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ABSTRACT 

The concept of H-decompositions of graphs was first introduced by Erdös, Goodman and Pósa in 1966, who were 
motivated by the problem of representing graphs by set intersections. Given graphs G and H, an H-decomposition of G 
is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H. Let 

 be the smallest number  ,n H   , such that, any graph of order n admits an H-decomposition with at most   parts. 

The exact computation of  ,n H  for an arbitrary H is still an open problem. Recently, a few papers have been 

published about this problem. In this survey we will bring together all the results about H-decompositions. We will also 
introduce two new related problems, namely Weighted H-Decompositions of graphs and Monochromatic H-Decom- 
positions of graphs. 
 
Keywords: Graph Decompositions; Weighted Graph Decompositions; Monochromatic Graph Decompositions; Turán 

Graph; Ramsey Numbers 

1. Introduction 

1.1. Terminology and Notations 

For notation and terminology not discussed here the 
reader is referred to [1]. A graph is a (finite) set 

, called the vertices of G together with a set 
 of (unordered) pairs of vertices of G, called 

the edges. We do not allow loops and multiple edges. 
The number of vertices of a graph is its order and is 
denoted by . The number of edges in a graph is its 
size and is denoted by . A vertex  is incident 
with an edge e if  and the two vertices incident 
with an edge are called its endpoints. Two vertices 

 V V G
 E E G

 v G
 e G

e
v

v
,x y


 

of G are said to be adjacent or neighbors if  ,x y

degG

 is an 
edge of G. The degree of a vertex v is the number of 
edges incident with v and will be denoted by  or 
simply by  if it is clear which graph is being con- 
sidered. The complete graph (clique) of order n will be 
denoted by n

v
deg v

K , the complete bipartite graph with parts 
of size m and n will be denoted by ,m nK  and the cycle 
of length  will be denoted by . n n

The Turán graph of order n, denoted by 
C

 n1r , is 
the unique complete -partite graph on n vertices  

T
 1r  

where every partite class has either 
1

n

r
 
  

 or 
1

n

r
 

    
vertices. The well-known Turán’s Theorem [2] states that 

 is the unique graph on n vertices that has the   1rT n

maximum number of edges and contains no complete 
subgraph of order r. We let  denote the number 
of edges in 

 1rt n

 1rT n . 
Finally, a proper colouring or simply a colouring of 

the vertices of G is an assignment of colours to the 
vertices in such a way that adjacent vertices have distinct 
colours;  G  is then the minimum number of colours 
in a (vertex) colouring of G. For example,  rK r  , 
 2rC 2  and  2 1 3rC   . 

1.2. Motivation and Definitions 

Given two graphs G and H, an H-decomposition of G is a 
partition of the edge set of G such that each part is either 
a single edge or forms an H-subgraph, i.e., a graph 
isomorphic to H. We allow partitions only, that is, every 
edge of G appears in precisely one part. Let  ,G H  
be the smallest possible number of parts in an H-de- 
composition of G. It is easy to see that  
        , 1HG H e G p G e H    , where  Hp G



 is 
the maximum number of pairwise edge-disjoint H-sub- 
graphs that can be packed into G. Building upon a body 
of previous research, Dor and Tarsi [3] showed that if H 
has a component with at least 3 edges, then the problem 
of checking whether an input graph G is perfectly 
decomposable into H-subgraphs is NP-complete. Hence, 
it is NP-hard to compute the function  for such 
H. Therefore, the aim is to study the function 

 ,G H
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     , max ,n H G H v G n  ,





 

which is the smallest number such that any graph G of 
order n admits an H-decomposition with at most 

 parts.  ,n H
This function was first studied, in 1966, by Erdös, 

Goodman and Pósa [4], who were motivated by the 
problem of representing graphs by set intersections. They 
proved that . A decade later, this result 
was extended by Bollobás [5], who proved that 

, for all . 

   3 2,n K t n 

 1r rt n ,n K  3n r 
General graphs H were only considered recently by 

Pikhurko and Sousa [6]. In Section 2 we will present 
known results about the exact value of the function 

 for some special graphs H and its asymptotic 
value for arbitrary H. In Sections 3 and 4 two new 
H-decomposition problems will be introduced, namely 
the weighted version and the monochromatic version 
respectively. 

 ,n H

2. H-Decompositions of Graphs 

In 1966, Erdös, Goodman and Pósa [4], who were moti- 
vated by the problem of representing graphs by set 
intersections, proved that    3 2,n K t n   and a de-  
cade later Bollobás [5] proved that    1r rt n,n K ,  

for all . Recently, Pikhurko and Sousa [6] 
studied the function  for arbitrary graphs H. 
They proved the following result. 

3n r 
 ,n H 

Theorem 2.1. [6] Let H be any fixed graph with 
chromatic number . Then,  3r 

     2
1, .rn H t n o n    

Let  denote the maximum number of edges 
in a graph of order n, that does not contain H as a 
subgraph. Recall that . The same 
authors also made the following conjecture. 

ex ,n H 






  1ex , r rn K t n

Conjecture 2.2. For any graph H with chromatic 
number at least 3, there is  such that 

 for all .  
 0 0n n H

n
 ,n H

  , ex ,n H n H  0

The exact value of the function  is far from 
being known, however, this conjecture has been verified 
for some special graphs. The following results have been 
proved by Sousa. 

n 

Theorem 2.3. [7] For all  we have  6n 

    2
5 2, 4n C t n n      .  

Theorem 2.4. [8] For all  we have 10n 

    2
7 2, 4n C t n n      .  

For , a clique-extension of order 3r  1r   is a 
connected graph that consists of a rK  plus another 
vertex, say x, adjacent to at most  vertices of 1r  rK . 

For 1, , 1i r   the ,r iH  be the clique-extension of 
order 1r   that has deg x i

n 
 . 

Theorem 2.5. [9] For all  and  we have  4 1, 2i 

    2
3, n

r 

2i t, 4 .n H n      

Theorem 2.6. [9] Let  and let 4 H  be any 
cliqueextension of order . For all  we 
have  

1r 1 n r

  1, .n  rtn H  

A graph H is said to be edge-critical if there exists an 
edge  e E H  whose deletion decreases the chromatic 
number, that is,    H H e 

r 



3

. Cliques and odd- 
cycles are examples of edge-critical graphs. Özkahya and 
Person [10] were able to prove that Pikhurko and Sousa’s 
conjecture is true for all edge-critical graphs. Their result 
is the following. 

Theorem 2.7. [10] Let H be any edge-critical graph 
with chromatic number . Then, there exists 0  
such that 

n
   ,e

 ,
, n H x n H


, for all 0 . Moreover, 

the only graph attaining  is the Turán graph 
n n

n H
 T n1

The case when H is a bipartite graph has been less 
studied. Pikhurko and Sousa [6] determined 

r . 

 ,n H  
for any fixed bipartite graph with an  additive 
error. For a non-empty graph H, let 

 1O
 gcd H  denote the 

greatest common divisor of the degrees of H. For 
example,  6,gcd K 4 2 , while for any tree T with at 
least 2 vertices we have . They proved the 
following result. 

 T gcd 1

Theorem 2.8. [6] Let H be a bipartite graph with  
edges and let 

m
 gcd Hd . Then there is 0 0 n n H  

such that for all  the following statements hold. 0n n

If 1d  , then if ,  1 modm m
2

n
 

 
 
 

    1
, , nn K 1,

2

n n
m

m
 

 
n H     

 
 

otherwise,  

     1
, , nn K  2

2

n n
m

m
 

 
n H     

 
 

where nK   denotes any graph obtained from nK  after 
deleting at most 1m   edges in order to have  

   m

n

1 mon m  

G

de K . Furthermore, if  is extremal  G

then  is either K  or nK  . 
If , then  2d 

     1
1 1 .

2 2

nd
n d O  



, 1
n

n H

lo

m d

       
 

Moreover, there is a procedure with running time 
polynomial in  which determines  and g n  ,n H
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describes a family  of -sequences such that a 
graph G of order  satisfies 


n

n
   , ,G H n H 


 if 

and only if the degree sequence of G belongs to . (It 
will be the case that  



1O  and each sequence in 
 has  equal entries, so  can be described 

using  bits.)  
  1n O

 logO n

 ,



3. Weighted H-Decompositions of Graphs 

In 2011, Sousa [11] introduced a weighted version of the 
H-decomposition problem for graphs. More precisely, let 
G and H be two graphs and b a positive number. A 
weighted H b -decomposition of G is a partition of the 
edge set of G such that each part is either a single edge or 
forms an H-subgraph, i.e., a graph isomorphic to H. We 
assign a weight of b to each H-subgraph in the decom- 
position and a weight of 1 to single edges. The total 
weight of the decomposition is the sum of the weights of 
all elements in the decomposition. Let  be 
the smallest possible weight in an  ,

 , ,G H b
H b -decomposition 

of G. 
As before, the goal is to study the function  

      , ,n H b max ,H b G n  ,G



,v  

which is the smallest number such that any graph G with 
n vertices admits an  ,H b -decomposition with weight 
at most .  , ,G H b

Note that when we take 1b   the original H-decom- 
position problem is recovered, hence, it suffices to 
consider the case when . Furthermore, when  1b 

 Hb e  we easily have . Therefore,   b , ,
2

n
n H

 
 
 



one only has to consider the case when  0 H b e  
and . Sousa [11] obtained the asymptotic value of  1b 
the function  , ,b


n H

b e 

 for any fixed bipartite graph H  

when  and b . 0 H 1
Recall that for a non-empty graph H,  gcd H  de- 

notes the greatest common divisor of the degrees of H. 
Sousa proved the following result. 

Theorem 3.1. [11] Let H be a bipartite graph with  
edges, let  and  with 

m
 gcdd  H 0 < m<b 1b   a 

constant. Then there is 0 0  such that for all 
 the following statements hold. 

 Hn n
0n n

If , then  1d

     
1

, ,b

1 

1 .n H b


r
2

n n

m
d 

O 

2

0

 

If , let  where  is 
an integer. 

d

r

n q 0 1r d 

If  and 1 
bd

m
d r , then 

   1
1

2 2

nb br
n r O

m m

         
  

, ,n H b .  

If 0r   and 1
bd

d r
m

   , then 

   1
, , 1 1 .

2 2

nb br bd
n H b n d O

m m


          
  

 

If  and = 0r
2

3

5
1

5 2

b d

m d
 


, then 

   1
, , 1 1 .

2 2

nb bd
n H b n d O

m m


          
  

 

If  and = 0r
2

3

5 1
1 1

5 2

d b

m dd
   


, then 

 1 1
1 ,

2 2 2

nb bd
n d n H b

m m


          
  

,  

and 

  2
, , .

2 5

nb m b
n H b n

m md


  
  

 
 

If  and = 0r
1

1
b

m d
  , then 

  2
, , .

2 2 5

n nb b
n H b n

m m md


    
     

   

m b
 

The case when H is not a bipartite graph is still an 
open problem. 

4. Monochromatic H-Decompositions of  
Graphs 

In this section the H-decomposition problem is extended 
to coloured versions of the graph G and monochromatic 
copies of H. We define the problem more precisely. 

A k-edge-colouring of a graph G is a function 
   : 1,c E G k ,



. We think of c as a colouring of the 
edges of G, where each edge is given one of k possible 
colours. Given a fixed graph H, a graph G of order n and 
a k-edge-colouring of the edges of G, a monochromatic 
H-decomposition of G is a partition of the edge set of G 
such that each part is either a single edge or a mono- 
chromatic copy of H. Let k  be the smallest 
number such that, for any k -edge-colouring of G, there 
exists a monochromatic H-decomposition of G with at 
most 

 ,G H

 ,G Hk  elements. The objective is to study the 
function  

      , max ,k kn H G H v G n   ,



 

which is the smallest number such that, any k-edge- 
coloured graph of order n admits a monochromatic 
H-decomposition with at most  elements.  ,G Hk

This function was introduced recently by Liu and 
Sousa [12] and they studied the function  ,k rn K  for 
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 rR
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