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ABSTRACT

This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/
nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed using Lyapunov sta-
bility theory. In the controller, a fuzzy function approximator with parameters update law is included to compensate for
the identification inaccuracy, model uncertainty, and flexure coupling effects. Simulation results are used to demon-

strate the control performance.
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1. Introduction

Recently, control of micro/nano stages considering the
piezoactuator hysteresis effects has found great interests
in the literature. Effective ultrafine-resolution trajectory
tracking performance of stages is limited by the intrinsic
hysteretic behavior of the piezoceramic material and the
structural vibration of the devices [1].

Many efforts were trying to decrease the hysteresis ef-
fect of piezoactuators. Newcomb and Flinn [2] found that
the relationship between the extension of a piezoceramic
actuator and its applied electric charge has significantly
less hysteresis nonlinearity than that between deforma-
tion and applied voltage. Furutani ef al. [3] proposed an
induced charge feedback control for the piezoactuators.
The approach needs measurement of the induced charge
and a specially designed charge drive amplifier, and will
cause an increase in the response time of the actuator.

In order to linearize the control system, many re-
searches focused on the inverse feedforward compensa-
tion based on some inverse hysteresis model. Several
models have been suggested for describing the complex
hysteretic behavior, for example, the Preisach model in
Ge and Jouanch [4,5], Yu et al. [6], and Liu et al. [7], the
generalized Preisach model in Ge and Jouaneh [8], the
dynamic Preisach model in Yu et al. [9]; the general-
ized Maxwell elasto-slip model in Goldfarb and Celano-
vic [10]; the variable time-relay hysteresis model in Tsai
and Chen [11]; the Prandtl-Ishlinskii (PI) model (a sub-
class of the Preisach model) in Ang. ef al. [1] and Has-
sani and Tjahjowidodo [12]; the Duhem model in Ste-
panenko and Su [13]; the polynomial approximation
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method in Croft and Devasia [14]; and the Jiles-Atherton
model in Dupre et al. [15]. Ge and Jouaneh [5] proposed
a PID feedback control using the classical Preisach
model for the hysteresis. Song et al. [16] proposed a
cascaded PD/lead-lag feedback controller based on a
linear model for the piezoactuator with hysteresis being
compensated via the feedforward cancellation using the
inverse classical Preisach model. Recently, Maslan et al.
[17] presented a discrete-time transfer function and its
inverse for a highly nonlinear and hysteretic piezoelectric
actuator, and traditional PID controller and PID with
active force control were considered.

To mitigate the effects of the unknown hysteresis,
Wang et al. [18] suggested a model reference control for
linear systems with unknown input hysteresis using an
inverse KP (Krasnosel’skii-Pokrovskii) hysteresis model
[19]. Hwang et al. [20] proposed a neural-network non-
linear model for learning the hysteretic behavior of a
piezoelectric actuator, and suggested a discrete-time va-
riable-structure control for enhancing the nonlinear mo-
del-based feedforward control performance. Based on the
learned nonlinear model of piezoelectric actuator systems
in [20], Hwang and Jan [21] proposeed a controller in-
cluding a nonlinear inverse control and a discrete neuro-
adaptive sliding mode control using a recurrent neural
network to compensate for the residue dynamic uncer-
tainty. Wai and Su [22] presented a supervisory genetic
algorithm (SGA) control system for a piezoelectric ce-
ramic motor. The controller consists of a GA control to
search an optimum control effort online via gradient de-
scent training process and a supervisory control to stabi-
lize the system states around a predefined bound region.

ICA



L.-C.LIN

Recently, Ronkanen et al. [23] presented a two-input
(velocity and voltage) one-output (current) feedforward
backpropagation network to model the inverse nonlinear
velocity-current relation of a piezoelectric actuator, and
then introduced a feedforward charge control scheme.

Other analytical types of nonlinear differential hys-
teresis models include the simplified Dahl model used in
Lyshevski [24], Sun and Chang [25], Sain ef al. [26], and
the Bouc-Wen model in Low and Guo [27], Chen et al.
[28], and Gomis-Bellmunt et al. [29]. Chen et al. [28]
proposed an H,, almost disturbance decoupling robust
control based on the Bouc-Wen hysteretic model. Shieh
et al. [30] proposed an adaptive displacement control for
a piezopositioning mechanism with the LuGre (hysteretic)
friction model suggested by De Wit et al. [31]. Gu and
Zhu [32] suggested a new mathematic model to describe
the frequency-dependent and amplitude-dependent hys-
teresis in a piezoelectric actuator using a family of ellip-
ses. These analytical hysteresis models will be much
easier for precision positioning control design.

In this work, we consider the precision control of a
three-axis piezoactuated micro/nano stage. An adaptive
controller with simplified Dahl model-based hysteresis
variables observer is designed using the Lyapunov stabil-
ity theory. In the adaptive controller, a fuzzy function
approximator with parameters update law is included to
compensate for the identification inaccuracy, model un-
certainty, and flexure coupling effects. Simulation results
are used for illustrating the possible control performance.

2. Dynamic Model for a Three-Axis
Micro/Nano Motion Stage

The dynamic model for a single-axis piezoactuated flex-
ure stage with analytic simplified Dahl hysteresis model
is as below [24]:

mi+k X +kx+k,x’ +kyx’ =ku—k, f (1)
A
f:x—k—|x|f (2)
fx

where x is the output displacement of the flexure stage;
m is the mass of the flexure mover; k, is the damping
coefficient; k, , k,, and £, are the stiffness constants; u is
the input voltage of the piezoelectric actuator; k, is the
input gain; f° is the hysteresis variable; k, and k,
govern the scale and the shape of the hysteresis loop.
Consider a xyz three-axis flexure micro/nano stage
(P-517.3CL, Physik Instrumente, PI) [33] driven by pie-
zoelectric actuators shown in Figure 1. The hysteresis
phenomena and the coupling effects among the three
axes induced by the flexure structure, can be taken into
account via the following complete matrix-vector model:
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Figure 1. Three-axis flexure stage.

Mi+K x+Kx+K,x"+K,xX’+A=Ku-K, f (3)

f=x-KJ|3f @)
where x = [x y z]T is the output displacements vector;

T
xz =[x2 yz Zz] :

T
3 3.3 .3
x:[xyz];

[ = diag[[] [3] |2

JE
A=[p, D, D]

is used to consider the coupling effects among the axes
and the model uncertainty;

M:diag[m)C m, mz],u:[ux u, uzJT,
K, =diag[k, k, k. |.K, =diag[k, k, k..

K, = diag[kZX kyy kzzj|aK3 :diag[k3x ks, k3z]’

r=[r 1 £ K, =dag[k, &, k_],

k

Jx.y k

K, =diag| k, k; k.. ], K, = diag| £ oz ]

fr,x

fZ 2

For ease of numerical simulation and implementation,
the system parameters in SI units could be scaled in
terms of more suitable units: displacement in nm, mass in
g, time in ms, and input voltage in mV. After scaling, the
scaled models keep the same forms as Equations (3) and
(4). The parameters of the stage are identified, based on
input/output data pairs via genetic algorithms by Chang
[34], and are given as follows:

m,=m, =02903x10°g; k, =k, =249.27 g/ms;

ky, =k, =4.579x10° g/ms’;
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kz :kz =

y -

1.6958x10 g/nm-ms?;

ks, =k;, =8.6767x10” g/nm* -ms”;

k, =k, =04716x10° g-nm/mV -ms*;

k, =k, =3.6339x10° g/ms’;
k, =8.783x10° g/ms’; k,, =1.8344x10° g/ms’;

kZz ==

1.9910x102 g/nm-ms?;
k,, =2.4296x107 g/nm2 -ms’;
k, =0.4653x10’ g~nm/mV-ms2 ;
k‘;xlyx = k};’y =1.6242x10" nm™
k. =49758x10" nm™".

After defining the state vector as x,=x, x, =X,
the stage’s dynamic model can be written in the follow-
ing vector state equations:

X =X,
. -1 2 3
x, =-M (Kxx2+K1x1 +K,x" +K,x +A)
+M 'K u-M"'K,f 5)
=A+Bu+B,f
f=x,—k;|x|f

where

A=-M" (K x,+ K x +K,x" + KX +A)

_ oag-l _ -1
B=M"K, B,=-M'K,

3. Stable Fuzzy Approximator-Based
Adaptive Control for Micro/Nano Stages

3.1. Control Design Using Backstepping Method

Based on the nonlinear dynamics model (5), this subsec-
tion considers the backstepping-based stable control law
design for the three-axis flexure stage.

First consider the x, subsystem, x; =x,.Let

X, =V, (6)

where v, is a virtual input. Define the tracking error
signal as

e =x-Xx, (7

where x,, is the desired trajectory for the three-axis mo-
tion. Differentiating Equation (7), we have

e =X —X, =V X (®)

Considering the Lyapunov function candidate
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1
V=3¢l Pe, ©)

where P, € R™® is symmetric and positive definite, and
differentiating Equation (9), we have

Vi=e Pé =e P (v -x,) (10)
Thus, we can choose the virtual input v, as
v, =X, —Ke, an
with positive definite feedback gain matrix
K =diag[x, x, K],
such that
V. =—e Pre <0 (12)

and lime (1) =0, that is, the subsystem is asymptoti-
t—w©

cally stable.
Further, the actual whole nonlinear system is consid-
ered:

T (13)
x,=A+Bu+B, f
After introducing new error signal
e, =Xx,-v, (14)
we can obtain
é =X —X, =e, ke, (15)

e, =x,-v,=A+Bu+B, f-X, +xe, -K’e
Then by considering the Lyapunov function candidate
as

1 1
V.=V, +Ee2TP2e2 :EeTPe

(16)

where e:[elT e”r, P =diag[P,P,], P,eR™

is symmetric and positive definite, and taking the time
derivative of Equation (16), we have

V,=el P (e, ~xe,)
(17)

+e2TPz(A+Bu+Bff—)'éd +xe2—k2el)

Thus we can choose the nonlinear control law as fol-
lows:

u=u,
(18)
=B (jéd —2xe, +K’e,~A—B, f - P;'Pe, )
and obtain
V. =—e/ Pxe, —e! P,xe, = —¢" PKe (19)
where K =diag[k x].

If further choose K =xI with x>0, then we can
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have

V. =—xe Pe=-2xV, <0 (20)

and lime(¢)=0. Thus, the equilibrium point e=0 of

t—o
the closed-loop system is exponentially stable.
The internal state variables f can also be shown to
be bounded. Consider the Lyapunov function

1
V=311 @
By choosing the class- K, functions
1
7n(f1)= 7.12(|f|)25frf’
then since
7l )<V, < 7f2(|f|)’ (22)

we know that V, is positive definite, decrescent, and
radially unbounded [35]. Differentiating Equation (21)
and substituting in the internal dynamics

f=x,-k, |x|f, (23)
we have
Vo= 1F =17 (x5 k13 1) 24)
Since limx, (1) = x, (1)

t—>©

if the desired trajectory satisfies x,(%0)=0, then we
can have lim Vf =0. Thus, fis bounded and the overall
t—w

closed-loop system is stable.
Let the output vector x, =0, x, =0, we can obtain
the system’s zero dynamics as follows:

f=0

That is, the hysteresis variables will become constants

when the flexure mover returns to the origin and remains
there.

In order to further enhance the system’s active damping
capability, we can introduce a nonlinear damping term

v, )
| %)
where f=|0 B’ ! into the control law (18). That is,
the control law can be modified as

T
ua :us_’][al/s ﬂj

(25)

Oe
= 12’;1]‘;[(5@0, —2Ke, +K’e,
+ M (Ii’ff+12’xx2 +K x, + K,x* +I§’3x3)
~P'Pe)+A, —nM 'K, Pe, + K,'A

(26)
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where M, Kf, K, K., K, K,,and K, are the
nominal matrices for M, K, K, K, K, K, and
K, , respectively, obtained by substituting in the esti-
mated parameters, and A, represents the discrepancy
due to the estimate error. Let A, =A, +K,'A be the
integral uncertainty, we can further design a fuzzy func-
tion approximator I, to compensate for its effect. The
modified control law can be written as follows:

u= S(z,é)
= Ii’;lli;l(jc'd —2xe, +K’e,
+M (Ii’_/.f"+li’xx2 + K, x, +K,x* +I§’3x3)

—P,'Pe,)-nM 'K, Pe,+3,
27)

where f is the observed hysteresis vector for f, z is
the input vector of the controller, and #(¢) is the pa-
rameters vector to be updated for the fuzzy compensator.
Here

M =diag| m m,.m. ], K, = diag| k,,.k,.k,. |,

K, =diag[k, k, k. |. K, =diag[k, k, k. ],

K, =diag[k, k, k.]. K, = diag|k,, k,, k,. ],

1z |°
and
K, =diag| ky, ky, k,. |

are used in Equation (27). The hysteresis observer and
the fuzzy compensator design will be considered in the
sequel.

3.2. Hysteresis Observer Design

Since the hysteresis variables are difficult to measure for
feedback, a nonlinear observer can be suggested as:

ST S
fi=x _r|xi|f; _km'e/i k

> Toi
fii

>0,i=x,y,z (28)

where ]A’l are the estimated hysteresis variables, e,
are the observer’s input variables to be defined later in
the derivation of the stable control law and parameters
update law, and k£, >0 are the input gains. Define es-

timate errors as

we have

Vi :-ki|xl.|ﬁ+kw.e,,., k,>0,i=x,y,z (29)
Sii

And Equation (29) can be written in the following
vector form:

ICA



394 L-C.LIN ET AL.

e, (30)

where

is the estimate error vector, and

i(f zdiagﬂkam |5’|/km |Z|/k/J )

K, =diag| k, k, k, |,
e (1)=[e (1) €5 (1) ex ()] -

3.3. Fuzzy Function Approximators Design

This subsection will construct the fuzzy function ap-
proximators using T-S fuzzy systems to compensate for
the modeling errors and coupling effects among the three
axes. The tracking errors e ,e ,, ande  are chosen
respectively as the input variable of the fuzzy approxi-
mator for each axis, and the compensating voltage of
each axis is the output variable. In the universe of dis-
course of each input variable, five fuzzy sets are defined
as in Figure 2. The rule base of the fuzzy approximator
for the i-th (i =1,2,3) axis is considered as follows:

Rulej: If ¢, is 4,

Then

Vi =a; e, -i—bl.,jely2 +¢ 0, +d,.!‘/.,j =12,---,5 (31)

where As are the fuzzy sets defined over the universe
of discourse of each input variable e,;, i=1,2,and 3,
stands for the x , y, and z axis, respectively.

Using singleton fuzzifier, product inference engine,
and center average defuzzifier [36], the mapping of the
fuzzy approximator for the i-th axis is

5
Z|:/ui,j (ai,jel,l +b, e, e e5d; ):I
y=L (32)

5
Z Hj
j=1

where ;= 4, (elyl.)is the degree of firing of the j-th
rule’s antecedent. Let

A

P (nm)

el',-,l. =Xz

-5 25 0 25 )

Figure 2. Membership functions for each axis.
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V= [eu €, €5 IT .
0, = [az‘.f b ¢ d, ]T’
then
vl wo” g |[0] 08 0L ] (33)
Defining the regressor vector
o=y wy u,»,svlT]T
and the unknown parameter vector
0,=[0], 6/,-6".]
Equation (33) can be written as
y =00 (34)

And the fuzzy approximators for the three axes can be
written in the vector form as

3,=0,6 (33)
where
@, = diag| ¢ @, o] |,
A A A A T
6166/ 6/].
3.4. Derivation of Parameters Update Law and
Stability of Overall System
In this subsection, the input signals
T
€ :|:efx h e./'z]

of the hysteresis observer, and the parameters update
laws of the fuzzy function approximators will be selected
in the stability consideration of the overall adaptive
feedback control system for a three-axis piezoelectric
flexure stage.

Consider the following Lyapunov function candidate,

vo-v +15T1“’10~+lfTK0’1f“
1 : 1 ’ 1 1 (36)
=Ee1TP191 +582TI)282 +55TF71(§+E}TK;7

where T is symmetric and positive definite, 6 = 0-6.
Taking the time derivative, we have
V. =e Pé +elPe, +5TF'1é+fTK;1f
=e/ P (e, —xe) -
+e, P, (A+Bu—3, + ke, —xzel)
+0'T0+ fK, (-K f+K,e,)

After substituting in Equations (30) and (17), Equation
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(37) becomes (38).
Let

(MK, )(K,'M)=T+el,
M =M"+¢,I,
where
&= diag[g1 & 53]
and
g, =diag [5,”1 Emn gm3]

are the error matrices, I is the identity matrix. Since

f= f+j~”,where
=t 4, LY
we have
K f-K f=K ( -f)-
and Equation (38) can be written as
Va = _elTI,IKel _iTK(:li(fi
~e] (MK, )n (MK, ) Pe,
+(—e2TP2A;I’11A(_/.f+e_/.f)

+elP,(M'K,)®,0+0"T"0-A,

) - ff i
—e! Pxe,

(39)

where A, is defined as (40).
Choosing the input vector of the hysteresis observer
e, as:

e, =e, LMK, (41)
That is,
=K, M 'Pe, (42)

we can obtain

V, =l Puce, el P, ~ KK
~e] P, (MK, )n(M7'K,) Pe, (43)
vel P, (MR, )@,0+0'T 04,
By further representing the uncertainty as:
A, =e]P, (MK, )AL
and substituting
®0=d, (0+0)=d 0+ 0
in Equation (43), we have
V, -l Puce, ¢! Pe, - KK,
~e] P, (MK, )n(MK,) Pe,
NI Lk (44)
+e]P,(M'K,)®,6+0'T0
+el P,(M 'K, )(®,0-A))

Thus, we can choose the parameters adaptation law of
the fuzzy approximators as:

A N T .
0:—F((e2TP2 (M*lKu)qsf) +0'(0—00)) (45)
If further choose w=«xI, y=nI, and assume the

approximation error @=3,(0)-A, =®,0-A, be
bounded, i.e., |w|<W then we can obtam

v, S_K<el Pe, _ezpzez)_f K, K_/f

—ne, P, (M“Iﬁ’u )2 Pe, +

e, P, (M'IIA(H )‘W
—0(9—0”) (46)

<-2xV, - f7(K,'K, ) f+-——-—0"0

a

V,=e/ P (e, —xe )tel P, {M" (-K, f - K ,x,- K x —K,x’ - K,x’ - A)
+(M'1Ku)|:li’;1M(jéd —2Ke, +K’e, +M (k/.f+kxx2 +IA(1x1 +IA(2x2 +IA(3x3)—P2_1Plel)
1M 'K, Pe, +3 }—id +Ke, —kzel}+éTF'1é—fTK;1K’/f+fTe/.
(38)
A, =P, {M (&, -K,)f+(k,-K)x,

+e, (—K

Vol (B 4 R, + Roxy + Ko + Ry )oK, )p (V'R ) P+ 7K, )0,

+(IA(1 —Kl)x1 +(IA(2 —K2)x2 +(IA(3 —K3)x3 —A}

f-K.x,-Kx -K,x*-Kx’ —A)+8(§c'd —2xe, +K’e, )—ng’lP,e, (40)
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Letting
w
d =%+%(0—0°)T (0-6)

and defining class-K_ functions:

Zael) =, =3 Pe.
and 7(;1(|f|):fT (Ko’ll?f)f,
Equation (46) can be rewritten as

V. <-2xy, (|e|)—;/].1 (|f|)—%l§Té+ d

Hence, when le| > 7. (d/2x)

L-C.LIN ET AL.

(47)

(48)

or |§|21/(2d/0')
or |F|27:1(d), 7, <0,

and thus the overall adaptive control system is boundedly
stable.

4. Results and Discussion

In this section computer simulation will be used to illus-
trate the performance of the proposed adaptive fuzzy
control with hysteresis observer for a three-axis flexure
stage. Triangular uncertainties for the x, y, and z axes
(D,,D,, and D, ) shown in Figure 3 are selected in the
simulation. The desired trajectories for the x, y, and z
axes are selected as follows (¢ in ms):

8000
6000
4000
2000
0
-2000

D, (nm/ms?)

Y

V|

-8000
0 2000

3000

8000

4000 Lo SN N

26000 Lo N

D, (nm/ms?)
o
!

-8000
0

i
3000

i i i i
4000 5000 6000 7000 8000

t (ms)

(b

6000
4000

2000

D. (nm/ms?)
S

-4000

-6000
0

3000

4000 5000 6000 7000 8000
t (ms)

©

Figure 3. Triangular uncertainties for the x, y, and z axes. (a) D,, (b) D,, (¢) D,.
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= 5000+ 5000sin ((27/1000)¢ —(m/2)) (nm)

z, (1) =3000+3000sin ((27/1000)¢ —(n/2)) (nm)

Controller parameters are selected as follows:

P, =diag[15 15 50],

P =I,, k=05I,,

n=04I,, T =diag[I',T,,I',],

T, =diag[1o*‘ 10° 107 107 107 107° 107

107 10%10°10° 107 107
10°10° 107 10 107° 10™° 10*7]

T, :diag[IO’S 104 10° 107 107 10 10°°
107 10° 10107 107 10°
104 10° 107 10° 10 10°° 10'7]

I, =diag[10~° 10~ 107 107 10~ 10 10°

107 10° 10*10* 107 107°
10°10% 107 10° 10° 107* 10‘7]

K,=1I,,06=0.1and6,(0)=0,i=x,y,z

The simulation results are shown in Figure 4. From Fig-
ures 4(a)-(c), we know that the tracking performances
are very good. The tracking errors of x- and y-axes are
within —2.5 nm - 2.2 nm, and the tracking error of z-axis
is within +2 nm. From Figures 4(d)-(f), the hysteresis-
variable estimate errors of x- and y-axes are within +0.5
nm, and the estimate error of z-axis is within =1 nm. The
control voltages u,u,, and u, are shown in Figure 4(g),
and the fuzzy compensation voltages 3, , 3, , and
3. are shown in Figure 4(h). And the parameters
update processes of the function approximators for x-, y-,
and z-axes are shown in Figures 4(i)-(k), respectively.
The parameters of the first and fifth rules are not updated
since the tracking errors are small and they are nearly not
fired. Although the persistent exciting of the system sig-
nals of this considered simulation case are not sufficient
enough to let the other parameters converge to constants,
the adaptive control system can guarantee the tracking
control performance to be still very good.

5. Conclusion

In this work, a stable adaptive control law with nonlinear
dynamic hysteresis observer for a three-axis flexure stage

-40 1000 20i00 30i()0 40‘00 SOiOO 6()iOO 7000 8000
t (ms)
(a)
4 T T |
3l J L’/\ /_‘m\ | _
_40 10I00 20[00 3(;00 40i00 5(;00 6(;00 7(1)00 8000
t (ms)
(®)
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e; - (nm/ms?)

) i I i I \ i |
0 1000 2000 3000 4000 5000 6000 7000 8000
t (ms)

©

£ @m)

f, (nm)

(nm)

i I i i L i 1
0 1000 2000 3000 4000 5000 6000 7000 8000
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u, (mV)

u, (mV)

u,; (mV)

(mV)

0 1000 2000 3000 4000 5000 6000 7000 8000
t (ms)

20 ! T ! g ! ! T

(mV)

)
\
i
o
~

SN
Neif-

0 1000 2000 3000 4000 5000 6000 7000 8000
t (ms)
()
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1 1 1 1
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is proposed. Fuzzy function approximators are included
in the control law to compensate for the identification
inaccuracy, model uncertainty, and flexure coupling ef-
fect. The stability of the overall closed-loop system is
guaranteed using the Lyapunov theory. Simulation re-
sults are shown to illustrate the effectiveness of the sug-
gested control approach. In the future study, actual im-
plementation can be considered for the development of a
precision stage for testing the control performance.
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