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ABSTRACT 

In this paper, the approximate analytical solutions of the fractional coupled mKdV equation are obtained by homotopy 
analysis method (HAM). The method includes an auxiliary parameter  which provides a convenient way of adjusting 
and controlling the convergence region of the series solution. The suitable value of auxiliary parameter  is deter- 
mined and the obtained results are presented graphically. 
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1. Introduction 

Fractional derivatives provide an excellent tool for the 
description of memory and hereditary characteristics of 
different materials and processes due to their non-locality 
characteristics. This is the main advantage of fractional 
derivatives in comparison with integer order model, in 
which such effects are in fact neglected [1]. Several defi- 
nitions of fractional integration and derivation such as 
Riemann-Liouville’s and Caputo’s have been proposed. 
The Riemann-Liouville integral operator [1] having order 

0  , which is a real number, is defined as 

           1

0

1
    d 0 ,

x
J f x x t t xf t




 

      (1) 

and as for 0   

   0   J f x f x  

where the real function   ,f x   is said to be in the 
space 

0x 
,C R  , if there exists a real number p   

such that 1     ,pf x x f x
nC

 where  and it 
is said to be in the space 

  (0, ),C1f x 
  if and only if ,nh C  

 Its fractional derivative of order .Nn 0   is gen- 
erally used 
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where n is an arbitrary integer. The Riemann-Liouville 
integral operator has an important role for the develop- 
ment of the theory of both fractional derivatives and in- 
tegrals. In spite of this fact, it has certain disadvantages 
when it comes to modelling real-world phenomena with 
fractional differential equations. This problem has been 

solved by M. Caputo first in his article [2] and then in his 
book [3]. Caputo definition, which is a modification of 
Riemann-Liouville definition, can be given as 
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Note that Caputo derivative has the following two im- 
portant properties 
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In recent years, many important phenomena in various 
scientific and technological areas have been well de- 
scribed by fractional differential equations. In general, 
since these type equations are not exactly solved, their 
numerical solution techniques have become increasingly 
important. The HAM, a powerful tool for searching the 
approximate solutions which was first proposed by Liao 
[4,5], is one of such numerical solution techniques. Un- 
like perturbation techniques, the HAM is not limited to 
any small physical parameters in the considered equation. 
Therefore, the HAM can overcome the foregoing restrict- 
tions and limitations of perturbation techniques so it pro- 
vides us with a powerful tool to analyze strongly nonlin- 
ear problems [6]. The HAM has been proposed and suc- 
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cessfully applied to solve several fractional differential 
equations modeling problems arising in science and en- 
gineering by many authors [6-18] and the references 
therein. In this paper, we will apply the HAM to frac- 
tional coupled mKdV equation by using Caputo's defini- 
tion of fractional differentiation. 

2. HAM Solutions of the Time-Fractional 
Coupled mKdV Equation 

In this section, we implement the HAM to the fractional 
coupled mKdV equation defined by 
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To investigate the HAM solutions of Equation (2) with 
the initial conditions given by Equation (3), we can 
choose the linear operator 

   , ; , ; , 1,2i t ix t q D x t q i          

having the property 
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where  are constants. From Equation (2), 
we can now define nonlinear operators as 
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Therefore, we construct the zero-order deformation 
equation as follows 
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If we choose 0q   then we get 
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and 1q  , we obtain 
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If the auxiliary linear operator, the initial guess and the 
auxiliary parameter  are properly chosen, as pointed 
out by Liao [5,8], the above series converges at 


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which should be one of the solutions of the original equ-
ation. Let’s define the following vectors 
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By differentiating Equations (4) and (5) m times with 
respect to the embedding parameter q, we obtain the mth- 
order deformation equations as follows 
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By applying the operator J  given by Equation (1), 
which is the inverse of the operator tD , to the both 
sides of the mth-order deformation Equations (8) and (9) 
for  we obtain 1,m 
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by using Equations (10) and (11) with the initial condi-
tions given by Equation (3), we successively obtain 

   

   

 
   

0

1 2

, tanh 2 ,

4
, ,

Γ 1 cos 2

u x t x

t
u x t

h x







 

  

   
   

 
   

2 2

2 2

2

4 1
,

Γ 1 cos 2

32 tanh 2
             ,

Γ 2 1 cos 2

t
u x t

h x

t x

h x










 






 





 

and 

   

 
   

   
   

 
   

0

1 2

2 2

2 2

2

, tanh 2 ,

4
, ,

Γ 1 cos 2

4 1
,

Γ 1 cos 2

32 tanh 2
              ,

Γ 2 1 cos 2

v x t x

t
v x t

h x

t
v x t

h x

t x

h x















 



 








 





 

etc. Therefore, the series solutions expressed by the HAM 
given in Equations (6) and (7) can be written in the fol- 
lowing forms 
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To demonstrate the efficiency of the method, we com-
pare the HAM solutions of fractional coupled mKdV 
equation given by Equation (12) for 0   with its ex- 
act solutions [19] 
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The fact that HAM solution series contains the auxil- 
iary parameter  providing us with a simply way to 
adjust and control the convergence of the solution series 
should be noted. To obtain an appropriate range for , 
we consider the so-called -curve to choose a proper 
value of  which ensures that the solution series is 
convergent, as pointed by Liao [5], by finding out the 
valid region of  corresponding to the line segments 
nearly parallel to the horizontal axis. The  -curves of 
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valid range of  lies in approximately   1.3 0  .7.  

Figure 2 shows the numerical solutions of  ,u x t  
and  ,v x t  at x = 2 from t = 0 to t = 0.5 for  = –0.7, –1 
and –1.3 obtained by 3th-order HAM for 
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1   and 

analytical solutions, respectively. Between t = 0 and t = 
0.5, it can be seen from the figure that the choice of    
–0.7 is an appropriate value. 
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Figure 3 shows the numerical solutions of  ,u x t  
and  ,v x t  at x = 2 during  for  = –0.7 
obtained by 3th-order HAM for 
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respectively. 
 

 

Figure 1. The -curves of 3th-order approximate solutions 
obtained by the HAM. 



 

 

Figure 2. The results obtained by the HAM for   = 1 
and various  by 3th-order approximate solution in com- 
parison with the exact solution at x = 2. 



 

Figure 3. The results obtained by the HAM for   = 0.9,   
= 0.8 and  = – 0.7 by 3th-order approximate solution at x = 
2. 



3. Conclusion 

In this paper, the HAM has been successfully applied to 
obtain approximate analytical solution of fractional cou-
pled mKdV equation. It has been also seen that the HAM 
solution of the problem converges very rapidly to the 
exact one by choosing an appropriate auxiliary parameter 

 whose valid range is determined using -curves 
presented by Liao. In conclusion, this study shows that 
the HAM is a powerful and efficient technique in finding 
the approximate analytical solution of fractional coupled 
mKdV equation and also many other fractional evolution 
equations arising in various areas. 
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