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ABSTRACT 

CP conservation and violation in neutral kaon decay are considered from a first principles’ theory, recently published as 

“Scalar Strong Interaction Hadron Theory”. The arbitrary phase angle relating K0 and 0K  in current phenomenology 
is identified to be related to the product of the relative energy to the relative time between the s and d quarks in these 

kaons. The argument of the CP violating parameter  is predicted to be 45˚ without employing measured data. The 0
SK  

decay rate is twice the 0 0KL SK
0

 masss difference, in near agreement with data, and both are proportional to the square 

of the relative energy 29.44 eV. Any pion from LK  decay will also have a mass shift of 1.28  105 eV. The present 

first principles’ theory is consistent with CP conservation. To achieve CP violation, the relative time cannot extend to 
both  and  but is bounded in at least one direction. The values of these bounds lie outside the present theory and it 

is unknown how they can be brought forth. 0 0B B  mixing is also considered and the relative energy is 663.66 eV. 
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1. Introduction 

CP vioaltion in neutral kaon decay has been treated phe-
nomenologically [1-3] but its origin remains a mystery 
ever since its discovery nearly 50 years ago. This prob-
lem is now treated employing the recently developed first 
principles’ theory [4] in which this mysterious origin is 
shown to be connected to the relative energy and relative 
time between the s and d quarks in the kaons. 

Section 2 reproduces some phenomenological results. 
In Section 3, the arbitrary phase angle relating 0K  to K0 
in Section 2 is identified to be connected to the relative 
energy and time among the quarks in the kaon. When 
applied to S , the phase of the CP violating pa-
rameter  in Section 2 is predicted by means of the de-
generacies of SU(3) gauge fields to known SU(2) ones. 
The decay rate depends upon the relative energy. In Sec-
tion 4, the CP violating L  is found to be for-
bidden unless the relative time is bounded between cer-
tain finite values. The mass shift of 

0 2πK 

0K  2π

0
LK  depends upon 

the relative energy 29.44 eV and is half the S  
decay rate. Any pion from 

0 2πK 
0
LK  decay will also have a 

mass shift of ≈1.28  105 eV. In Section 5, the semilep-
tonic decays of kaons are treated and CP violation also 
requires that the relative time be bounded in one direc-
tion. Section 6 summarizes the roles of relative energy 

and time and considers the possible origins of CP viola-
tion. B0-B0 mixing is similarly treated in Section 7.  

2. Phenomenology [2,3] 

The decays S
0K , L , 3 have been considered 

using the time-dependent Schrödinger equation without 
specifying the Hamiltonian in connection with CP non-
conservation [2]. The starting point is the ansatz [2 
(15.28)] 

0 2πK 

 0 0exp iK S CPT K           (2.1) 

where S denotes strangeness, CPT the conventional dis-
crete operator and  an arbitrary phase angle. Under 
CPT invariance, [2] gives 

 

0

0

11
,
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11
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K

K







 
   

 
    


          (2.2) 

where the upper row refers to K0 and the low row to 0K  
and  is a small, complex quantity [2]. Using the meas-
ured [1] 
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 
6

0 6

3.483 10 eV

2π 7.352 10 eV 2

KL KSm m 



  

     S KL KSK m m 
 (2.3) 

the argument of  ≈ 45˚ or 225˚ has been deduced. Also, 
unitarity provides an upper bound for ||. Thus, 

 
3

1 i 2 ,

10



 

2 i

4.3

 



 
           (2.4) 

Further, (2.1, 2) with (7.2.18) leads to 

                     (2.5) 

so that the argument of  ≈ 45˚ or 225˚.  
[2 (15.105, 109, 113)] define the ratio of the semilep-

tonic decay ampitudes 

 
 

0

0

π

π

fi s L

fi s L

L

L

S K
x

S K





 

 




            (2.6a) 

where L stands for the lepton species, as in (7.1.11-13), 
and s the lepton helicity. [2 (15.116, 117)] give the ratios 
of the decay rates to first order in , 
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    (2.6b) 

where x turns out to be small and has been dropped. 
From the measured semileptonic decay ratios [1], 

(2.6b, 4) yields 

  3 32.28 10  Re 1.612 10 ,        (2.7) 

Furthermore, [1] gives the nonleptonic CP violating 
amplitude ratios 

 
 
 
 
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The numbers in (2.7) and (2.8) show that 

3

3

2.221 10

2.232 10









   (2.8) 

00                   (2.9) 

This numerical agreement suggests that CP noncon-
servation for the semileptonic and nonleptonic decays 
can be characterized by one parameter . However, the 
above results say nothing about the nature of this CP 
violation. 

3. Relative Energy and Time and  

SK 0   2, 3 

The references in form of (x, y, z) or §x, y, z below refer 
to those in [4], mostly Chapter 7. This chapter has earlier 
appeared in a more general form as the first article in 
another volume [5]. 

In the ansatz (2.1), the nature of the phase angle  is 
not specified. Here, it is naturally identified to be related 
to the product of the relative energy 0 and the relative 
time x0 in (A7), as will be specified in (6.1) ff below. In 
the absence of guage field, (7.1.9) reverts to (A4) which 
led to (A8). With the association of  with 0x

0 above, 
however, 0  0 and (A9) has to be relaxed for the pre-
sent application.  

In the absence of weak interaction, g  0 in (7.1.5) 
and K0 and 0K  are complex conjugate of each other in 
(7.2.19) and are stable, physical states with the same 
mass given by (A10). The phase angle  in (2.1), hence 
also the relative energy 0, drops out. Turning on the 
weak interaction igWU or iUW g , K0 and 0K  are no 
longer physical states and  and 0  0 become small 
quatitites of the same first order as igWU. The physical 
states are now S

0K  and 0
LK  shown in (2.2) or (7.2.18) 

incorporating the phase factor 0 0exp i x  according to 
(A7). Therefore, 0 in (A8) cannot be dropped but is of 
the same order as the igWU term. 

Consider one of the two first order terms in (7.1.9a) 
for 0 0πK UW  of (7.3.27b). Let the first operator in 
(7.1.9a) be of first order g included in (7.1.4-5) and the 
second operator be of zeroth order given by the last of 
(3.1.4). By (A5), (qr) = (32) in (7.1.9a) refers to 0K   

0 2SKwhich by (7.2.18) becomes . Using the wave 

function (A7), this first order term takes the form 

 

       
   

0 0 0
0 0 0 0

0 0

1 1
i 2 exp i i
4 2 2

,

be beab ab be
U X X

r
g W X E X x

r x x r


    

 

             
  

 

   

            (3.1) 

With the degeneracy (A15), (3.1) can be written as 

     0 0 0
0 0 0 0

1 1 i 1
i i i exp i i

4 cos 22 2

ab
beab be

W

Z X r
g E E X x


    



                  


               (3.2) 
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Since 0 is generated by the weak interaction g term, it 

must have the same phase in (3.2); 
 

  0 001 i ,    00 real constant

 0 001 i

     (3.3)  

       
   Turning to the first order term in the second operator 

in (7.1.9a) and repeat the above procedure. It is found 
that 

   

 0 2πS K 

 0 22

            (3.4)  

These two relations are related to the two phases in 
(2.4) but without using the empirical data (2.3); they are 
the consequences of the necessary degeneracy (A15). 
There is no conflict between (3.3) and (3.4) because they 
cancel out upon summing the two first order terms in 
(7.1.9a), as is reflected in (A8) which contains no linear 
0 term. 

Follow now Section 7.3.2-4 and obtain the first order 
decay amplitude fi S . In the source term 
(7.3.5a), the first term in the braces is replaced by (3.2) 
multiplied by a final state wave function : 
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      
 

 











  0
00p i 1

0 0

00 22

0

ig

 (3.5) 

The final state 2 comes from the decay of the Z boson 
via (7.7.2, 7) and the final state  0 22  represents a vac-
uum meson state 0 given by (7.3.20) with    which 
does not cntain any phase factor. Consider the integral 
over the relative time x0 in the source (7.3.5a) with the 
replacement (3.5),  

 2 2

1 1

0 0 0
0

2 1 0

d exp i d exx x x
 

 


     

  x

 0exp i

 (3.6) 

where (3.3) has been consulted. In the surface term 
(7.3.4), the exponential 0x  in (3.5) also enters 
but, in addition, also its complex conjugate  0

0exp i x

 
 

0 0 * 0
0 0

0 0
00

i i

2

 
contained in  0 23  in (7.3.4). The integral over the rela-
tive time x0 in the surface integral (7.3.4) reads  



2

1

2

1

d exp

d exp

x x x

x x

 





 












          (3.7) 

Equations (7.3.4) and (7.3.5) are sandwiched between 
the initial stae 0i K S  and final state 0, 2πf Z 

 0 2πS K 

 
as was mentioned beneath (7.3.13). The 0 that follows < 
f = refers to the above-mentioned vacuum meson state 0. 
By (7.3.3 - 5, 13), fi S  is proportional to the 
ratio of (3.6) to (3.7) which vanishes for 0   in (3.6); 

2

1

2

1

0 0 0
00 00

0 0
00

00 2 00 1

00 2 00 1

d exp

d exp 2

exp i 1 exp i 1
1 i 0

exp 2 exp 2

x i x x

x x

 


 
 












    
   

    




0 2πK 

(3.8) 

This also holds if (3.3) is replaced by (3.4). Therefore, 

S  is forbidden to first order in igWU. Even if 
this first order  0 2πSS K fi  does not vanish, for in-
stance by letting 1, 2 be finite such that (3.8) becomes 
of the magnitude of unity, it is expected to lead to a de-
cay rate  0 2πKS   of the same magnitude as 
 2pK    81.1 10 eV  from phase space consid-

erations. This rate is 668 times smaller than the observed 
rate in (2.3). This is “one of the remaining unsolved 
problems of the weak interaction” [2]. 

However, there is now a second order term (0)
2 = 

i2(00)
2 in (A8). Let E00 be the K0 mass in (A10) and E0 

= E00 + E0S in (A8), the exponent in (3.5) will contain 
iE0SX

0 corresponding to the decay rate 

 0 2
0 00 002π i 4S SK E E             (3.9) 

where the lower sign in (A10) is chosen. Note that the 
relative energy 00 is a hidden variable but its square in 
(3.9) is visible. Although (3.9) comes from a second or-
der term, its amplitude is of first order in 0, hence of 
order g. In (3.2), the ratio of 0 to the g term that leads to 
the last mentioned  0 2πfi SS K   is not fixed or known.  

 0 2πSK    2πK   to be  ; it  This allows 

may be regarded that the nonvanishing 0 2πS K fi S  
in the last paragraph is greatly amplified by the relative 
energy 00. 

   0 0 02 π π 2πS SK K    The factor  [1] comes  

from the factor 1 2  in front of 0 in (A5) that enters 
(7.7.2) via (7.7.7). 

Instead of 0 0πK UW  of (7.3.27b) considered above, 
0 0πK W

0


0 2πK 
0 3πK 

U  of (7.3.29) can be treated in the same way. 
The only differences are that (1 + i)  (1  i) in (3.3 - 4) 
and the upper sign in (A10) is used when deriving the 
corresponding (3.9); the above results remain unchanged. 

If the vacuum meson state 0 assigned to  22  in 
(3.5) is replaced by a real final state 0, S  there 
goes over to S . Because  and 0 form a triplet 
in the limit of SU(2) symmetry, they must have the same 
phase. Since  cannot contain a phase factor with com-
plex argument,   0

00exp i 1 x
0 2πK 

, which would cause 
them to decay like S  in (3.9), this final state 0 
can at most contain a phase factor of the form  

 0exp i 00x 0, similar to that for LK  following (4.6) 
below. The  0

00exp x
0 3πK 

 factor in (3.6) remains un-
changed and the ratio (3.8) remains 0; S  is for-
bidden. However, if 1  S is finite, (3.8) becomes 
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2exp T 0 3πK 

0 122.57 10

00 S  and some S  will be seen. This 
form is the same as that for the semileptonic decay in 
(5.4) below. The difference is that TK in (5.4) given by 
(5.8) is small. Here, S is much larger and is estimated to 
be ~3  1015 sec if the small  3πSK  

0 0
L S

 

0
LK

 
eV [1] is to be accounted for. 

4.   2, 3 and K K  Mass  

Difference 

The couplings 0
UK W  and 0

UW K  of (7.3.27b) and the 
second of (7.3.29) are the same with respect to S

0K  but 
not to 0

LK  according to (7.2.18). This leads to results 
mentioned in the next to last paragraph of Section 3 for 

0
SK . For 0

LK , the WU and UW  contributions to 
 needs be summed, as has been done in re-

vised (7.3.27, 29) [unpublished]. The first order (3.1) for 

0 2πL 

0
S

K

K  can be taken over here for 0
LK  if its sign is 

changed, as is seen in (7.2.18). Take the hermitian ad-
joint of (7.1.9a) and consider the first order term corre-
sponding to (3.1) for 0

LK , 

   
   

0

0 0 0
0 0

1 1
i 2
4 2

exp i i
2

bebe ab
Ug W X

r
E X x






 
0

ab ab
X X            

  

  

   

0 00

 

(4.1) 

Add this expression to the negative of (3.1) and work 
out the resulting expression using (A15-A16). The result 
shows that the imaginary part is of the form ig(real op-
erator). Since 0  i0 must have the same phase, 
analogous to that mentioned above (3.3), 0 must be real 
here. The summation removes the imaginary parts in the 
above (real operator). The expressions (3.3, 4) are re-
placed by  

 

0 00

              (4.2a) 

  

0 2πK 

0 2πK 

             (4.2b) 

respectively, for L . The above (real operator) 
contains both W6 and W7 which are the same by (A15- 
A16). 

The treatment of for S  in (3.3-5), using (4.2) 
instead, can be taken over and the ratio (3.8) is here re-
placed by 

 
  

 0 0
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0 0
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0

d exp i sin

d exp i i

2

x x

x x

T














00
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0
T

T




 


0 2πK 

0 2πK 

   2 2   



 


    (4.3) 

where (7.3.16) has been noted. Thus, L , just 
like L , is also forbidden to first order in igWU. 
This result agrees with the requirement of CP invariance 

[2]. Being a first principles’ theory, consequences of 
conservation laws, including CP conservation, are in-
cluded in the equations of motion (7.1.8-9). 

Turning to the second order term 0 00  
in (A8) via (4.2). Let E00 be the K0 mass in (A10) and E0 
= E00 + E0L in (A8), the equvalent of (3.9) becomes the 
mass shift 

2
0 00 002LE E 

 2

             (4.4) 

when the upper sign in. in (A10) is chosen. The square of 
the relative energy among the s and d quarks in the hid-
den space x is visible in the laboratory space X in form of 
the mass shift (4.4), just like it is in form of the decay 
rate (3.9). Again, (4.4) comes from the second order 

0  in (A8) but its amplitude is of first order in 0, 
hence of order g. Comparison of (4.4) to (3.9) yields 

 0
0Γ 2π 2S LK E              (4.5)  

which is 5.25% smaller than data (2.3). This discrepancy 
has been used to modify the argument 45˚ in (2.4) to 
about 43.5˚ [1-3]. Here, this 45˚ cannot be changed due 
to the constraint (3.3, 4). This discrepancy cannot be ac-
counted for in the present theory. Similar to the CP vio-
lation cases mentioned above, finite 2, 1 in (3.8) will 
render the first order  0 2πS K 

00 29.44 eV

fi S  mentioned below it 
to contribute and to reduce this discrepancy. 

Using (2.3) for E0L, (4.4) gives the relative energy 
between the s and d quarks in neutral kaons, 

             (4.6)    

The upper sign is used. The lower sign can also be 
used if it is accompanied by x0  x0, as is evident from 
the phase factor  0exp i 0x

0

 in (3.1), noting (3.3, 4). 
This leads to that the ’s in (3.6), at the end of Sec. 3 and 
in (5.8) and (6.1) below also change sign. 

If the vacuum meson state 0 in (3.5) adapted for LK  
is changed to a real 0, L , forbidden by (4.3) 
above, turns into . This real final state 0 must 
have a phase factor 

0 2πK 
0 3πSK 

 0exp i 00 x

0

 which is to be inserted 
into the upper integral in (4.3) to make this ratio to be-
come unity, as is implicit in [4]. This implies that any 0 
from LK  decay will also have a mass shift analogous to 
(4.4). According to the last paragraph of Section 3,  
and 0 have the same phase in the limit of SU(2) symme-
try so that any  from 0

LK  decay will also have a mass 
shift. With (4.6) and the  masses [1], (4.4) yields the 
shifts 

5
π0

5
π

1.284 10 eV

1.277 10 eV

E

E






  

  
           (4.7) 

Although these shifts are far less than the error margin 
0.35 kev for the  masses and are not observable, it sig-
nifies that there exists two different species of  triplets 
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with slightly different masses. 
0 3πK 

 0 2π,3πLK 
 2π

 0 2πK   2πK  

 0 2πK 

S  has been treated in [4] employing the null 
relative energy condition (A9). A relaxation of this con-
dition here however does not affect the results obtained 
there. 

To achieve CP violation, let   L   in (4.3), like 
those mentioned in Section 3 for . For 
L  0, (4.3) becomes unity and like  

S  mentioned beneath (3.8),   
from phase space considerations. This rate is much 
greater than data. To account for the mearsured  

L , L is chosen such that (4.3) becomes of 
the magnitude 

0
LK

 




00R

 00Re , 

e , 668  0.0407 , where  
 are given by (2.7-9) and 668 has been 

mentioned beneath (3.8). Thus, CP is correctly violated if 

 00 00sin 0.0407

0.1025, 0.226,

L L

L

T

T

  

   10.712 eV
   (4.8) 

where (4.6) has been used. The angles 00L are close to 
multiples of . These relative times are very short, of the 
order of 1016 sec. These values, like the finite ’s men-
tioned in Section 3, cannot be predicted from the present 
theory and have to come outside of it. 

5. Semileptonic Decay of  and 0
LK SK  0

The amplitude for 0 πK W   is given by (7.3.27a) 
and for 0 πK W

π

  by the first of (7.3.29). Subse-
quently, LW L    and π LW L   , where L  , 
e. But the amplitudes for 0 πK W   and  

0 πK W   do not follow from the internal index com- 
binations in (7.3.18-19) and hence do not appear in 
(7.3.26-29). These decays are therefore forbidden, in 
agreement with the selection rule S = Q [2]. This rule 
is a consequence of the present theory and has been veri-
fied by that x of (2.6a) is consistent with 0 [1].  

The amplitudes (7.3.27a, 29) assume the null relative 
energy condition (A9). The rates of these decays have 
not been evaluated because the pions are relativistic and 
their wave functions unknown; the coarse nonrelativistic 
(3.5.23), (7.7.13) used for L  is insufficient here 
and in other K  2 decays. Nevertheless, the forms of 
(7.3.27a) and the first of (7.3.29) are the same so that the  

0 3πK 

0decay rates  π LK L     and  0 π LK L   
0

  

are the same. By (7.2.18), SK  and 0
LK  contain equal 

amount of 0K  and K0, they contribute about equally to 
these semileptonic decays. This is approximately verfied 
by data [1] and corresponds to the CP conserving part of 
these decays. 

As was mentioned in the beginning of Section 3, (A9) 
has been relaxed here. Since the amplitudes for 

0 πK W   and 0 0π UK W  have the same form 
according to (7.3.27), the developments (3.1-4) can with 

some modifications be taken over. The expression corre-
sponding to (3.1) reads 

    

 
   

0 1 2

0

0 0 0
0 0

1
i 2 i
4

1

2

exp i i
2

ab ab ab

be bebe
X X

g W X W X

r
E X x



  




   
 
        
 

  

  

 





   (5.1) 

where the degeneration (A14) for VW  together with 
(A13) have been used. Analgous to W6(X) = W7(X) in 
(A15-A16), W1(X) = W2(X) here inasmuch as the both 

 W X
I  have the same X dependence, so that the lower 

sign form of (5.1) turns to a form nearly the same as (3.2). 
Thus, (3.3) holds for 0 π W  0 πK . For K W  , 
the upper sign of (5.1) lead to 

 0 001 i  

0 3πK 

               (5.2)  

The phase factor considerations for S  in the 
last paragraph of Sec. 3 can be taken over here. The 
phase factor  0exp i 00x  for the final state 0 there 
can also be used for the final state  in 0 πK W 

0 3πK 
 

here. Such a factor is requried for in L  men-
tioned beneath (4.6). Inserting this factor into (3.6) turns 
(3.8) into 

 
 

   
   

2

1

2

1

0 0
00

0 0
00

00 2 00 1

00 2 00 1

2 1 0

d exp

d exp 2

exp exp
2 0

exp 2 exp 2

x x

x x

T T

T T

T T T





 
 












  
 

  

   




0 2πK 

   (5.3) 

Analogous to that S  is forbidden by (3.8), 
the semileptonic decay 0 π πK LW L       is also 
forbidden when the relative energy 00  0, contrary to 
observation. If 00  0 or the null relative energy condi-
tion (A9) holds, (5.3) turns into 1   and these 
semileptonic decays can take place, as was implied in the 
second paragraph of this section. These decays however 
conserve CP. 

CP violation can be obtained in a way similar to that 
achieved in the last paragraph of Section 4, in which the 
limits of the relative time x0 were not allowed to extend 
to . Let 2 = 0 =  as in (5.3) and (3.6) but 1 = K 
finite, (5.3) turns into 

 
 

 
0 0

00

00
0 0

00

d exp
2exp

d exp 2

K

K

K

x x
T

x x














 






0 π π

    (5.4) 

For LK W L      , (5.2) replaces (3.3). Let 
1 = 0 =  as in (5.3) and (3.6) but 2 = K, the 
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 0
0exp i xequivalent of (5.4) reads 

 
 

 002exp KT

0

0 0
00

0 0
00

d exp

d exp 2

K

K

x x

x x















    (5.5) 

As was mentioned in the second paragraph of this sec-
tion, SK  and 0

LK  contain equal amount of K0 and 0K  
and   0 π π 0

L LK L K L         for the domi- 
nating CP conserving part. This together with (5.4-5) 
give the expression corressponding to (2.6b) 

 
 

 
 

 
 

0 0

0 0

2

00
00

00

exp
1 4

exp

S s Lπ π

π π

L s L

L LL s

K

K L

K L



S s

K

K

K L

K L

T
T

T



 

 

 


 





 00 ReKT






 

 


 


  

 


   (5.6) 

Comparison with (2.6b) gives the identification   

 

111.2 10  s 
0

            (5.7) 

This together with (2.7) and the lower of (4.6) yields 
5 15.5 10  eV  KT          (5.8) 

which is more than 10 times shorter than the SK  decay 
time. Thus, by suitable choices of the limits of the rela-
tive times, the present theory reproduces the rather suc-
cessful phenomenological (2.6b). 

6. On the Origin of CP Violation in Neutral 
Kaon Decay 

From the semileptonic decays in Section 5, the phe-
nomenological phase angle  in (2.1) by (2.4-5) and (5.7) 
becomes 

 
00

i 2 1 i

200

i2

i2 K KT T

 
 





0 2πK 
0

   

 
           (6.1) 

Here,  is identified with the product of a relative en-
ergy and a relative time, both finite. For the CP violating 

L  in Section 4, the phase angle 00L in (4.8) 
via (4.3) associated with LK  is real. This corresponds to 
that the angle  in (2.1) is also real for this case and is 
related to 00L, also a product of a finite relative energy 
and a finite relative time. 

Equations (5.4-5) show that it is the imaginary part of 
the relative energy 0 in (3.3) and (5.2) that causes (5.6) 
to deviate from unity and thereby causes CP violation in 
the semileptonic decays, which takes place when the 
relative time x0 between the s and d quarks does not ex-
tend to both  and  but is finite at one end.  

This does not conflict with that  in 
(7.4.6b) via (7.3.16) to generate the MW mass. There, the 
actions in (7.4.3-4) involve stationary K0 and 

0x   

0K  and 
not their decay so that (A9) can and has been applied in 

that stage. The phase factor 
0x

 here reduces to 
1 there which allows for     , similar to that 
00  0 in (5.3) ff renders it to be . 0  

0 2πK 

0

For the CP violating L , the relative time x0 

also does not extend to both  and  but is finite at 
both ends as is shown in (4.3) with   L given in 
(4.8). 

Summarizingly, CP conservation is related to the 
phase angle 0x

0. The relative energy 0 gives rise to the 
mass shifts for LK  in (4.4) and pions in (4.7) and to that 
the large S  decay rate in (3.9) is twice the 0 2πK  0

LK  
mass shift in (4.5). These results are derived within the 
frame work of the present theory. 

The relative energy 0 is necessary but not sufficient 
to account for the CP violating S  in Section 4 
and the semileptonic decays in Section 5. To achieve 
these CP violations, bounds need be put on the values of 
the relative time x0 so that it cannot run from 

0 2πK 

  to  . 
The values of these bounds, given in (4.8) and (5.8), re-
spectively, lie outside the present theory. 

It not known how such relative time bounds can be 
brought forth. One observation is that the relative time  

I

0 0 0
IIx x x   must be shorter than twice the laboratory 

time 
I

0 0 0
II2X x x   in (3.1.3a). Now this X0 is limited  

by the finite decay time so that the relative time is also 
limited. Another one is that the relative time 0y  has 
been set to the finite 2/dm in the last line of §7.7.2. Fur-
ther, how the kaons are produced may also enter here. In 
any case, the CP violations here are not related to the CP 
violating phase in neutrino oscillation phenomenology [1 
Neutrino Mixing]. 

In this connection, it may be pointed out that the 
boundary condition of the wave functions  and  in 
(A1), hence also in the action (7.1.8), at 0x  , 
like0 and  in (3.6-7), (4.3) and (5.3), has been assumed 
to be the same as the corresponding ones (fixed) in the 
laboratory time 0x , as was pointed out in Section 6.1.1. 
The validity of this assumption has not been fully inves-
tigated and it is not clear whether this may impact upon 
the above relative time considerations. 

7. 0 0B B  Mixing 

The 0 0B B  mixing differs fundamentally from the 
0 0K K  mixing considered above. In Table 1, the u, d 

and s quarks have about the same mass. This leads to that 

mpr  in (2.4.1) differ by  12%, as was mentioned 
above (2.4.5). Therefore, the kaons and pions are mem-
bers of an approximate SU(3) octet. In the limit of SU(3) 
symmetry, the u, d and s quark masses coalesce. 

2M

0K  
and K0 belong to the same octet providing basis vectors 
of the regular representation of SU(3). They can be 
transformed into each other by suitable choice of the  
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It is proportional to the phenomenological probability 
for remaining in the original bottom state [3]  

Table 1. Quark masses and d  obtained from (5.1.1-4) 

using the masses , K, K0, D0, 
0m

+
sD  and B0, and quark 

contents of [P1].    
m1 (GeV) m2  m1 m3 m4 m5 0md (GeV2)

0.6592 0.00215 0.7431 1.6215 4.7786 0.24455 

 
transformation U3qs(X) of (7.1.7). Their linear combina-
tions S

0K  and 0
LK  in (7.2.18) are also vectors in this 

octet space on par with the pion vectors and represent 
physical mesons suitable for describing some weak de-
cays. 

The c and b qaurks are much heavier and the D and B 
mesons cannot meaningfully be accomodated in SU(4, 5) 
multiplets together with the kaons and pions, as was in-
dicated above (2.4.5). In the limit of SU(3) symmetry, B0 
belongs to the triplet (B+, B0, S ) providing basis vec-
tors of the first fundamental representation of SU(3). But 

0B

0B  belongs to the antitriplet (B, 0B , 0BS ) providing 
basis vectors of the second fundamental representation of 
SU(3) transforming differently [6]. Thus, B0 and 0B  
cannot be transformed into each other and linear combi-
nations of them of the type (7.2.18) do not have definite 
transformation properties and hence are not members of 
any SU(n) multiplet. They remain as physical mesons in 
two different triplets. The D meson triplets behave 
analogously. 

As in Section 3, the null relative energy condition (A9) 
is also relaxed for B0 and 0B . The complex 0 in (3.3) is 
due to the degeneration (A15) involving the complex 
neutral gauge boson WU. Data [1] however show that the 
semileptonic decays of B0 and 0B  proceed dominantly 
via charged gauge bosons W  charged leptons; the 
branching ratio of  0 2 ,  2πD K

0

0 0B D Z   is very 
small. Therefore, 0 = 00 = real as in (4.2) for KL. 

Therefore, a mass shift 
B

E  equivalent to E0L in  

(4.4) also holds for B0. For 0B , the lower sign in (A10) 
is chosen. The laboratory time X0 dependent part of the 
B0 and 0B  wave functions is 

 

 

0

0

0

0
00

0
00

exp i
2

exp i
2

B

B

B

B

0

0 0

0

0

i

i

B

B

X E E X

X E E X


    

 
      

 
   

 
   



  (7.1) 

where E00 is the mass and 0B
  the decay rate of B0 and 

0B . The X0 dependent part of the probability of mixed B0 
and 0B  is 

   
     

0 0

0

2
0 0

2
00 00

2 exp 1 co

2

B B

B

X X

X

E E

 

   

 

0 0
0 0s 2

B B
E X   (7.2) 

    

0 0 0 0

1
exp Γ 1 cos

2 d

P B B P B B

t m t

  

   
       (7.3)  

Here,  = 0B
 , t = X0 and the oscillation frequency 

md = 02
B

E  = 3.337  10−4 eV [1]. With the B0 mass 
E00 = 5.2796 GeV, the second of (7.2) gives the relative 
energy 00 = 663.66 eV between the b and d quarks. This 
value is 22.5 times greater than 29.44 eV in (4.6) for that 
between the s and d quarks in K0. Note that the ratio be-
tween the B0 and K0 masses is 10.6, nearly half the above 
ratio. 

The mass difference 3.337  10−4 eV is somewhat less 
than the B0 decay rate 0B

 = 4.43  10−4 eV [1], similar 
to that the 0 0

L SK K-
0

 mass difference is about half of the 

SK  decay rate in (2.3). These mass differences, apart 
from their values, are outcomes of the present theory, 
irrespective CP violation. Analogously, CP violation in 
the 0 0B B-  system is also attributed to relative energy 
and time between the b and d quarks. Such a treatment 
however requires the knowledge of the amplitudes of 5 
specific decays [3] and is beyond the scope of this paper. 

In passing, it may be noted that while mixings of d, s 
and b quarks take place, the c and u quarks with charge 
2e/3 do not seem to mix, as 0 0D D

0
S

 mixing is absent 
in [1]. 

8. Conclusions 

In the standard model, quarks in meson decay are treated 
[3] largely as leptons are in QED. The effects of quark 
confinement in the relative space and of the relative time 
between the quarks are practically lost.  

In the paper, the relative energy between the quarks 
gives rise to the mass shift between 0

LK  and K , 
equalling half the S

0K  decay rate, and 0 0B B  mixing. 
Hadron spectra stem from the relative space [4] and the 
relative time generates the W and Z boson masses [4] 
without Higgs. Here, CP violation is achieved by limiting 
the relative time to certain regions.  
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Appendix Relevant Equations from the 
Book [4] 

Parts of the book [4] often referred to are reproduced 
here. The references in form of (x, y, z) or §x, y, z below 
refer to those in [4]. 

The starting point is the equations of motion for meson 
including internal coordinates  given by (2.3.19, 21, 23, 
27), 

   
    

I II I II I II

2
I II I II

, ,

, ,

ab f p
ef rb

m m e

x x z z

M x x x

 
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 




  I II, 0a p
rx z z 

 I II, 0d p
rx z z 

  (A1a) 

   
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II I II I III
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I II I II
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, ,

de c p
e rbc

m m b

x x z z

M x x x

 
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 


 



  (A1b) 

 

   I II,s ab

I III II

4
II

,

1
Re ,

2

m

ba

x x

g x x

      

   x x 


 

       (A2) 

2m p rM m m 

   

        
I II I II

2
I II I II

,

, , 0

ab fe
pr bf

ae
mm pr pr

x x

M x x x x





 

            (A3) 

Here, xI and xII are the quark and antiquark coordinates, 
respectively, I = /xI, II = /xII,  and  are the 
meson wave functions with the spinor indices a, b, ··· run- 
ning from 1 to 2, m the scalar interquark potential, p the 
quark flavor, q the antiquark flavor, and zI and zII respect- 
tively the internal coordinates for the quark and the anti- 
quark in an abstract complex three dimensional space. p, 
r = 1, 2 and 3 refer to the u, d and s quarks, respectively. 
Because the quark masses mp and mr are different for 
different mesons, (A1) can, after cancelling out the  
functions be written in the form (2.4.3)  

 

 




 

  (A4a) 


 
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,

, , 0

ce
ed prbc

mm pr pr bd

x x

M x x x x





 

  


 



 

     

     

     

 (A4b) 

where (pr) indicates the dependence upon the quark fla-
vors. The matrix form of  is shown in (2.4.18), 

 

 

      
     

       

     
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0

1 1
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1 1 1
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3 2 6

2

6

K

pr K

K K

ab







   
  

          

  
  

 

 





  
                       

 


 (A5) 

 
Follow (3.1.3a) and (3.5.7) and introduce the relative 

and laboratory coordinates, 

 
II I

I I

,

1 ,m m

x x x X

a x a x

   

 

 

   I 1 2ma 
      (A6) 

where the relative space time x = (x, x0) are hidden va-
riables [4]. The wave functions of a pseudosclar meson 
at rest reads (3.1.1, 5, 7, 9) 

   
   

I II 0 I II

0 0
0 0 0

, ,

exp i i ,

be be

be

x x x x

x E X x

  

    



   

 

    (A7) 

where E0 is the mass of the meson and 0 the relative 
energy among the quarks. Inserting (A7) into (A4a) for a 
given (pr) and taking the trace, one obtains from the first 
line of (3.1.8), 

     2 2 2
0 0 0 0

22

4 m mE x M x

x

         

   

0 0

  (A8) 

The null relative energy condition (3.5.6) 

                 (A9)  

With this ansatz, (A8) together with m obtained from 
(3.2.8, 20) and (3.4.1), (4.3.2), (4.4.1) leads to the steady 
state meson mass (5.1.1) 

 2 2
00 04p r m mE m m d d           (A10) 

where dm = 0.864 GeV is given by (5.2.3) and dm0 and 
the quarks masses mp are given in Table 1. 

In the presence of SU(3) gauge fields, the operators in 
(A4) are generalized according to (7.1.4, 5) and (7.2.14), 
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1 1 1 1
i i
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lg W X
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1 1
i

2 4
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D g W X                                    (A11) 
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1 2

6 7

2 i ,

2 i ,

I

U

W W W

W W W
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4 5

6 7

2 i

2 i

V

U

W W W
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   

 
                            (A13) 

 
where A and Z are gauge fields (7.2.1), W  the 
Weinberg angle (7.2,12) and g and g4-7 weak coupling 
constants (7.2.7).   

There are four known gauge fields 
I

, Z and A in 
(7.2.2) but eight 

I
W , W3, W8, V , WU, and

W 

 W 
UW  in 

(7.1.5). The last four gauge fields are new, have not been 
observed and are converted into the four known ones via 
the following degeneracy scheme Section 7.2.3. Thus, 
(7.2.20) reads   

   I2 abW X


4 7
V2 ab

g
W X

g
        (A14) 

Equations (7.2.21, 22) have been written down heuris-
tically and are now replaced by the formal analog of 
(A14) as is evident from (A12), 

 4 7 4 7
6 7

1 i
2 i

cos2
U

W

g g Z
W W W

g g 
   
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 (A15) 

 4 7 4 7
6 7
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g g Z
W W W

g g 
   

    
 

 (A16) 

where the magnitudes on both sides are equal. 
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