  
. 

*
1

11.95851 *
2x 

2516.159

13337.512 
48.81265*

1 
* 

x
z

As can be seen, methods yielding type 2 and type 3 
satisfying solutions have almost the same solution that 
differs from the method yielding type 1 solution satisfy-
ing solution. This is because the two first methods use 
the multiobjective approach while the third method uses 
the stochastic approach. 

8. Concluding Remarks 

In this paper, we have addressed the problems of defin-
ing and characterizing solution concepts for a multiob-

jective stochastic linear program. Owing to the simulta-
neous presence of randomness and to the multiplicity of 
objective functions, we have privileged the satisfying 
approach rather than the optimizing one.  

Solution concepts discussed in this paper have an ad-
vantage over those focusing only on the expectation and 
variances. As a matter of fact, these solutions take into 
consideration, the whole distributions of involved ran-
dom variables. We have shown that when involved ran-
dom variables are normally distributed, singling out solu-
tions discussed here causes little extra computational 
costs. As a matter of fact, problems to be solved to obtain 
such solutions are standard mathematical programs about 
which a great deal is known. Lines for further develop-
ments in this field include: 
 The choice of threshold i , 1, ,i m  , and k ,  

1, , Kk    in an optimal way; 
 The consideration of other distributions rather than 

the normal one; 
 The extension of solution concepts discussed here to 

the case where fuzziness and randomness are in the 
state of affairs [22]; 

 The generalization of methods discussed here to the 
bilevel case [23]. 
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