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ABSTRACT 

We analyze a cell with a fixed number of users in a time period network. The base station schedules to serve at most 
one user in a given time period based on information about the available data rates and other parameter(s) for all the 
users in the cell. We consider infinitely backlogged queues and model the system as a Markov Decision Process (MDP) 
and prove the monotonicity of the optimal policy with respect to the “starvation age” and the available data rate. For 
this, we consider both the discounted as well as the long-run average criterion. The proofs of the monotonicity proper- 
ties serve as good illustrations of analyzing MDPs with respect to their optimal solutions. 
 
Keywords: MDP; Scheduling; Structural Properties 

1. Introduction 

We consider a fixed set of  mobile data users in a 
wireless cell served by a single base station and focus on 
the downlink channel. The base station maintains a sepa- 
rate queue of data for each user. Time is slotted and in 
each slot (time period in the standard MDP terminology) 
the base station can transmit data to exactly one user. Let 

 be the channel rate of user 
 during time period , i.e., the amount of data that 

can be transmitted to user  during time period  by 
the base station. We assume that the base station knows 
at all time periods  the vector 1 2 N . 
How this information is gathered depends on the system 
in use. An example of a resource allocation system 
widely known and used in practice is the CDMA2000 
1xEV-DO system [1]. A good description of how this 
information is generated is also provided in [1]. A good 
framework for resource allocation and related issues in 
this (and more general) setting can be found in [2]. 

N
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There are two objectives to be fulfilled while schedul-
ing the data transfer. The first is to obtain a high data 
transfer rate. This can be achieved by serving a user  
in period  whose channel rate u  is the highest, i.e., 
following a myopic policy. However if we follow the 
myopic policy, we run the risk of severely starving users 
whose channel rate is low for a long time. The second 
objective is to ensure that none of the users is severely 
starved. Thus these are conflicting objectives and any 
good algorithm tries to achieve a “good” balance be- 

tween the two. We have proposed MDP based scheduling 
policies in [3] to achieve this balance. In this paper, for 
the sake of completeness we first describe the MDP 
framework (and our heuristic policies) and then analyze 
the important monotonicity properties of the (MDP-) op- 
timal and our recommended policies. 

Literature Survey 

This problem of scheduling users for data transmission in 
a wireless cell has been considered in the literature 
mostly in the last decade and a half. One of the most 
widely used algorithms that takes advantage of multiuser 
diversity (users having different and time-varying rates at 
which they can be served data) while at the same time 
being fair to all users is the Proportional Fair Algorithm 
(PFA) of Tse [4]. When each user always has data to be 
served waiting at the base station (infinitely backlogged 
queues), the PFA performs well and makes good use of 
the multiuser diversity. However, it has been proven to 
be unstable when data isn’t always available to be served 
to each user, and instead, there is external data arrival [5]. 
Most of the algorithms in this setting are not necessarily 
outcomes of any optimization framework. In our earlier 
publication [3], we take a novel approach to solving this 
problem. This approach develops the scheduling algo-
rithm as an outcome of a systematic optimization frame- 
work. Therefore, Bolia and Kulkarni [3] develop MDP 
and policy improvement based scheduling policies. 
These policies are easy to implement, and shown to per-
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form better [3] than existing policies. 
However, while our recommended policies despite 

being sub-optimal exhibit better results than existing po- 
licies [3], our past work lacks any results about structural 
properties of both the recommended as well as the opti-
mal policies. We believe it is important to establish some 
such properties to either gain further insight into the 
problem. Therefore, in this correspondence we prove 
some monotonicity properties of the optimal policies and 
the policies proposed in [3]. We first define and describe 
these monotonicity properties in the paper. Our contribu-
tions are two fold: A rigorous analysis of these properties 
along with the observation that our recommended policy 
in [3] is also monotone (thus being in line with the opti-
mal policy at least with respect to some basic properties) 
and an illustration of analysis of optimal policies in the 
MDP framework. These ideas can serve as a good start-
ing point and provide broad guidelines to analyze struc-
tural properties of MDPs. 

The rest of the article is organized as follows: Section 
2 describes the model and index policy and Section 3 
proves monotonicity of the optimal policy in this setting. 
Section 3.3 extends the results for these properties to the 
long-run average criterion. We conclude the paper with 
remarks on possible extensions in Section 4. 

2. The Model 

In this section, for the sake of completeness, we start 
with a description of the stochastic model [3] for the 
multidimensional stochastic process    that 
represents the channel rates of all users in the cell. Let 

u

, 1nR n 

nX  be the channel state of user u  at time . This 
represents various factors such as the position of the user 
in the cell, the propagation conditions, etc. and deter- 
mines the channel rate  of user u  as described 
below. We assume that   is an irreducible 
Discrete Time Markov chain (DTMC) on state space 

n


= 1, 2,

n
uR

, 1n
uX n 

, M 

,u ui j 

= 11

 with Transition Probability Matrix  

(TPM) . Note that the TPM can in general  =uP up 

be different for different users. Further, as indicated in 
[1], a set of M  fixed data rates is what is available 
to users in an actual system. For each , let 

k  be the fixed data rate (or channel rate) associated 
with state  of the DTMC u . Thus, 
when u

= 1, 2, ,u N

k   , 1nX n 
n

r

=X k

:R n 

, the user  can receive data from the 
base station at rate  if it is chosen to be served. 
Thus  is a Markov Chain with state space 

u
=u kr

n

1
R

 n
u

 1 2 , i.e., the vector of all fixed data rates. 
We assume, without loss of generality, that  

1 2

= ,r r ,r , Mr

Mr r  r . Let 1 N= , ,n nX X nX    be the state 
vector of all the users. We assume the users behave 
independently of each other and that each user has ample 
data to ber served. This setting where each user always 

has ample data to be served is referred to as the “infi-
nitely backlogged queues setting”. Since each component 
of 



 , 1nX n   is an independent DTMC on  , it is 
clear that  , 1nX n  N

nY
u n

u
1n

 itself is a DTMC on . 
Let u  be the “starvation age” (or simply “age”) of 

the user  at time , defined as the time elapsed (in 
number of periods) since the user  was served most 
recently. Thus, the age of the user is zero at time   
if it is served in the  time period. Furthermore, for 

, if the user was served in time period  and it is 
not served for the next  time periods, its age at time 

thn
1m  n

m
n m  is 1m  . Let 1 NY Y   be the age 
vector (vector of ages of all users) at time . The base 
station serves exactly one user in each time period. Let 

= , ,n n nY 
n

 v n thn

 
 

1 1 if  ,
=

0 if   = .

n
un

u

Y u v n
Y

u v n
   

  

n
,n n N N

 be the user served in the  time period. The age 
process evolves according to 

         (1) 

The “state of the system” at time  is given by 
X Y Z     = 0,1,2,Z 

2N

,n n

  , where . The “state” 
is thus a vector of  components and we assume that 
it is known at the base station in each time period. After 
observing  X Y   the base station decides to serve 
one of the  users in the time period . We need a 
reward structure in order to make this decision optimally. 
We describe such a structure below. If we serve user  
in the  time period, we earn a reward equal to 

n
u

u

N n

u
thn

=n

X
R r

 D y l y
n

 for this user and none for the others. In 
addition, there is a cost of l  if user  of age  
is not served in period . This cost corresponds to the 
penalty incurred due to “starvation” of the user(s) not 
served in a given time period. Clearly, we can assume 

 0 = 0D
u n

 .n n
u l l

l u

R D Y




l  since there is no starvation at age zero. Thus 
the net reward of serving user  at time  is 

               (2) 

We assume that there is no cost in switching from one 
user to another from period to period. This is not entirely 
true in practice, but including switching costs in the 
model will make the analysis intractable. For conven-  

ience we use the notation . The pro-   =n n
u l ll u

W D Y


blem of scheduling a user in a given time period can now 
be formulated as a Markov Decision Process (MDP). The 
decision epochs are  1,2, n

,n n
. The state at time  is 

X Y    with Markovian evolution as described above. 
The action space in every state is  1,2, ,A N 

u u
,n n

 
where action  corresponds to serving the user . The 
reward in state  X Y  u

n n
u uR W

ut

 corresponding to action  is 
. 

For the sake of notational convenience, let  and 
 uW t  be defined as follows: 
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 1 1= 1, , 1,0,u
u ut t t t   1 1, , 1Nt       (3) 

and, 

 = .u l l
l u

D t

( )W t                (4) 

Let   be the discounting rate for the MDP [6]. Then, 
the standard Bellman equation for the discounted reward 
model is 

  
=1,2, ,

, = max
ui u

u N
V i t r W t

  , ,uh i t          (5) 

where 

   ,
N

ij
j

p V j t



 ,dec i t A


, =h i t               (6) 

Let  be the optimal decision made (i.e., 
the user served) in state ,i t

  , uh i t

. Then,  

  =1,2, ,, = arg max
uu N i udec i t r W t   

  , u
u kh i t   

k

 ,

 . 

Further, let 

  
=1,2, ,

, = arg max
uk i

u N
dec i t r W t



th

   (7) 

be the optimal decision at the  step of the value it-
eration scheme given by (8). 

We use the following notation: For any real valued 
function f i t N N defined on Z  , f t  denotes 
that f  decreases in every component of . t

u

3. Monotonicity of Optimal Policy 

Although solving Equation (5) to optimality is infeasible, 
we can derive some important characteristics of the op-
timal policy. In this section, we consider two monotonic-
ity properties of the optimal policy. We first consider 
monotonicity in age. 

3.1. Monotonicity in Age 

The intuition behind monotonicity is as follows. The pen- 
alty accrued for each user in a given time period is an 
increasing function of its current age. Hence we expect 
the propensity of the optimal policy serving any given 
user to increase with its age, i.e., if the optimal policy 
serves a user  in the state  ,i t u, it will serve user  
in state  ,i t  e N

th

 ,V i t t

     1
=1,2, ,

, = , ,max

0.

u

u
k i u k

u N
V i t r W t h i t

k



ue  as well, where u  denotes an - 
dimensional vector with the u  component 1 and all 
other components 0. 

Theorem 3.2 states and proves this monotonicity prop-
erty of the optimal policy for discounted reward. Then 
we show that standard MDP theory [6] implies the result 
holds in the case of long-run average reward as well. 

We will need the following result to prove theorem 
3.2. 

Theorem 3.1 . 

Proof. The standard value iteration equations of (5) are 
given by  

   


   (8) 

where 

   , = , ,k ij k
j

h i t p V j t                    (9) 

 0 , = 0V i t . We have  and 

    , = , , , .lim
N N

k
k

V i t V i t i t Z


        (10) 

We will prove , t t kkV i  using induction on . 
Then the theorem follows from the above equation. 

 , t t = 0kkV i  holds at  since Note that 
 , = 0V i t0 . Assume  , t t 0k kV i  for some . We 

prove  1 ,kV i t t  . It is enough to prove that  

   1 1 1, , 0,k kV i t V i t e   

k kh t  

         (11) 

since the proof for all components other than 1 follows 
similarly. Note that V t . We consider four 
cases: 

Case 1: , = 1kdec i t  1, = 1kdec i t e and . From 
(8), 

   
 

    
1

1
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1
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     (12) 

     
 

  since = vW t e W t   =
v v

vt e tv v  and  using Equa- 
tions (3) and (4). 

Case 2: , = 1dec i t  , = 1kdec i t e u k  and 1 . 
From (8), and using    1 uW t e W t 
 1 1=

u ut e t e
u  and  
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h t
 , = 1dec i t

      (13) 

The second inequality holds because k  and the 
last inequality holds because . k

Case 3:  , = 1kdec i t u   and  
From (8),  

 1, = .kdec i t e u
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using the same arguments as in Case 2. 
Case 4: k  and k  

From (8), and using  and  
, we have 

1u  dec
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The last inequality holds because . k

Clearly, Cases 1 - 4 are exhaustive and thus Equations 
(12) through (15) prove that 1kV i , thus 
completing our induction argument. Hence V  for 
all . This completes the proof. 

Now we move on to the main theorem of this section 
that says that the decision to serve a user in any time 
period is monotone in age.  

Theorem 3.2 .   , =dec i t v dec
 , =dec i t vProof. Since  we have, 

 

( ) ,
v

u

v
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i u

t h i t

r W t h





 

  

r W
         (16) 

To prove , we need to prove  dec

r r   

  , ,

v ui i u v

v

W t e

h i t e h i

    

  
     (17) 

which follows from (16) (and t t ), and the 
results that    =v v ve W tW t ,    u ve W t 

 < , uh i t

v 

u  
[using Equation (4)] and  [using 
theorem 3.1 and Equation (6)].  

W t
  ,

u

veh i t

This theorem implies that if it is optimal to serve a 
given user, say , in a given state ,i t

v

 of the system, 
it is optimal to serve the same user when everything is 
identical except the age of the same user ( ) increases by 

one. Thus, everything else remaining constant, the opti-
mal policy is monotone in the age of the users, a result 
we expect intuitively for any reasonable scheduling pol-
icy, but now proved rigorously for the optimal policy. 
Similarly, the rest of the theorems in the paper provide 
rigor to intuitively expected monotonocity in different 
settings. 

3.2. Monotonicity in Rate 

The MDP model has been formulated to maximize the 
infinite horizon expected total discounted net reward. 
The net reward over one time period in a given state 
 ,i t

v

 equals the data rate of the user that is chosen to 
serve minus the penalty accrued by all other users. We 
expect the optimal policy to be monotone in the rate that 
can be potentially available to the users. In particular, we 
expect that if the optimal policy serves user  in state 
 ,i t v, then it will serve  in state  ,i e t

, 1nX n 

v  as well. 
We prove this in theorem 3.3. The proof of theorem 3.3 
is similar (but more tedious) to the proof of theorem 3.2. 
However, it needs the additional condition of stochastic 
monotonicity of DTMCs, see [7]. 

Theorem 3.3 If the Markov chain    is 
stochastically monotone, then 

   , = , =vdec i t v dec i e t v  .         (18) 

 , =dec i t v  we have,  Proof. Since 

  
   

,

, , .

v

u

v
i v

u
i u

r W t h i t

r W t h i t u A





 

   
        (19) 

To prove , =dec i t v

       

   , , 0.

v vv u
u vi e i e

v u
v v

r r W t W t

h i e t h i e t

 
      

 

, we need to prove  

     

      (20) 

To establish this, we can first prove  

       , , , ,v u v u
v vV i e t V i e t V i t V i t       (21) 

by considering the set of exhaustive cases similar to the 
proof of theorem 3.1. Stochastic monotonicity then im-
plies  

       , , , , ,v u v u
v vh i e t h i e t h i t h i t       (22) 

which yields 20, as required.  

3.3. Long-Run Average Reward Criterion 

In this section we extend the results of Section 3 to the 
long-run average reward criterion. As is well known, the 
objective in long-run average reward models is to maxi-
mize the long-run average reward, instead of the ex-
pected total discounted reward as considered in (5). If 
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 NR n n
π

π

π  denotes the net reward at time  under 
policy , then the objective of discounted reward 
models is to find a  that maximizes  NRn n

0 < 1
πn

 
for a given 




 

. The objective of long-run average 
reward models for the same dynamics, on the other hand, 
is to determine the policy  that maximizes  π

π

=1

NRN

n

n

N

, N Nt xZ

limN . 

It is well known [8] that a long-run average reward 

optimal policy    exists if there 

is a constant 

  , :u i t i

g  (also called the gain) and a bias func- 

tion  satisfying  ,w i t

 

 

,

= max
ui u

u j

g w i t

r W t




 


  , .u

ijp w j t




      (23) 

The intuitive explanation of g  and the bias function 
can be found in [3]. Here we end with the result that any 

 that maximizes ijju
 over all 

 is an optimal action 
u  , up w j t
u

 i ur W t 
 1, , N  , tu i  in state 

 ,i t
N N

. 
Define a subset  of the state space S Z   by 

 = , : =N N
uS i t Z t


0

; , ,u vfor exactly one u and for u

 

v t t 

 ,i t

 

     (24) 

i.e., a collection of states  such that no two users 
have the same starvation age and exactly one user has a 
starvation age of 0. Consider any stationary policy 

 , : N Nf i t

  , ,n nX Y

Z 

1n 

A


 of the original MDP intro-

duced in the beginning of Section 2. Let  
 be the DTMC induced by f . Then 

we have the following lemma. 
Lemma 3.4  is a closed communicating class of  S

  , , 1n nX Y n 

,n n

. 

Proof. Let X Y  1n 

1 1,n n

S  for some . Since 
 evolves according to (1) and we serve ex-

actly one user in every time period, 
 , 1nY n 

X Y S     . It 
is straightforward to show that the states in  commu-
nicate. Further, since   is a finite and irre-
ducible DTMC,  is closed and communicating, as 
required. 

S

 , 1nY n 

n , 1X n 
S

We note that as a result of lemma 3.4 and the evolu-
tion of the age vector , any state  
  , N NZ  

 , :w i t

 \ S

 ,i t S 



i t  is transient. Therefore, we restrict 
ourselves to proving monotonicity of the optimal policy 
on S. Let  be the bias vector satisfy-
ing (23). To prove that the monotonicity in age is valid 
(over S) for the long-run average reward criterion, we 
need to prove that for ,i t S , 

   

   

    
    

,

,

,

, .

v

v

u

v
i v ij iu

j

u
u ij

j
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i v v ij v
j

u
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j
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T
u A

    (25) 

To do this, we choose a fixed integer  and for each 
  set  

  = , > ,uD t t T u A.

S

          (26) 

Now, consider two systems: 
• System A: The MDP model described in the beginning 
of Section 2 with state space restricted to  and with 
the extra condition (26). 
• System A׳: Identical to System A except that any user 
with age T has to be served. Therefore, the state space of 
this system is finite and is given by  

  ' = , , : , ,uS i t S t T u A  

T   S S

        (27) 

and the transition probabilities, reward structure are the 
same as that of System A. Clearly, as ,  . 

Our goal is to prove that for the long-run average re-
ward criterion, the optimal policy is monotone in age in 
System A. We will show in theorem 3.5 that the mono- 
tonicity in age for the long-run average reward criterion 
holds for all fixed T in System A . Further, since 
Systems A and A  are equivalent in the total optimal 
discounted reward sense of (33), we will conclude that 
monotonicity in age for the long-run average reward cri-
terion holds for System A. Note that  refers to 
the decision in state 

 ,dec i t
 ,i t

     

. For the long-run average re-
ward criterion, it is obtained using Equation (23) in a 
way similar to the discounted reward criterion, i.e., for 
the long-run average reward criterion, 

 , = arg ,max
u

u
u i u ijj

dec i t r W t p w j t  .  

Theorem 3.5 The optimal policy for the long-run 
average reward criterion is monotone in age in System 

 A , i.e. for ,i t S    

   , = , =vdec i t v dec i t e v  .        (28) 

Proof. Consider System A S. The state space   is 
finite and using (2), the one step reward is bounded be-
low by  =C r ND T =C r1L  and above by U N . Thus 
the absolute value of the one step reward is bounded by 

 = max ,F L UC C  , t. Let V i  be the optimal ex-
pected total discounted reward of System A  starting in 
state  ,i t S  . Then V i  satisfies the standard 
Bellman equation given by (5). Using results in chapter 3 
of [6], for a fixed 

 , t

 ,k m S  , 

Copyright © 2012 SciRes.                                                                                IJCNS 



N. BOLIA, V. KULKARNI 676 

  ,v i t A    , , < <V i t V k m C   , = ,n nXfor , ,i t S  

C

     (29) 

where  is a positive constant. Then from Ross [9], 
there exists a constant g  and bias function  ,w i t
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satisfying (23) and given by 
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Theorem 3.2 implies that  
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Subtracting  on both sides   , =V k m 
of both the inequalities in (31) and taking the limit as 
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using (??). Equation (32) implies (28), as required. 
Thus the optimal policy of System A

, t
 is monotone in 

age for every T. Let  be the optimal expected 
total discounted reward of System 

V i

A  starting in state 
 ,i t S . From the definition of Systems A  and A , it 
is clear [8] that  

     , = ,V i t V i t  for , Si t 

S 
S

.          (33) 

From Equations (33) and (29) through (32) it is clear 
that System A is monotone in age over  constructed 
using any fixed T. Since S    as , we can 
conclude that the optimal policy of the MDP introduced 
in the beginning of Section 2 is monotone in age over  
for the long-run average reward criterion. 

T  

S

Theorem 3.3 can be shown to hold in the long-run av-
erage reward case similarly and we omit the details for 
the sake of brevity expected in a correspondence. 

3.4. Index Policy and Its Monotonicity 

Now we consider the index policy proposed by Bolia and 
Kulkarni in [3]. It is described here for completeness. 

The decision   in state Y i t 

 

   ac- 
cording to the index policy is given as follows:  

1
, = 1 ,
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u u u i u u

u u

K
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q q

 
   

 
 

   , = arg , .max u u u
u A

v i t I i t


             (34) 

Here uK  and uA  are user dependent parameters that 
do not change with the state of the system (and as 
defined in [3], u , u ). We prove the 
monotonicity of the index policy in age and rate below. 

0K  0 1q 

Theorem 3.6 The Index Policy is monotone in age and 
rate, i.e.,  

   , = , = ,wv i t w v i t e w            (35) 

   , = , = ,wv i t w v i e t w 

u A

          (36) 

Proof. The left hand side of (35) implies that, for 
 , 
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Therefore, 
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yielding , =v i t e w w , which proves (35). Similarly, 
the left hand side of (37) clearly implies,  

1

1
1

1
1 ,

w

u

w
i w w

w w

u
i u u

u u

K
r K t

q q

K
r K t

q q



 
   

 
 

    
 

 

 , =wv i e t w , which proves (36). yielding 

4. Conclusion 

We considered a cellular data network, i.e. a system with 
a fixed number of buffers having time slotted Markov 
modulated departures and arrivals. The scheduling prob- 
lem was modeled as an MDP and several structural (mo- 
notonicity) properties of its optimal policy proven. Al- 
though the entire analysis was carried out in the context 
of scheduling for wireless cellular data transfer, we em- 
phasize that the structural properties hold true for any 
system with infinitely backlogged queues. 
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