Existence of Nonoscillatory Solutions of a Class of Nonlinear Dynamic Equations with a Forced Term

Shanliang Zhu, Xinli Zhang
College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, China
Email: zhushanliang77@163.com

Received June 26, 2012; revised July 19, 2012; accepted July 30, 2012

Abstract

In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation $$
[x(t)+p(t) x(\tau(t))]^{د^{m}}+f\left(t, x\left(\tau_{1}(t)\right), x\left(\tau_{2}(t)\right), \cdots, x\left(\tau_{k}(t)\right)\right)=q(t), t \in\left[t_{0}, \infty\right)_{\mathbb{T}}
$$ on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscillatory solutions for general $p(t)$ and $q(t)$ which means that we allow oscillatory $p(t)$ and $q(t)$. We give some examples to illustrate the obtained results.

Keywords: Dynamic Equation; Higher Order; Non-Oscillation; Time Scale; Neutral

1. Introduction

The study of dynamic equations on time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his Ph.D. thesis in 1988 in order to unify continuous and discrete analysis [1]. Dynamic equations on time scales have an enormous potential for modelling a variety of applications such as in population dynamics. Several authors have expounded on various aspects of this new theory, see the survey paper by Agarwal, Bohner, O'Regan and Peterson [2] and references cited therein. A book on the subject of time scales, by Bohner and Peterson [3], summarizes and organizes much of the time scale calculus. We refer also to the last book by Bohner and Peterson [4] for advances in dynamic equations on time scales.
Recently, much attention is concerned with oscillation and nonoscillatory solutions for dynamic equations on time scales [5-12].

In Li and Zhang [6] studied the existence of nonoscillatory solutions to neutral dynamic equation

$$
\begin{aligned}
& {[x(t)+p(t) x(\tau(t))]^{\Delta^{n}}} \\
& +f_{1}\left(t, x\left(\tau_{1}(t)\right)\right)-f_{2}\left(t, x\left(\tau_{2}(t)\right)\right)=0
\end{aligned}
$$

Li, Han, Sun and Yang [10] established the existence of nonoscillatory solutions to the following second order neutral delay dynamic equation

$$
\begin{aligned}
& {\left[x(t)+p(t) x\left(\tau_{0}(t)\right)\right]^{\Delta \Delta}} \\
& +q_{1}(t) x\left(\tau_{1}(t)\right)-q_{2}(t) x\left(\tau_{2}(t)\right)=\mathrm{e}(t) .
\end{aligned}
$$

Zhang and Sun [13] studied the existence of nonoscillatory solutions of the forced nonlinear difference equation

$$
\Delta\left(x_{n}-p_{n} x_{\tau(n)}\right)+f\left(n, x_{\sigma(n)}\right)=q_{n} .
$$

Zhou and Zhang [14] obtained some sufficient conditions of nonoscillatory solutions for the higher order delay difference equation with positive and negative coefficients

$$
\Delta^{m}\left(x_{n}+c x_{n-k}\right)+p_{n} x_{n-r}-q_{n} x_{n-l}=0 .
$$

Lu [15] obtained some necessary and sufficient conditions for the existence of nonoscillatory solutions for the following first order neutral equation

$$
\left(x(t)-\sum_{i=1}^{m} p_{i}(t) x\left(h_{i}(t)\right)\right)^{\prime}+\sum_{j=1}^{n} f_{j}\left(t, x\left(g_{\mathrm{j}}(t)\right)\right)=Q(t)
$$

Motivated by these works, in this paper, we consider the higher-order nonlinear neutral dynamic equation

$$
\begin{align*}
& {[x(t)+p(t) x(\tau(t))]^{\Delta^{m}}} \tag{1}\\
& +f\left(t, x\left(\tau_{1}(t)\right), x\left(\tau_{2}(t)\right), \cdots, x\left(\tau_{k}(t)\right)\right)=q(t)
\end{align*}
$$

where $t \in\left[t_{0}, \infty\right)_{\mathbb{T}}, \quad m \in \mathbb{N}, \sup \mathbb{T}=\infty$. We assume $p, q \in C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{R}\right)$ and allow $p(t)$ and $q(t)$ to be oscillatory. $\tau, \tau_{i} \in C_{r d}\left(\left[t_{0}, \infty\right)_{\mathbb{T}}, \mathbb{T}\right)$ satisfy $\lim _{t \rightarrow \infty} \tau(t)=\lim _{t \rightarrow \infty} \tau_{i}(t)=+\infty, i=1,2, \cdots, k$, $f\left(t, u_{1}, u_{2}, \cdots u_{k}\right) \in C\left(\mathbb{T} \times \mathbb{R}^{k}, \mathbb{R}\right)$ is nondecreasing for

$$
\begin{aligned}
& u_{j} \text { and } u_{1} f\left(t, u_{1}, u_{2}, \cdots u_{k}\right) \geq 0 \text { for } \\
& \qquad u_{1} u_{j} \geq 0, j=1,2, \cdots, k .
\end{aligned}
$$

We recall x is a solution of Equation (1) provided that $x(t)+p(t) x(\tau(t))$ is m times differentiable, and x satisfies Equation (1), A solution x of Equation (1) is called nonoscillatory if x is of one sign when eventually.

2. Existence Results for Nonoscillatory Solutions

In this section, we establish sufficient conditions of the existence of nonoscillatory solutions for Equation (1). First we define a sequence of functions $g_{k}(s, t), k \in \mathbb{N}_{0}$ as follows:

$$
g_{0}(s, t) \equiv 1, g_{k+1}(s, t)=\int_{t}^{s} g_{k}(\sigma(\tau), t) \Delta \tau
$$

For $g_{k}(s, t)$, we have the following Lemma.
Lemma 2.1. (Li and Zhang [6]) Assume s is fixed, and let $g_{k}^{\Delta}(s, t)$ be the derivative $g_{k}(s, t)$ with respect to t. Then

$$
g_{k}^{\Delta}(s, t)=-g_{k-1}(s, t), k \in \mathbb{N}, t \in \mathbb{T}^{k} .
$$

Let $B C$ denote the Banach space of all bounded functions $x(t), t \geq t_{0}$, with the norm $\|x\|=\sup _{t \geq t_{0}},|x(t)|<\infty$. We will use the following assumptions:
(i) there exists $\alpha>0$ such that

$$
\begin{aligned}
& \left|f\left(t, u_{1}, u_{2}, \cdots u_{k}\right)-f\left(t, v_{1}, v_{2}, \cdots v_{k}\right)\right| \\
& \leq L(t) \max _{1 \leq i \leq k}\left|u_{i}-v_{i}\right|
\end{aligned}
$$

for $t \geq t_{0}$ and $0 \leq u_{i}, v_{i} \leq \alpha, j=1,2, \cdots, k$, where $L(t) \in C_{r d}(\mathbb{T}, \mathbb{T})$;
(ii) $\int_{t_{0}}^{\infty} g_{m-1}(\sigma(s), 0) L(s) \Delta s<\infty$;
(iii) $\int_{t_{0}}^{\infty} g_{m-1}(\sigma(s), 0)|q(s)| \Delta s<\infty$;
(iv) there exists $p \in\left(\frac{1}{2}, 1\right)$ such that

$$
|p(t)| \leq 1-p, t \geq t_{0}
$$

(v) there exists $p \in(-1,0]$ such that

$$
p \leq p(t) \leq 0, t \geq t_{0}
$$

(vi) there exist $p_{1}, p_{2} \in(-\infty,-1)$ such that

$$
p_{1} \leq p(t) \leq p_{2}, t \geq t_{0}
$$

(vii) there exists $p \in(0,1)$ such that

$$
0<p(t) \leq p, t \geq t_{0}
$$

(viii) there exist $p_{1}, p_{2} \in(1,+\infty)$ such that

$$
p_{1} \leq p(t) \leq p_{2}, t \geq t_{0} .
$$

Theorem 2.1. Assume that (i), (ii), (iii) and (iv) hold, then Equation (1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. Choose d_{1}, c_{1} such that $0<d_{1}<(2 p-1) \alpha$ and $d_{1}+(1-p) \alpha<c_{1}<p \alpha$. Let $c=\min \left\{\frac{p}{2} \alpha, p \alpha-c_{1}, c_{1}-d_{1}-(1-p) \alpha\right\}$. There exists a $t_{1} \geq t_{0}$ large enough such that when $t \geq t_{1}$, we have $\tau(t), \tau_{i}(t) \geq t_{0}, i=1,2, \cdots, k$ and

$$
\begin{equation*}
\int_{t_{1}}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s \leq c . \tag{2}
\end{equation*}
$$

By condition (i) and the hypotheses on $f\left(t, u_{1}, \cdots, u_{k}\right)$, for any $t \geq t_{0}, 0 \leq u_{i} \leq \alpha, i=1,2, \cdots, k$, we have

$$
\begin{equation*}
f\left(t, u_{1}, \cdots, u_{\mathrm{k}}\right) \leq \alpha L(t) \tag{3}
\end{equation*}
$$

We define a set $\Omega \subset B C$ as follows:

$$
\begin{equation*}
\Omega=\left\{x \in B C: d_{1} \leq x(t) \leq \alpha, t \geq t_{0}\right\} . \tag{4}
\end{equation*}
$$

Then Ω is a closed, bounded and convex subset of $B C$. Define a map Γ on Ω as follows:
$(\Gamma x)(t)$

$$
=\left\{\begin{array}{l}
c_{1}-p(t) x(\tau(t))+(-1)^{m-1} \int_{t}^{\infty} g_{m-1}(\sigma(s), t) \\
\cdot\left[f\left(s, x\left(\tau_{1}(s)\right),\left(\tau_{2}(s)\right), \cdots,\left(\tau_{k}(s)\right)\right)-q(s)\right] \Delta s, \\
t \geq t_{1}, \\
(\Gamma x)\left(t_{1}\right), t_{0} \leq t \leq t_{1}
\end{array}\right.
$$

First, we shall show that for any $x \in \Omega$ and $t \geq t_{0}$, $(\Gamma x)(t) \in \Omega$. For any $x \in \Omega$ and $t \geq t_{1}$, by (2), (3) and (4), we get

$$
\begin{aligned}
& (\Gamma x)(t) \\
& \geq c_{1}-p(t) x(\tau(t))-\int_{t}^{\infty} g_{m-1}(\sigma(s), t) \\
& {\left[f\left(s, x\left(\tau_{1}(s)\right), x\left(\tau_{2}(s)\right), \cdots, x\left(\tau_{\mathrm{k}}(s)\right)\right)+|q(s)|\right] \Delta s} \\
& \geq c_{1}-|p(t)| x(\tau(t)) \\
& -\int_{t}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s \\
& \geq c_{1}-(1-p) \alpha-\left[c_{1}-d_{1}-(1-p) \alpha\right]=d_{1}
\end{aligned}
$$

Furthermore, we have

$$
(\Gamma x)(t)
$$

$$
\leq c_{1}-|p(t)| x(\tau(t))-\int_{t}^{\infty} g_{m-1}(\sigma(s), t)
$$

$$
\left[f\left(s, x\left(\tau_{1}(s)\right), x\left(\tau_{2}(s)\right), \cdots, x\left(\tau_{\mathrm{k}}(s)\right)\right)+|q(s)|\right] \Delta s
$$

$$
\leq c_{1}+(1-p) \alpha
$$

$$
+\int_{t}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s
$$

$$
\leq c_{1}+(1-p) \alpha+p \alpha-c_{1}=\alpha
$$

Hence when $t \geq t_{0}$, we obtain $d_{1} \leq(\Gamma x)(t) \leq \alpha$, so $(\Gamma x)(t) \in \Omega$ for any $x \in \Omega$.
Next, we show that Γ is a contraction mapping on Ω. In fact for any $x, y \in \Omega$ and $t \geq t_{1}$, we have
$(\Gamma x)(t)$

$$
\begin{aligned}
& \leq|p(t) \| x(\tau(t))-y(\tau(t))| \\
& +\int_{t}^{\infty} g_{m-1}(\sigma(s), t) \mid f\left(s, x\left(\tau_{1}(s)\right), x\left(\tau_{2}(s)\right), \cdots, x\left(\tau_{\mathrm{k}}(s)\right)\right) \\
& -f\left(s, y\left(\tau_{1}(s)\right), y\left(\tau_{2}(s)\right), \cdots, y\left(\tau_{\mathrm{k}}(s)\right)\right) \mid \Delta s \\
& \leq(1-p)\|x-y\|+\int_{t}^{\infty} g_{m-1}(\sigma(s), 0) L(s)\|x-y\| \Delta s \\
& \leq\left(1-p+\frac{p}{2}\right)\|x-y\|=\left(1-\frac{p}{2}\right)\|x-y\|
\end{aligned}
$$

Since $0<1-\frac{p}{2}<1$, we conclude that Γ is a contraction mapping on Ω. By the Banach fixed point theorem, Γ has a fixed point $x^{*} \in \Omega$. By Lemma 2.1, it is easy to see that $x^{*}(t)$ is a bounded nonoscillatory solution of the Equation (1). This completes the proof of Theorem 2.1.

Theorem 2.2. Assume that (i), (ii), (iii) and (v) hold, then Equation (1) has a bounded nonoscillatory solution which is bounded away from zero.
Proof. Choose $\beta>0$, such that $\beta \leq \frac{2(1+p) \alpha}{3}$. Obviously $(1+p) \alpha-\beta \geq \frac{\beta}{2}$. There exists a $t_{1} \geq t_{0}$ sufficiently large such that when $t \geq t_{1}$, we have $\tau(t)$, $\tau_{i}(t) \geq t_{0}, i=1,2, \cdots, k$ and

$$
\int_{t_{1}}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s \leq \frac{\beta}{2}
$$

We define a closed, bounded and convex subset Ω of $B C$ as follows:

$$
\Omega=\left\{x \in B C: \frac{\beta}{2} \leq x(t) \leq \alpha, t \geq t_{0}\right\} .
$$

Define a map Γ on Ω as follows:
$(\Gamma x)(t)$

$$
=\left\{\begin{array}{l}
\beta-p(t) x(\tau(t))+(-1)^{m-1} \int_{t}^{\infty} g_{m-1}(\sigma(s), t) \\
\cdot\left[f\left(s, x\left(\tau_{1}(s)\right), x\left(\tau_{2}(s)\right), \cdots, x\left(\tau_{k}(s)\right)\right)-q(s)\right] \Delta s, \\
t \geq t_{1}, \\
(\Gamma x)\left(t_{1}\right), t_{0} \leq t \leq t_{1} .
\end{array}\right.
$$

The rest of the proof is similar to that of Theorem 2.1 and hence omitted. The proof is complete.

Theorem 2.3. Assume that (i), (ii), (iii) and (vi) hold. τ has the inverse $\tau^{-1} \in C(\mathbb{T}, \mathbb{T})$, then Equation (1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose positive constants M_{1}, M_{2}, β, such that $M_{2} \leq \alpha,-p_{1} M_{1}<\beta<\left(-p_{2}-1\right) M_{2}$. Let
$c=\min \left\{\frac{\beta+p_{1} M_{1}}{p_{1}} p_{2},\left(-p_{2}-1\right) M_{2}-\beta,-\frac{1+p_{2}}{2} \alpha\right\}$.
There exists a $t_{1} \geq t_{0}$ large enough such that when $t \geq t_{1}$, we have $\tau^{-1}\left(\tau_{i}(t)\right) \geq t_{0}, i=1,2, \cdots, k$, and

$$
\int_{t^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s \leq c
$$

We define a closed, bounded and convex subset Ω of $B C$ as follows:

$$
\Omega=\left\{x \in B C: M_{1} \leq x(t) \leq M_{2}, t \geq t_{0}\right\} .
$$

Define a map $\Gamma: \Omega \rightarrow B C$ as follows:
$(\Gamma x)(t)=$

$$
\left\{\begin{array}{l}
-\frac{\beta}{p\left(\tau^{-1}(t)\right)}-\frac{x\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)}+\frac{(-1)^{m-1}}{p\left(\tau^{-1}(t)\right)} \int_{t^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), t) \\
\cdot\left[f\left(s, x\left(\tau_{1}(s)\right), x\left(\tau_{2}(s)\right), \cdots, x\left(\tau_{k}(s)\right)\right)-q(s)\right] \Delta s, \\
t \geq t_{1}, \\
(\Gamma x)(t), t_{0} \leq t \leq t_{1} .
\end{array}\right.
$$

First, we shall show that $\Gamma \Omega \subset \Omega$. For any $x \in \Omega$ and $t \geq t_{1}$, note that

$$
\begin{aligned}
& (\Gamma x)(t) \\
& \geq-\frac{\beta}{p\left(\tau^{-1}(t)\right)} \\
& +\frac{1}{p\left(\tau^{-1}(t)\right)} \int_{t^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), t)[\alpha L(s)+|q(s)|] \Delta s \\
& \geq-\frac{\beta}{p_{1}}+\frac{1}{p_{2}} \int_{\tau^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s \\
& \geq-\frac{\beta}{p_{1}}+\frac{\left(\beta+p_{1} M_{1}\right) p_{2}}{p_{1} p_{2}}=M_{1}
\end{aligned}
$$

and
$(\Gamma x)(t) \leq-\frac{\beta}{p_{2}}-\frac{M_{2}}{p_{2}}-\frac{\left(-p_{2}-1\right) M_{2}-\beta}{p_{2}}=M_{2}$.
Thus $(\Gamma x)(t) \in \Omega$ for $x \in \Omega$, this is $\Gamma \Omega \subset \Omega$.
Next, we show that Γ is a contraction mapping on Ω. In fact for any $x, y \in \Omega$ and $t \geq t_{1}$, we have

$$
\begin{aligned}
& (\Gamma x)(t) \leq-\frac{1}{p\left(\tau^{-1}(t)\right)}\left|x\left(\tau^{-1}(t)\right)-y\left(\tau^{-1}(t)\right)\right| \\
& \left.-\frac{1}{p\left(\tau^{-1}(t)\right)} \int_{\tau^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), t) \right\rvert\, f\left(s, x\left(\tau_{1}(s)\right), x\left(\tau_{2}(s)\right),\right. \\
& \left.\cdots, x\left(\tau_{k}(s)\right)\right)-f\left(s, y\left(\tau_{1}(s)\right), y\left(\tau_{2}(s)\right), \cdots, y\left(\tau_{k}(s)\right)\right) \mid \Delta s \\
& \leq-\frac{1}{p_{2}}\|x-y\|-\frac{1}{p_{2}} \int_{\tau^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), 0) L(s)\|x-y\| \Delta s \\
& \leq \frac{1}{p_{2}}\left(-1+\frac{1+p_{2}}{2}\right)\|x-y\|=\frac{p_{2}-1}{2 p_{2}}\|x-y\| .
\end{aligned}
$$

Since $0<\frac{p_{2}-1}{2 p_{2}}<1$, we conclude that Γ is a contraction mapping on Ω. By the Banach fixed point theorem, Γ has a fixed point $x^{*} \in \Omega$. By Lemma 2.1, it is easy to see that $x^{*}(t)$ is a bounded nonoscillatory solution of the Equation (1). This completes the proof of Theorem 2.3.

Theorem 2.4. Assume that (i), (ii), (iii) and (vii) hold, then equation (1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. Choose $\beta>0$, such that $p \alpha<\beta<\alpha$. Let $c=\min \left\{\alpha-\beta, \frac{\beta-p \alpha}{2}\right\}$. There exists a $t_{1} \geq t_{0}$ large enough such that when $t \geq t_{1}$, we have

$$
\tau(t), \tau_{i}(t) \geq t_{0}, i=1,2, \cdots, k
$$

and

$$
\int_{t_{1}}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s \leq c
$$

Easily to know

$$
\Omega=\left\{x \in B C: \frac{\beta-p \alpha}{2} \leq x(t) \leq \alpha, t \geq t_{0}\right\}
$$

is a closed, bounded and convex subset of $B C$. Define a map $\Gamma: \Omega \rightarrow B C$ as follows:

$$
\begin{aligned}
& (\Gamma x)(t) \\
& =\left\{\begin{array}{l}
\beta-p(t) x(\tau(t))+(-1)^{m-1} \int_{t}^{\infty} g_{m-1}(\sigma(s), t) \\
\cdot\left[f\left(s, x\left(\tau_{1}(s)\right), x\left(\tau_{2}(s)\right), \cdots, x\left(\tau_{k}(s)\right)\right)-q(s)\right] \Delta s, \\
t \geq t_{1}, \\
(\Gamma x)\left(t_{1}\right), t_{0} \leq t \leq t_{1} .
\end{array}\right.
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 2.1 and hence omitted. The proof is complete.

Theorem 2.5. Assume that $\alpha \geq 1$, (i), (ii), (iii) and (viii) hold. τ has the inverse $\tau^{-1} \in C(\mathbb{T}, \mathbb{T})$, then Equation (1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose β, such that $1<\beta<p_{1}$. Let
$c=\min \left\{\beta-1, \frac{p_{1}-\beta}{2}, \frac{\beta-1}{2} \alpha\right\}$. There exists a $t_{1} \geq t_{0}$ large enough such that when $t \geq t_{1}$, we have $\tau^{-1}\left(\tau_{i}(t)\right) \geq t_{0}, i=1,2, \cdots, k$, and

$$
\int_{\tau^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), 0)[\alpha L(s)+|q(s)|] \Delta s \leq c .
$$

We define a closed, bounded and convex subset Ω of $B C$ as follows:

$$
\Omega=\left\{x \in B C: \frac{p_{1}-\beta}{2 p_{2}} \leq x(t) \leq \frac{p_{1}+\beta}{2 p_{1}}, t \geq t_{0}\right\} .
$$

Define a map $\Gamma: \Omega \rightarrow B C$ as follows:

$$
\begin{aligned}
& (\Gamma x)(t)= \\
& \left\{\begin{array}{l}
\beta \\
\left\{\left(\tau^{-1}(t)\right)\right. \\
\left\{\begin{array}{l}
x\left(\tau^{-1}(t)\right) \\
p\left(\tau^{-1}(t)\right)
\end{array}+\frac{(-1)^{m-1}}{p\left(\tau^{-1}(t)\right)} \int_{\tau^{-1}(t)}^{\infty} g_{m-1}(\sigma(s), t)\right. \\
t \geq t_{1} \\
(\Gamma x)\left(\tau_{1}\right), t_{0} \leq t \leq t_{1} .
\end{array}\right.
\end{aligned}
$$

The rest of the proof is similar to that of Theorem 2.3 and hence omitted. The proof is complete.

Remark 2.1. Theorem 1-5 not only unify the known results for differential and difference equations corresponding to Equation (1), but also generalize and improve essentially the existing results of [13-15] using the time scale theory.

We will give the following examples to illustrate our mainresults.

Example 2.1. Consider the forth-order dynamic equation on the time scale $\mathbb{T}=\left\{q^{n}: n \in \mathbb{N}_{0}, q>1\right\}$

$$
\begin{align*}
& \left(x(t)-\frac{1}{\sqrt{q}} x\left(\frac{t}{q}\right)\right)^{\Delta^{4}}+\frac{(1-\sqrt{q})(q+1)^{2}\left(q^{2}+1\right)}{q^{10}} \\
& \times \frac{\left(q^{2}+q+1\right)}{t^{2}\left(t+q^{3}\right)^{3}} x^{3}\left(\frac{t}{q^{3}}\right) \tag{5}\\
& =2 \frac{(1-\sqrt{q})(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{10} t^{5}}
\end{align*}
$$

Here $m=4, p(t)=-\frac{1}{\sqrt{q}}, \tau(t)=\frac{t}{q}$,

$$
\begin{aligned}
& q(t)=2 \frac{(1-\sqrt{q})(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{10} t^{5}}, \\
& L(t)=3 \alpha^{2} \frac{\left|(1-\sqrt{q})(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\right|}{q^{10} t^{2}\left(t+q^{3}\right)^{3}}
\end{aligned}
$$

By the definition of $g_{k}(s, t)$, we have

$$
\begin{aligned}
& g_{4-1}(\sigma(s), 0) L(s) \\
& \leq s^{3} \frac{3 \alpha^{2}(\sqrt{q}-1)(q+1)^{2}\left(q^{2}+1\right)}{q^{10}} \frac{\left(q^{2}+q+1\right)}{s^{2}\left(s+q^{3}\right)^{3}} \\
& \leq \frac{3 \alpha^{2}(\sqrt{q}-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{10} s^{2}}, \\
& g_{4-1}(\sigma(s), 0)|q(s)| \\
& \leq s^{3} 2 \frac{(\sqrt{q}-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{10} s^{5}} \\
& =2 \frac{(\sqrt{q}-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{10} s^{2}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{t_{0}}^{\infty} \frac{3 \alpha^{2}(\sqrt{q}-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{10} s^{2}} \Delta s<\infty, \\
& \int_{t_{0}}^{\infty} 2 \frac{(\sqrt{q}-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{10} s^{2}} \Delta s<\infty
\end{aligned}
$$

It is obvious that Equation (5) satisfies all conditions of Theorem 2.2. Hence Equation (5) has a bounded nonoscillatory solution which is bounded away from zero. In fact $x(t)=1+\frac{1}{t}$ is a solution of Equation (5). However, to the best of our knowledge, there are no results dealing with the existence of nonoscillatory solutions for Equation (5).

Example 2.2. Consider the third-order dynamic equation on the time scale $\mathbb{T}=\mathbb{N}$

$$
\begin{equation*}
(x(t)-2 x(t-1))^{\Delta^{3}}+\frac{1}{2^{t}} x(t-1)=\frac{11\left(2^{t}\right)+16}{8\left(2^{2 t}\right)} \tag{6}
\end{equation*}
$$

$t \geq 2$.
Here $m=3, p(t)=-2, \tau(t)=t-1$,

$$
f\left(t, x\left(\tau_{1}(t)\right)\right)=\frac{1}{2^{t}} x(t-1)
$$

and $q(t)=\frac{11\left(2^{t}\right)+16}{8\left(2^{2 t}\right)}$. It is easy to see that all conditions of Theorem 2.3 are satisfied and hence Equation (6) has a bounded nonoscillatory solution which is bounded away from zero. In fact $x(t)=1+\frac{1}{2^{t}}$ is a solution of Equation (6).

3. Acknowledgements

The authors sincerely thank the reviewers for their valuable suggestions and useful comments that have lead to the present improved version of the original manuscript.

REFERENCES

[1] S. Hilger, "Analysis on Measure Chains-A Unified Approach to Continuous and Discrete Calculus," Results in Mathematics, Vol. 18, No. 1-2, 1990, pp. 18-56.
[2] R. Agarwal, M. Bohner, D. O'Regan and A. Peterson, "Dynamic Equations on Time Scales: A Survey," Journal of Computational and Applied Mathematics, Vol. 141, No. 1-2, 2002, pp. 1-26. doi:10.1016/S0377-0427(01)00432-0
[3] M. Bohner and A. Peterson, "Dynamic Equations on Time Scales: An Introduction with Applications," Birkhäuser, Boston, 2001.
[4] M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales," Birkhäuser, Boston, 2003. doi:10.1007/978-0-8176-8230-9
[5] B. G. Zhang and S. L. Zhu, "Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales," Computers \& Mathematics with Applications, Vol. 49, No. 4, 2005, pp. 599-609.
[6] Q. L. Li and Z. Zhang, "Existence of Solutions to Nth Order Neutral Dynamic Equations on Time Scale," Electronic Journal of Differential Equations, Vol. 2010, No. 151, 2010, pp. 1-8. http://ejde.math.txstate.edu or http://ejde.math.unt.edu, ftp ejde.math.txstate.edu
[7] D. X. Chen, "Oscillation and Asymptotic Behavior for Nth-Order Nonlinear Neutral Delay Dynamic Eqautions on Time Scales," Acta Applicandae Mathematicae, Vol. 109, No. 3, 2010, pp. 703-719. doi:10.1007/s10440-008-9341-0
[8] T. S. Hassan, "Oscillation of Third Order Nonlinear Delay Dynamic Equations on Time Scales," Mathematical and Computer Modelling, Vol. 49, No. 7-8, 2009, pp. 15731586. doi:10.1016/j.mcm.2008.12.011
[9] Z. Q. Zhu and Q. R. Wang, "Existence of Nonoscillatory Solutions to Neutral Dynamic Equations on Time Scales," Journal of Mathematical Analysis and Applications, Vol. 335, No. 2, 2007, pp. 751-762. doi:10.1016/j.jmaa.2007.02.008
[10] T. Li, Z. Han, S. Sun and D. Yang, "Existence of Nonoscillatory Solutions to Second-Order Neutral Delay Dynamic Equations on Time Scales," Advances in Difference Equations, Vol. 2009, 2009, pp. 1-10. doi:10.1155/2009/562329
[11] T. X. Sun, H. Xi, X. Peng and W. Yu, "Nonoscillatory Solutions for Higher-Order Neutral Dynamic Equations on Time Scales," Abstract and Applied Analysis, Vol. 2010, 2010, pp. 1-16. doi:10.1155/2010/428963
[12] B. G. Zhang and X. H. Deng, "Oscillation of Delay Differential Equations on Time Scales," Mathematical and Computer Modelling, Vol. 36, No. 11-13, 2002, pp. 13071318. doi:10.1016/S0895-7177(02)00278-9
[13] B. G. Zhang and Y. J. Sun, "Existence of Nonoscillatory

Solutions of a Class of Nonlinear Difference Equations with a Forced Term," Mathematica Bohemica, Vol. 126, No. 3, 2001, pp. 639-647.
[14] Y. Zhou and B. G. Zhang, "Existence of Nonoscillatory Solutions of Higher-Order Neutral Delay Difference Equations," Computers \& Mathematics with Applications,

Vol. 45, No. 6-9, 2003, pp. 991-1000. doi:10.1016/S0898-1221(03)00074-9
[15] W. D. Lu, "Existence of Nonoscillatory Solutions of First Order Nonlinear Neutral Equations," Journal of the Australian Mathematical Society Series B, Vol. 32, No. 2, 1990, pp. 180-192.

