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ABSTRACT 

We review the formulation of graphene’s massless Dirac equation, under the chiral electromagnetism approach, hope- 
fully demystifying the material’s unusual chiral, relativistic, effective theory. In Dirac’s theory, many authors replace 
the speed of light by the Fermi velocity, in this paper we deduce that in graphene the Fermi velocity is obtained from 
the connection between the electromagnetic chirality and the fine structure constant when the electric wave E is quasi 
parallel to the magnetic wave H. With this approach we can consider the properties of electric circuits involving gra- 
phene or Weyl semimetals. The existence of the induced chiral magnetic current in a graphene subjected to magnetic 
field causes an interesting and unusual behavior of such circuits. We discuss an explicit example of a circuit involving 
the current generation in a “chiral battery”. The special properties of this circuit may be utilized for creating “chiral 
electronic” devices. 
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1. Introduction 

Recently, the 2D and 3D materials with linearly dispers-
ing excitations [1] have attracted significant attention. 
The existence of these “chiral” excitations stems from 
the point touchings of conduction and valence bands. The 
corresponding dynamics is described by the Hamiltonian 

ˆFH v k   ; where Fv  is the Fermi velocity of the 
quasi-particle, k is the momentum in the first Brillouin 
zone, and ̂  are the Pauli matrices. This Hamiltonian 
describes massless particles with positive or negative 
(depending on the sign) chiralities, e.g. neutrinos, and the 
corresponding wave equation is known as the Weyl 
equation—hence the name Weyl semimetal [1]. Weyl 
semimetals are closely related to 2D graphene [2], and to 
the topological insulators [3]—3D materials with a gap- 
ped bulk and a surface supporting chiral excitations. 
Specific realizations of Weyl semimetals have been pro-
posed, including a multilayer structure composed of identi-
cal thin films of a magnetically doped 3D topological 
insulator, separated by ordinary-insulator spacer layers 
[4].  

Weyl semimetals provide a unique opportunity to 
study the macroscopic behavior of systems composed by 
chiral fermions. In particular, they allow [5] to study, in a 
condensed matter system, the chiral magnetic effect ex-
pected [6-11], and closely related phenomena [12-16]. 
The effects of the anomaly on the transport in Weyl 
semimetals, including the chiral magnetic effect, have 

recently been investigated in [17-20]. 
In this paper we argue that the existence of chiral 

magnetic current in graphene subjected to magnetic field 
can cause an interesting, and potentially useful for prac-
tical applications, behavior of circuits such a chiral bat-
tery [9].  

The material called graphene which is a single layer of 
atoms arranged in honeycomb lattice could let electronics 
to process information and produce radio transmission 10 
times better than silicon based devices.  

From the point of view of its electronic properties, 
graphene is a two-dimensional zero-gap semiconductor 
with the cone energy spectrum, and its low-energy qua- 
siparticles are formally described by the Dirac-like Ham- 
iltonian [21,22]. 0 ˆFH i v      where F

6 110  msv 


 
is the Fermi velocity and  ,ˆ x y    are the Pauli 
matrices. The fact that charge carriers in graphene are 
described by the Dirac-like Equation (1), rather than the 
usual Schrödinger equation, can be seen as a conse- 
quence of graphene’s crystal structure, which consists of 
two equivalent carbon sublattices [21,22]. Quantum me- 
chanical hopping between the sublattices leads to the 
formation of two cosine-like energy bands, and their in- 
tersection near the edges of the Brillouin zone yields the 
conical energy spectrum. As a result, quasiparticles in 
graphene exhibit the linear dispersion relation  

G FE E kv   , as if they were massless relativistic par- 
ticles with momentum k (for example, photons) but the 
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role of the speed of light is played here by the Fermi ve- 
locity 300Fv c . Owing to the linear spectrum, it is 
expected that graphene’s quasiparticles will behave dif- 
ferently from those in conventional metals and semicon- 
ductors where the energy spectrum can be approximated 
by a parabolic (free-electron-like) dispersion relation.  

The low-energy excitations of this system are then de-
scribed by the massless two-dimensional Weyl-Dirac 
equation and their energy dispersion relation Fv k   
is that of relativistic massless fermions with particle-hole 
symmetry. The maths is simple but the principles are 
deep. We will review the formulation of graphene’s 
massless Dirac Hamiltonian, under the chiral electro- 
magnetism approach, like a meta-material media [23-29], 
hopefully demystifying the material’s unusual chiral, 
relativistic, effective theory. These results are derived of 
the Chiral Electrodynamics with T as the chiral parame-
ter and 0k c  [27,30-32]. The chiral vector poten-
tial cA can be expressed as  

 
2 2

2 0
2 2 2 2
0

2 0
1 1c c c

o

k T
A A A

k T k T

 
    

 
 

As 2 2 2
x y zk k k k   , if sinxk k  , 0yk  , and 

coszk k  , we have the matrix: (see the formula below) 
The dispersion relation of the transversal wave is 

   2
2 2 2 2 4 2 2 2 2

0 0 01 4 sin cosk k T k k k T       

 
 0

0 01k k k k T     . 

That is  

    1

0 0 01 1k k k T k T
c

 
        

If we put then  01Fv c k T  Fv c   which is the 
fine structure constant. Here we have that cA E H , that 
is the electric field  is quasi parallel to the magnetic 
wave

E
H . The novel result here is that in our chiral theory 

we do not make Fc v but we obtain Fv

0 
as  

 if 0  or  if  

0 . In this section we have given an approach of 
the chiral electromagnetism applied to grapheme. In Sec- 
tion 2, we discuss the two component equations of Dirac 
electron in grapheme. Section 3 describes a graphene bat- 
tery device.  

 0k T 0k T 1v c 
0

F

k T
 1Fv c k T

2. Two Component Equations of Dirac 
Electron in Graphene  

The usual choice of an orthogonal set of four plane-wave  

solutions of the free-particle Dirac equation does not lend 
itself readily to direct and complete physical interpreta- 
tion except in low energy approximation. A different 
choice of solutions can be made which yields a direct 
physical interpretation at all energies. Besides the separa- 
tion of positive and negative energy states there is a fur- 
ther separation of states for which the spin is respectively 
parallel or anti-parallel to the direction of the momentum 
vector. This can be obtained from the Maxwell’s equation 
without charges and current in the wave E H  configu-
ration, so E i H , or E icB  [30-32]. Here we con-
siderer a bidimensional graphene system so the Dirac’s 
four-component equation for the “relativistic” electron is:  

ˆ Di H
t
 



 ,               (1) 

where  with  ,
t

E H    ˆE  E , ˆH  H so 
we can write 

  2ˆ ˆD
FH v mvF   α p ,           (2) 

0
, 1,2

0
k

k
k

k




 

  
 

,3,          (3) 

0

0 z

I

I
 

 
   

            (4) 

and I is the two-by-two identity matrix and 
k

  and   
are written in chiral or Weyl representation, the Fermi 
velocity Fv  is deduced from the chiral electrodynamics 
with  01F k T v c , where T is the chiral parameter in 
a metamaterial condition. This result is capital to our 
approach because we find a contact point between the 
graphene system and optical metamaterial making 

 1v c k T0 F , no making Fc v  as other authors do 
it. This Hamiltonian commutes with the momentum vector 

. In order to resolve this degeneracy we seek a dy-
namical variable which commutes with both H and 
p

p . 
Such a variable is ˆ p  , where ̂  is the matrix Pauli. 
The eigenfunctions of the commuting variables  and p
ˆ p   are simultaneous: 

 2 2ˆ p p   ,             (5) 

Thus for a simultaneous eigenstate of  and p ˆ p  , 
the value of ˆ p   will be +p or –p, corresponding to 
states for which the spin is parallel or antiparallel, re-
spectively, to the momentum vector like a graphene sys-
tem. 

 
 

 

2 2 2 2 2
0 0 0

2 2 2 2 2 2
0 0 0 0

2 2 2 2 2
0 0 0

1 2 cos 0

2 cos 1 2 sin

0 2 sin 1

x

y

z

k k T k jk kT A

jk kT k k T k jk kT A

Ajk kT k k T k



 



       
                 

0 
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A simultaneous eigenfunction of H and p will have the 

form of a plane wave 

 exp , 1,2,3,4j ju i p r Et j       ,      (6) 

where the j  are the four components of the state func-
tion and ju  four numbers to be determined. Then E can 
have either of the two values. 

 
1
22 4 2 2

F FE m v v     p .         (7) 

We now demand that j  be also an eigenfunction of 
ˆ p   belonging to one of the eigenvalues , say, 

where , The eigenvalue equation is 
pE

p  E p

ˆ p p    E ,                (8) 

Since can be given either of the two values W   
and , the two values , we have found for given p 
four linearly independent plane wave solutions. It is easily 
verified that they are mutually orthogonal. 

pE p

The physical interpretation of the solutions is now 
clear. Each solution represents a homogeneous beam of 
particles of definite momentum p, of definite energy, 
either  , and with the spin polarized either parallel or 
anti-parallel to the direction of propagation. From here 
we can obtain the well known equation for graphene 

0 ˆ ˆF FH i v v p      

B

 . The sign ± correspond to 
the different chiralities of the Weyl fermions. When we 
apply a magnetic field 0  along z, we obtain  

 0 0ˆF eH v p    cA , where 0A  is the vector poten-
tial corresponding to 0 . The chiral anomaly occurs 
when the current density in terms of right and left-handed 
spinors is nonzero.  

B

  † †e eE E H Hj          and the total chiral 
current is 

3dc
jI x                 (9) 

In Section 3, we extend this study to 3-D graphene 
with linearly dispersing excitations envolving an interes- 
ting application of the Chiral Magnetic Effect—a re- 
chargeable battery which stores chirality—the chiral bat- 
tery.  

3. Chiral Current in a Graphene Battery 
Device 

Chirality in graphene is not related to the usual spin 
states considered above but instead refers to the sublat- 
tice states. If we have some finite amount of this material, 
it can be used as a battery. The battery can be charged 
using the axial anomaly by placing it in parallel electric 
and magnetic fields. The charging time will be deter- 
mined by the axial anomaly. The battery stores energy, 
since the Fermi-levels of right- and left-handed modes 
differ.  

In the absence of electric and magnetic fields, chirality 

is conserved, so the battery does not discharge. If the 
battery is connected to a circuit element with resistance R 
and we apply a magnetic field to the battery in the right 
direction, a current J will be induced due to the Chiral 
Magnetic Effect. The behavior of this current as a func-
tion of the applied magnetic field can be obtained. The 
current will cause a potential difference total  over 
the circuit element. As a result, the same potential dif-
ference will also exist over the battery. Hence an electric 
field will arise parallel to the magnetic field. In this case 
the axial anomaly operates again to decrease the chirality. 
Hence a slow rate of discharge will be determined by the 
axial anomaly as well. 

V I R

Following the argument by Nielsen and Ninomiya, [17] 
let us imagine that there is an electric field 0  applied 
in the same direction as the magnetic field 0 . This 

0
 

will lead to transfer of particles between the two Weyl 
nodes of graphene through the zero node, which has a 
definite chirality. The slow rate of particles between the 
left (−) and right (+) node per unit volume is given by  

E
B E

  2

0 02 2

d e

d 2π

N N
E B

t c
 




 

Since the Weyl nodes have an energy difference W , 
this particle transfer process has an associated power per 
unit volume  

 d 2

dW

N N
P

t
  

   

So that 0P JE  and J  can be obtained. Consider 
first a cylindrical sample of graphene inside a solenoid 
that provides an external, constant magnetic field of 
strength B along the longitudinal direction of cylindrical 
geometry, say , see Figure 1. The top and bottom of 
the graphene material are touching metallic plates that 
can conduct electric currents owing through the sample. 
These two metallic plates are then connected to an out- 
side circuit which is characterized by a resistance R. The 
cross section area of the graphene sample is  and the  

z

2πr
 

B0

R 

r

l

 

Figure 1. The chiral battery: Graphene system (shown in 
grey) connected to the circuit with resistance R in an exter-
nal magnetic field B0. 
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longitudinal length is d. The induced chiral magnetic 
current density along , is (Equation (9)) z

2

2

e

4π
cJ B

c





               (9) 

  is the energy separation between the Weyl nodes. 
If 1 meV 

J
, and the magnetic field 0 , we 

have , an easily measurable current [9]. 
1 TB 

2/cm0.1 Ac 
In the case of a global equilibrium all the contribution 

to Equation (9) from different valleys cancel each other. 
In the presence of 0  parallel to 0 , an imbalance of 
electron populations is created so there is a finite current  
and it responds only on the component of the electric 
field parallel to . 

B E

0

Once an external magnetic field is applied, the energy 
stored in the difference of the chemical potentials of left- 
and right-handed fermions can be released by generating 
the current (

B

cI ), hence the name chiral battery [9]. 
Note that according to (9) a Weyl semimetal is a kind 

of battery that provides a definite amount of current, 
contrary to conventional batteries that support a definite 
voltage. The total anomaly-induced current through the 
sample is c

2πcI r J . If the entire current is total tI I , 
then there is a voltage drop along the resistance R given 
by total . Since the same amount of voltage drop 
should also occur along the graphene sample, there is an 
electric field along  direction with a magnitude 

V I R

z

0 d tE V I R    d          (10) 

Note the negative sign of E. This electric field gives 
rise to a normal current through conductivity   

2
2

0 total

π
π

dj
j

r R R
totalI r E I I

R

    ;     (11) 

where 
2

d

πjR
r

   

is the intrinsic resistance of the Weyl semimetal sample. 
The total current tI  should be the sum of jI  and cI , 
that is determined self-consistently as 

1
c

t j c
j

I
I I I

R R
  


         (12) 

This is the equation governing the performance of the 
chiral battery. 

Let us now see how the energy discharge works for the 
chiral battery. From the total current (12) through the 
resistance R and the normal current jI . In through jR , 
the energy discharge rate should be 

22
2 2 2

2 2

d

d 1 4πt j j
j

R
RI R I A B

t R R c

  
      

2e
    (13) 

using (11) and (12). This should match the reduction of 
internal energy of the Weyl semimetal sample. In the 
presence of both electric field E as in (10) and the mag-

netic field B, the charge density of ith Weyl point 
changes is ( ) , 1c 

   
2 2

0 02 2

d e e

d 4π 4π
i i i

w w

t k k

t


     E B E B E B     (14) 

Here as the fast time electromagnetic field is 

w wicE B , there is not contribution of this term, so the 
slow time average is 

  2

02

d e

d d4π
i i tt k I

B
t


           (15) 

The total volume of the sample is Ad, so that the slow 
total rate of increase of i’th charge is 

2

total 02

d e

d 4π
i iQ k

AI RB
t
         (16) 

from which the rate of internal energy change is 
22

2 2int
total 02 2

d e

d 1 4πc
j

R
J AI R A B

t R R c

  
      

  (17) 

Using the expression (12) for I, which indeed agrees 
precisely with (13), the time-dependence of the chiral 
battery performance relies on the detailed equation of 
state between i  and  (chiral chemical potential). 

i

Let us estimate the amount of energy E stored in the 
chiral battery per unit volume. It is equal to the Helm-
holtz free energy, which is the energy that can be used to 
do work. The free energy is the difference between the 
thermodynamic potential with a chiral charge density and 
without and is easily founded. Following [9], we then 
obtain that the energy density is 

μ

4 3 7d
7.0 10  e nm 1.0 10  J cm

d
F Fv vE

v
vol c c

    3  

The typical distance between the lattice sites in a crys-
tal is of order 0.1 nm. Suppose we can store 1 unit of 
chirality per lattice site, i.e. an excess of 100 right- 
handed fermions over left-handed fermions per nm3. In 
typical materials like graphene 210Fv c  , so the typi-
cal storage capacity of the chiral battery is of order 

5 310  J cm 30  Wh cm 3 . This is comparable or better 
than conventional batteries whose energy density is typi-
cally 10 - 100 Wh/Kg; note besides that the current in our 
case is spin-polarized and so may be used for spintronic 
applications. 

The circuit discussed above represents only a couple 
of examples from a vast array of devices that one can 
envision. We hope that the chiral electronics based on 
graphene circuits can serve as a new way to explore the 
macroscopic dynamics induced by the chiral anomaly, 
and perhaps open a path towards new electronic devices. 

4. Conclusions 

In this paper, we reviewed the formulation of graphene’s 
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massless Dirac equation, under the chiral electromagne- 
tism approach. In Dirac’s theory, many authors replace 
the speed of light by the Fermi velocity, in this paper we 
showed that in graphene the Fermi velocity is obtained 
from the connection between the electromagnetic chiral-
ity and the fine structure constant Fv c   when the 
electric wave E is quasiparallel to the magnetic wave H. 
With this approach we considered the properties of electric 
circuits involving graphene. The existence of the induced 
chiral magnetic current in a graphene subjected to mag-
netic field causes an interesting and unusual behavior of 
such circuits. We discuss an explicit example of a circuit 
involving the chiral current in a “graphene battery”. The 
special properties of this circuit may be utilized for cre-
ating other “chiral electronic” devices.  
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