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ABSTRACT 

In this paper we study a multivariate extension of a structural credit risk model, the CreditGrades model, under the as-
sumption of stochastic volatility and correlation between the assets of the companies. The covariance of the assets fol-
lows two popular models which are non-overlapping extensions of the CIR model to dimensions greater than one, the 
Wishart process and the Principal component process. Under CreditGrades, we find quasi closed-form solutions for 
equity options, marginal probabilities of defaults, and some other major financial derivatives. 
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1. Introduction 

We present a structural credit risk model which considers 
stochastic correlation between the assets of the compa-
nies. We allow the covariance of the assets to follow two 
popular stochastic covariance models. First we assume it 
follows a Wishart process [1] then we assume a Principal 
component Process (see [2]), both are non overlapping 
extensions of the CIR model to dimensions greater than 
one. 

Modeling stochastic correlation has difficulties from 
the analytical as well as the estimation point of view. 
One of the attempts to x this gap began with a paper on 
Wishart processes by [1], which followed by a series of 
papers by Gourieroux, see [3]. Several authors have re-
cently brought the finance community’s attention to the 
Wishart process and showed that the Wishart process is a 
good candidate for modeling the covariance of assets. A 
Wishart process is an affine symmetric positive definite 
process. The stream of papers [3-7] brought the finance 
community’s attention to this process as a natural exten- 
sion of Heston’s stochastic volatility model, which has 
been a very successful univariate model for option pric- 
ing and reconstruction of volatility smiles and skews. 
The popularity of the Heston model as well as the em- 
pirical evidence of stochastic correlation and volatility 
has contributed to the recent popularity of the Wishart 
process. Risk is usually measured by the covariance ma- 
trix. Therefore Wishart process can be seen as a tool to 
model dynamic behavior of multivariate risk. Via the  

Laplace transform and the distribution of the Wishart 
process [3], prices derivatives with a generalized Wishart 
stochastic covariance matrix. This approach can be used 
to model risk in the structural credit risk framework. 
DaFonseca extends his approach in [7] to model the mul-
tivariate risk by a Wishart process. In this paper several 
risky stocks are considered and the pricing problem for 
one dimensional vanilla options and multidimensional 
geometric basket options on the stocks is presented. We 
adapt existing results about the Wishart process to the 
structural CreditGrades framework. We give quasi clo- 
sed-form solutions for equity options, marginal prob-
abilities of defaults, and some other major financial de-
rivatives. For calculation of our pricing formulas we 
make a bridge between two recent trends in pricing the-
ory; from one side, pricing of barrier options by [8] and 
[9] and from other side the development of Wishart pro- 
cess by [1]. 

In the second part of the paper we develop a new 
model for credit risk based on a model with stochastic 
eigenvalues called principal component stochastic co-
variance. To induce the stochasticity into the structure of 
volatilities and correlation, we assume that the eigenvec-
tors of the covariance matrix are constant but the eigen-
values are driven by independent Cox-Ingersoll-Ross 
processes. To price equity options on this framework we 
first transform the calculations from the pricing domain 
to the frequency domain. Then we derive a closed for-
mula for the Fourier transform of the Green’s function of 
the pricing PDE. Finally we use the method of images to  
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find the price of the equity options. Same method is used 
to find closed formulas for marginal probabilities of de-
faults and CDS prices. Inspired by the standard stochastic 
volatility models starting from Heston’s paper [10] and 
the work on [2] the applications of the principal compo-
nent model in credit risk is studied. The main idea is to 
identify the covariance matrix by its eigenvectors and 
eigenvalues. In the above papers, authors have assumed 
that the eigenvector of the covariance matrix are constant 
but the eigenvalues follow a CIR process. This implies a 
stochastic structure for the correlation between the assets. 
[2] prices the collateralized debt obligations under the 
Merton’s model using a tree approach and the principal 
component model.  

Merton’s model [11] is the first structural credit risk 
model proposed which considers the company’s equity as 
an option on the firm’s asset. There has been numerous 
extensions for the Merton’s model in the literature in-
cluding incorporating early defaults, stochastic interest 
rates, stochastic default barriers and jumps in the asset’s 
price process. A simpler approach was jointly developed 
by CreditMetrics, JP Morgan, Goldman Sachs and Deut- 
sche Bank, called the CreditGrades model, this can be 
seen as a particular case of Merton with zero time to ma-
turity. The simplicity allows for closed for expression on 
some derivatives as shown in our paper which can not be 
found closed form under Merton or Black Cox structural 
frameworks. We extend the CreditGrades model using 
stochastic covariance Wishart process focusing on the 
role of stochastic correlation. The performance of a 
company is usually monitored by observing its equity’s 
volatility or the CDS spread. CreditGrades model can be 
considered as a down-and-out barrier credit risk model. 
This means that default is triggered if the value of the 
asset reaches a certain level identified by the recovery 
part of the debt. [12] has extended the CreditGrades 
model to price equity options by introducing the equity 
as a shifted log-normal process. [9] has extended [12] 
idea by embedding the Heston’s volatility into the model 
and pricing equity derivative. Both [9] and [12] models 
are univariate credit risk models. We extend the Credit- 
Grades model by use of the Wishart and PC processes to 
dimensions greater than one implementing stochastic 
correlation into the dynamics of the assets. We give quasi 
closed formulas for equity derivatives based on these 
models. 

This paper is organized as follows: in Section 2 we use 
Wishart process as a candidate to model the covariance 
matrix of the assets’ prices within a CreditGrades model. 
The pricing problem for some derivatives on the equities 
is derived in Section 2.2. Section 3 presents and uses the 
Principal component process for the covariance matrix of 
the assets’ prices within the same structural framework. 
The pricing problem is derived in Section 3.2. Section 4 

concludes. The proofs are given in the appendix. 

2. The CreditGrades Wishart Process 

In this section, we introduce our Wishart CreditGrades 
model. CreditGrades model is a version of the Merton 
model jointly developed by CreditMetrics, JP Morgan, 
Goldman Sachs and Deutsche Bank. The original version 
of the CreditGrades model assumes that volatility is de-
terministic. We extend CreditGrades model, by means of 
stochastic covariance Wishart process. Our model allows 
correlation and volatility be stochastic. By considering 
the stochastic covariance Wishart process, we have more 
flexibility and degree of freedom in the marginal, while 
analytic tractability is preserved when extending CIR 
process to Wishart process. We first present Wishart 
process of integer degree of freedom and derive their 
matrix stochastic differential equation which later on will 
give a natural representation of Wishart process with 
fractional degree of freedom. A Wishart process with 
integer degree of freedom K is a sum of K independent 
n-dimensional Ornstein-Uhlenbeck process. We first re- 
mind the formal definition below: 

Definition: Consider   
1

K
k

k
U


 as an independent set  

of Ornstein-Uhlenbeck processes  

     d d dk k
t t tU AU t Q W  ,k  

where A  and  are Q  ,n n  matrices with  inver- 
tible. Then a Wishart process of degree  is defined as  

Q
K

   

1

,
K

k k
t t t

k

U U




    

where  k
tU


 is the transpose of the vector .   k

tU
Ito’s lemma can be used to find a diffusion SDE for 
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As it can be seen, the drift term of the SDE above 
contains t , but the diffusion part contains the terms 

  and k
tU  k

tU

 separately. [1,3] show that t  also sa- 

tisfies the following matrix SDE  

 
1 1
2 2d d dt t t t t t d ,tKQ Q A A t Q W W Q             

where  is an tW n n  standard Brownian motion ma-
trix.  

2.1. The Dynamics of the Assets 

The assets are defined on a probability space  , ,Q F  
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where 
0t t

 is the information up to time  and Q is 
the risk-neutral measure equivalent to the real-world 
measure P. Let’s assume that the  firm’s asset price 
per share is given by 

 F t

thi
 iA t . Here we review the results 

regarding the dynamics of the assets with stochastic co-
variance Wishart process. As before, assume the assets’ 
prices follow the multivariate real-world model 

   
1
2d ln d dt i i t tr D t W     ,A

tA T  

1 1
2 2d t t dt t t .tM M W Q      



     

1

 

Here the vector  , , n 



  is constant and i  
is a symmetric positive definite matrix, the log-price 
process has the drift term  

D

    iTr D 

t t . Mo
iv

 t

reover, we assu  that the 

d l di t   nt tE A 

d lnt t

ian motio

i t

ral measu

and the quadratic varia-  

tion  V dA  
n ns dr

me
Brow ing the assets and the Brownian 
motions driving the Wishart process are uncorrelated. 

  0Tr D    accounts for risk premium (under risk 
re). For the transition distribution of t hneut A   

given tA  and    we have  t



 
ln ,

ln d , ,

t h t t

t h

t i ut t

A A

d
t h

uA Tr 

tional probability

D u



 



   N  
u

cs o

and the uncondi  function can be found by 

se

C

mics of the assets, 
w

Integration over the distribution function of dt h
ut u  .  

Up to now we have described the dynami as-f the 
ts’ prices with stochastic covariance structure coming 

from the Wishart process. The asset's price for a firm is 
not directly observed from the market. This leads us to 
structural credit risk models which introduce the equity 
as a form of a derivative on the asset of the company. 
Then the role of the model is in connecting the equity 
market to the default event. For example [3] proposes a 
dynamics for the assets and liabilities in the Merton’s 
model where the equity is defined as a call option on the 
asset with liability as the strike price. This is a direct ex-
tension of the Merton model with multivariate stochastic 
volatility. In that case the price of a bond has quasi 
closed-form formulas based on the closed formulas for 
the conditional Laplace transform of the joint price-co- 
variance process. We prefer not to use this model for 
several reasons. First, we found the CreditGrades model 
more popular in financial markets because of its ability to 
link the structural framework to equity derivatives. On 
the other hand, the model proposed by [3] has one com-
mon Wishart process and one distinct Wishart processes 
for each asset. Therefore, the number of parameters for 
the model is high and the calibration is extremely ill- 
posed because of the high degree of freedom imposed by 
the number of parameters inside the model. We found 
that in the case of two companies, assuming only one  

Wishart process driving the covariance matrix gives a 
fairly flexible model to capture market’s behavior, while 
at the same time provides a fewer number of parameters.  

Next, we introduce the equity process based on the 
reditGrades’ perspective rather than Merton’s perspec-

tive taking advantage of the flexibility of the Credit-
Grades model. This will enrich the credit risk modeling 
with possibility of early default and also a straightfor-
ward link between credit risk and the equity market. We 
will derive a formula for the infinitesimal generator of 
the joint equity-covariance process below. This operator 
will play an important role in the partial differential 
equation of the equity option’s price.  

Now that we have identified the dyna
e explain the mechanism of the CreditGrades model. 

As before, we assume that the thi  firm’s value  iA t  
is driven by the dynamics  

         
 

d diag d d

d d d

i i i t

t t t t t t

A t A t r t d t I t W

M M t Z Q Q

 ,

,

t

t

     
             

 

(1) 

where Q Q    for some 1n    and M  
sets

is a 
negativ trix. We a hat as  are 
driven by the Brownian motion tW , the covariance ma-
trix of the assets which follows  Wishart process is 
driven by the Brownian motion t

e definite ma ssume t

 a
Z  and two Brownian 

motions tW  and tZ  are uncorre ed. We assume that lat
 iS t  is  thi  f ’s equity price per share, the irm  iB t  is 

h  firm’s debt per share and iR  is the thi ’s 
reco ry rate. 
the ti

ve
 firm

 iB t  has a deterministic growth rate 
   ir t d t , where  r t  is the risk free interest rate 

and  id t  
 p

is the div d yield for the thi  firm. The 
recovery art of the debt,    i i iD t R B t , is the default 
barrier for the asset. There time based on 
CreditGrades model is given by  

iden

fore, the default 

    .iD t  

In the framework of CreditGrades model, the equity’s 
va

inf 0i it A t  

lue is given by  

      , ,

0,
i i

i

i

A t D t t
S t

t
i


  


 

In terms of the equity, the default time can be written 
as   inf 0 0i it S t    . Zero is an absorbing state 
for ich makes the pricing of the 
equity option similar to pricing of down-and-out options 
studied by [11]. By using    

the equity process wh

 i i iS t A t D t  , the 
dynamics of  iD t  and eq
a shifted l rmal SDE. We will use the notation 

u
o

ation (1), the equity follows 
g-no

 diag x ,  vec x  and I denoting diagonal matrix and 
vector with elements x  and t pec- he matrix of ones res
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tively1.  

        
    

 

d diag diS t S t r t d t I t   



diag d ,

d d d

i i

i i t t

t t t t t t t

S t D t W

M M t Z Q Q

  


            

 (2) 

Note that the solution of the dynamics above can reach 
negative values but not before the stopping time i . We 
force sufficient conditions on the Wishart process to 
make t  mean reverting. For our purposes, we assume 
M  is negative definite and Q Q    for some 

n 1   . Moreover, without loss of generality, we as-
e sum Q   . We first derive the i simal gen-

 the joint process 
nfinite

erator of  ,S  . This operator will 
appear in the pricing PDE for equity options and the 
probabilities of default in the next ction  

Proposition 1: The infinitesimal generator of the joint 
process  ,S   is given by  

se

      

   

 

, SS r t d t S
   A
1

2

2 ,

S S

t t

S D S D

Tr M M D DQ QD

 

           

          

 

where 



ij ij

D
    

, Tr  is the trace of a matrix, and 

used the notatiowe’ve n     i ir d S Vec r d S      

and    SS D Vec S      

2.2. Derivati

i i
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D
S

 


. 


ve Pricing; Analytical Results 

 our 
rm and 

The price of a European Call option on the equity is cal-
sk-neutral expectation of the 

In this section, we tackle the pricing problem of
credit risk model. We will use the fourier transfo
method of images to solve the pricing problem for Euro-
pean calls and puts on the equity  

2.2.1. Equity Call Options 

culated by discounting the ri
payoff at maturity. Since  

  
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The price of a single name derivative on one of the 
equities satisfies the partial differential equation  

 , 0t SV rV i
  A

op
. Specially, the price of an equity call 

tion is given by the PDE  

    
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2
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where is the infinitesimal generator of the 

process 

  21

0,

i i ii S S i i SV S D t V r t d t S V

V rV

     
    A

 , SA  joint  
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       (4) 

To use the method of images, we need to e
drift term first, hence we change the variables by

liminate the 
  

   

option could be rewritten as  

 , ,1 1
ii T i T TTS K S K 

 

     the price of the call 

i i ix ay   , T t    and    2, e e ,a
i iU y G t x
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Then, PDE (3) transforms to  
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    2 2

1 1 0,
2 8
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






     

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A
     (5) 

The PDE (5) is our reference PDE to solve th
problem for equity options on We have the fol-
lowing proposition for the Fourier transform of the 
G

ansf

 



e pricing 
 iS t . 

reen’s function of PDE  
Proposition 2: The Fourier tr orm of the Green’s 

function of PDE is given by  

  e jikY      , ,A k Tr B k  1Note that  with the above dynamics is allowed to gain negative  iS t

values but not prior to the stopping time i . Even though it might 

seem unreasonable to allow  have negative values, this doesn’t 

affect any of the pricing formulas since whenever the process 

 iS t

 iS t

is involved, it is followed by the truncating factor  1
i   ( as in Equa-

tions (3) and (10) for the payoffs of call and put options.) 

, , d ,jq Y k
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with 

 
11 12

2
21 22

2
exp .1 1

2 4

M Q Q

k I M


                
 

at we have found the Fourier transform of the 
Green’s function of the pricing PDE, we solve the pric-
ing problem for an equity call option by the method of 
images.  

Now th

 

Proposition 3: The price of a call option on  jS t  
with maturity date T  and strike price K  is given by  

         , exp d , ,
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with  ,A k  and  ,B k  
es of k, the i

given as in proposition 2. 
For u ntegrand in (7) is exponen-

tially decreasing which makes it easy to evaluate the in-
tegral numerically.  

mark 1 e have lt 

 

 large val

Re : As w mentioned before, our resu
covers [9] as a special case. If in the dynamics of the 
asset (1), we assume 1n   and for the parameters we 

let 
2
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The function  ,A k
ves the pr

 can be found by integration 
from. This gi ice of equity call option in the 
presence of Heston stochastic volatility (as in [9] Equa-

.5)-(3.7)).  
The price of a European put option on the equity is 

calculated by discounting the risk-neutral expectation of 
the payoff at maturity. Similarly to payoff of the call op-
tion, one can check that  

tions (3

       1 1T T T T TK S K S K  

 
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price of the put option could be rewritten as 
1  Therefore, the 
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Equations (3) and (10) give the put-call parity for the
eq
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2.2.2. Survival Probabilities and Credit Default Swaps 
Suppose  i  

any  
, ,P t T S is the survival probability for the 

 compthi

      , ,, , 1 0 ,
ii it SP t T S S t T     

then using Feynman-Kac formula,  satisfies
the partial differential equation .  

Proposition 4: The surviv r the 
firm is given by  
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with functions  ,A k  and  ,B k  as in Equation 
(7).  

 most popu
DS provid

ce
ts

ds, until the default time or maturity 

Credit default swaps are one of the lar credit 
derivatives traded in the market. A C es protec-
tion against the default of a firm, known as referen  
entity. The buyer of the contract pays periodic paymen , 
called CDS sprea
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date. In return, the seller of the CDS provides the buyer 
with the unrecovered part of the notional if default oc urs. 
The valuation problem of a CDS is then to give the CDS 
spread a value such that the contract begins with a zero 

ans that lue of t
th

, .

 

T


  (12) 

The CDS spread is chosen such that the contract 
has a fair value at . By setting the fixed leg equal to 
th

c

value. This me  the va he floating leg and 
e fixed leg should coincide when the contract is written. 

Assume that the CDS spread is denoted by Sp the peri-
odic payments occur at 0 10 NT T T T     , the 
notional is N , the time of default is denoted by τ and 
the recovery rate is the constant R . The fixed leg of the 
CDS is the value at time 0t   of the cash flow corre-
sponding to the payments the buyer makes. With the 
above notation we have  
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On the other hand, the floating leg, which is the value 
of the protection cash flow at 0 , is  
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3. The CreditGrades Principal Component  
Model 

irst 

f derivatives 
using the CreditGrades model. We first remind the for-
mal definition below: 

Definition 2: The instantaneous stochastic covariance 
follows a Principal Component Model if: 

In this section, we f present an stochastic eigenvalue 
process which is used for the covariance of the assets 
process. The section then covers pricing o

t tA A                  (13)

ere   i

 

wh s a diagonal matrix whose elements t

   ii it V t   are real valued CIR process defined, for 
1, 2, ,i p  , by:  

   

d d  

 d d di i i i i i it t Z t            (14) 

the iZ ’s are independent one-dimensional Brownian
m

 
 otion and E  is an orthogonal constant matrix. We 

also assume 0i  , 
2
i

i i 2


    for i  p  and,  

without lost of generality,

1, 2, ,

 0 i 1i   .  
The in ingr t of this multivariate process is a 

fam ly ne-dimensional stochastic processes for the 
We assume for simplicity Heston-type proc- 

s approa

ma edien
i of o

eigenvalues. 
esses but thi ch works for other kind of processes.  

The conditions 0i  , 
2

2
i

i i


    ensure stationarity,  

ergodicity and mixing conditions for the one-dimensional  
processes i  (see [4]). The constraints 1i0 i     

, on avensure that the valu ss will erage,  eigen es proce  keep
ths could ev tually cross over. 

Th

e irm’s valu

the same order but their pa en
is ordering on average allows us to keep the eigenval-

ues with greatest mean reverting levels while dropping 
the less significant ones. 

3.1. The Dynamics of the Assets 

We assume that th  f e  thi iA t  is driven by 
the dynamics 
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where the eigenvalues of the covariance process follow 
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And assuming   
e 

as the angle that the first eigenvec-
tor makes with th real axis, the eigenvector matri
is given by 

x E  
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We assume that assets are driven by the Brownian mo-
tion , the covariance matrix of the assets is driven by 
the B wnian motion 

 

tW
ro tZ  and two Brownian otions  m

tW  and tZ  are unco he reason we make the 
in m

r-

rrelated. T
dependence assu ption between stock and its volatility 

is that closed form formulas for the value of double-ba  
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rier options and equity options are not available when the 
asset and its volatility are correlated as pointed out by [8, 
9]. 

The infinitesimal generator of the joint process  ,S  , 

 ,S  , appears in the pricing PDE. Here we find a fom-
ula for this operator to use it for our pricing purposes in 
the next section. Since      i it A t D t  , the equity 

 stochastic differential equation 
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In the next section, we derive closed formulas for the 
pr pt

3.2. Derivative Pricing; Analytical Results 

In a model with two underlyings, the first asset follows 
the following process: 

ice of equity o ions and marginal probabilities of de-
fault. 
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Calculating equity option prices is essential to calibrate 
the stochastic correlation CreditGrades model since this 
model uses the information available from the equity 
options to estimate the parameters of the model. Later, 
we will use the evolutionary algorithm method to match 
the theoretical results of our extended CreditGrades 
model with the market data. One of the advantages of the 
C

with the equity option 
markets. The price of the equity option can be calculated 

nction at the maturity. The 

t W t

t t t Z

 

     



  
 

We will show next the prices of several derivativ
seen from a credit perspective. 

3.2.1. Equity Call Opt

reditGrades model compared to Merton’s model, is the 
straight forward link it makes 

by discounting the payoff fu
only subtle point here in pricing these options lies in the 
specific dynamics of the equity itself and the possibility 
of default for the company. In Black-Scholes model, the 
stock follows geometric Brownian motion which is a 
strictly positive process with a log-normal distribution 
and never hits zero. In the CreditGrades model, equity is 
modeled as a process satisfying a shifted log-normal dis-
tribution which hits the state zero when the company 
defaults. Because of the absorbing property of the state 
zero for the equity process, there is a resemblance in 
pricing the equity options and the pricing of the down- 
and-out options. By considering the barrier condition for 
equity, the payoff of an equity call option is given by  

  1T TS K
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  . Therefore the price of an equity call 

option can be written as: 
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Similarly, the payoff of an equity put option is 
 1T TK S 



 . Therefore, the price of an equity put op-
tion is given by: 
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Equation (18) give the put-call parity for the equity 
options: 
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The following proposition gives a closed form solution 
for the price of an equity call option on the first asset. 
Proposition C5 and Equation (18) give the price of an 
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equity put option. This result is an essential tool to cali-
brate the model in the next section. 

Proposition 5: The price of a call option on  1S t  
n by: with maturity date  and strike price  is give
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 Conclusion 

We presented a structural credit risk m

dit risk, we use the o called CreditGrades model. Us- 
ing the affine properties of the joint log-price and volatil- 
ity process, we solved the pricing problem
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Appendix 

Proof proposition 1:  
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Proof proposition 2: Define  
and substituting into (5) yields  
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This matrix Ricatti equation has been studied in the lit-
erature (see [13]) and in Affine term structure models 
(see [14]) leading to: 
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pricing PDE. Now note  is invariant with 
respect to the change of variables  and 

, therefore 

 , ,q   Y
y

k
y  

k    , ,Yq    is an even function with 
respect to . This implies that the Fourier transform of 
the Green’s function absorbed at 

Y
x b  is  

      , , , , , , , 2 .bq y y q y y q y y            b  

By Duhamel’s formula  

 
   

 
       

2 2
0

, , 2
1 2

2 2

2

,

1
e e , , , d

2π

e e e1
e e d

12π
4

y y
b

A k Tr B k ik y biky
y

y b

U y

q y y y

k
k

 




 



  
  



 
    

 


  







 

.

With the consequent chan s of variables  ge

     
     d 2
,T

t

yi
r s s i aW t S , e , , e e , ,i i i

i

G t x U y G t x
D T

   

one can conclude that    2, e ,
y

Z y U  y . 
 The PDE for surv al probabil-

ity
Proof Proposition 4: iv
 is:  

  
    

   

21
2

0,

, ,0 0, , , 1.

i i

i

t ii i i S S

i i S

P S D t P

r t d t S P P

P t T P T T S



   

   


 


A       (22) 

Using the change of variables 
   

 
ln i i

i
i

S t D t
y

D t

 
  

 
,  

T t    2, , e ,
y

i iP t T S U y , the PDE trans-  and  
forms to  

   2

1 1 0,
2 8

,0 e , 0, 0.

i i

i

ii y y ii

y

i

U U U U

P P y









      


  

A
 

Copyright © 2012 SciRes.                                                                                 JMF 



M. ESCOBAR  ET  AL. 313

This PDE is the same as (5). In Proposition 2, we have 
proved that the aggregated Green’s function for this PDE 
is of the form (28). To find a bounded solution reflected 
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We claim that the Fourier transform of the Green  
function for the above PDE is of the form 
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In the proof of the proposition 5 we showed that the 
Fourier transform of the Green’s function for the above 
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Therefore, the survival probability is given by 
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