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ABSTRACT 

Curved space-time 4-interval of any probe particle does not contradict to flat non-empty 3-space which, in turn, as-
sumes the global material overlap of elementary continuous particles or the nonlocal Universe with universal Euclidean 
geometry. Relativistic particle’s time is the chain function of particles speed and this time differs from the proper time 
of a motionless local observer. Equal passive and active relativistic energy-charges are employed to match the universal 
free fall and the Principle of Equivalence in non-empty (material) space, where continuous radial densities of elemen-
tary energy-charges obey local superpositions and mutual penetrations. The known planetary perihelion precession, the 
radar echo delay, and the gravitational light bending can be explained quantitatively by the singularity-free metric with- 
out departure from Euclidean spatial geometry. The flatspace precession of non-point orbiting gyroscopes is non-New- 
tonian one due to the Einstein dilation of local time within the Earth’s radial energy-charge rather than due to unphysi-
cal warping of Euclidean space. 
 
Keywords: Euclidean Material Space; Metric Four-Potentials; Radial Masses; Energy-to-Energy Gravitation; Nonlocal 
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1. Introduction 

The ideal penetration of a static superfluid medium 
through a rotating drag one was observed in He3-He4 
experiments well before the distributed Cooper pair ex- 
plained the nonlocal nature of superconductivity. But 
does spatial distribution of paired superelectrons mean 
that two nonlocal carriers move one through another as 
overlapping continuous distributions of mass-densities or 
do these densities bypass each other separately without 
mutual penetrations? Is there a principle difference be- 
tween the superfluid motion of two paired electrons and 
the free, geodesic motion of any normal electron between 
drag collisions with energy exchanges? 

During the last fifty years the celebrated Aharonov- 
Bohm effect is trying to dismiss doubts regarding the 
nonlocal nature of the electron, while the Classical The-
ory of Fields is persisting to accept a self-coherent ana-
lytical distribution of the charged elementary density 
(instead of the point particle approximation for the elec-
tron). Fermions take different energies and, therefore, 
cannot exhibit one net phase even under the ideal (with-
out dissipation) motion. At the same time, each distrib-
uted electron may have a self-coherent state of its own 
matter. Particles motion with drag collisions and heat 
release represents much more complicated physics than 

the superfluid motion with a self-coherent state of dis-
tributed elementary mass. Such a nonlocal superfluid 
state is free from energy and information exchanges. 
Charged densities of drag and superconducting electrons 
in the same spatial point can move even in opposite di-
rections, for example under thermoelectric phenomena 
where nonequilibrium superconductors exhibit up to five 
[1] different ways for heat release/absorption. Such a 
steady countermotion of drag and superfluid densities of 
electrons may be a laboratory guiding for theories toward 
the global counterbalance of all material flows in the 
nonlocal Universe with local energy dissipation. How- 
ever, if there is a mutual penetration of extended bodies 
(with or without dissipation), then how can General 
Relativity (GR) address the laboratory nonlocality of 
each electron in order to incorporate the material spatial 
overlap of distributed carriers of mass-energy? Below we 
accept the ideal global overlap of all elementary energy 
flows in all points of their joint 3D space, which is asso-
ciated with the superposition of flat material 3-sections 
of curved elementary 4D manifolds. We shall rely on 
superfluid, self-coherent states of extended elementary 
particle (called the astroparticle due to its infinite spatial 
distribution [2]) between drag collisions and dissipation 
events. At the same time, 3D overlap of such self-co- 
herent radial distributions can rarely exhibit, due to drag 
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collisions, summary superfluid states of identical bosons, 
while 3D energy ensembles of extended fermions can 
exhibit only ideal summary flows without joint coherent 
properties. 

It is important to emphasize that strict spatial flatness 
is principal for reasonable Quantum Mechanics, say for 
the Bohr-Sommerfeld quantization, and for reasonable 
Electrodynamics, which is based on constant Gauss flux 
through any closed surface. The author does not see clear 
experimental reasons why one should redesign Classical 
Electrodynamics for a curved-space laboratory in ques-
tion. On the contrary, due to well established measure-
ments of magnetic flux quantization in superconducting 
rings, one may insist that would gravity contribute to 
length of superconducting contours, then SQUIDs could 
not be explained satisfactorily, for example [3]. Indeed, 
would spatial intervals depend on gravity or acceleration, 
working SQUID accelerometers were already created. In 
such a view, Einsteins metric gravitation, which started 
from the very beneficial 1913 idea of 4D geometrization 
of fields, should double-check its wide opportunities and 
overcome the current phase with unphysical metric sin-
gularities. There are no sharp material densities in reality 
like Dirac operator delta-densities and relativistic physics 
should try continuous particles prior to declare singulari-
ties and black holes in physical space. One may expect 
that advanced metric gravitation should be a self-co- 
tained theory of continuous energy flows which ought to 
derive analytical components of the metric tensor g  
for space-time dynamics of distributed astroparticles with- 
out references on the point matter paradigm in question 
and the Newtonian limit for point masses. Advanced GR 
solutions for mass-energy densities of moving material 
space should provide Lorentz force analogs even in the 
non-relativistic limit. Newtons gravitation cannot satis-
factorily describe this limit for moving sources and, 
therefore, should not be used for relevant gravitational 
references for a rotating galaxy (that raised the dark mat-
ter problem). 

Recall that in 1913 Einstein and Grossmann published 
their Entwurf metric formalism for the geodesic motion 
of a passive material point in a gravitational field [4]. In 
October 1915, Einstein’s field equation [5] and the Hil-
bert variational approach to independent field and parti-
cle densities [6] were proposed in Berlin and Gottingen, 
respectively, for geometrization of gravitational fields 
“generated” by the energy-momentum density of Mies 
continuous matter [7], which later failed to replace point 
masses of the pre-quantum Universe. This metric theory 
of gravitational fields around still localized particles, 
known today as General Relativity, can operate fluently  

with curved spatial displacement d = d dN i j
N ijl x x  of  

a point mass Nm

  1

 by accepting the Schwarzschild or 
Droste empty-space solutions [8] without specific restric-

tions on the space metric tensor  

N N N N N
ij oi oj oo ijg g g g


 

2 2 2d d d = d dN

. 

GR solutions for dynamics of the considered probe 
particle N are related to its space-time interval,  

N N Ng x x l 
  

 

s , 

where the time element 
1 22

1d d do iN N
N oo oo oiN

g x g g x       

depends on the local pseudo-Riemannian metric tensor 
Ng  and, consequently, on local gravitational fields. He- 

reinafter, , = 1,2,3i = 0,1, 2,3 , and the speed of light 
c = 1 in the most of equations. 

The author intends to revisit time, d N , and space,  

d d dN i j
N ijl x x , elements within the conventional GR 

four-interval d d dNs g x x 
  in order to prove that  

the time element of the freely moving mass Nm
dt

 de- 
pends not only on the world time differential  (with 
d d do ot x x d > 0ox

i
oo = ) and gravitation, but also on 

space differentials or matter displacements dx  in 
gravitational fields. Then the ratio d dl vN N  , called 
the physical speed in Special Relativity (SR), should 
non-linearly depend on spatial displacement  
d d dN i jl x xN ij , called the space interval in SR. Non- 
linear field contributions to such an anisotropic (Finsler- 
type) time element  d ,dN x x  within the four-interval 

   2 2 2d d ,d ds x x l x   of Einstein’s Relativity may 
modify Schwarzschild-type metric solutions based on 
curved three-space around non-physical point singulari- 
ties for GR energy-sources [2]. Moreover, the calculated 
ratio  d d =N Nl v v  may differ from a real speed 
d dlN o  measured by a motionless observer with local 
proper-time    d d = 0 dl v o N . This metric-type ani- 
sotropy of measured time rate was already confirmed by 
observations of the gravitational Sagnac effect when 

d d 0ig x oi  . Rigorous consideration of anisotropic 
physical time    d ,d dx x v 

dl

 of each moving particle 
may preserve universal flatness of its 3-space element 

. We shall start from the 1913 Entwurf metric for- 
malism for the geodesic motion of passive masses. Then, 
we shall employ the tetrad approach and analyze non- 
linear relations in the anisotropic relativistic time for a 
passive mass under the geodesic motion. This will sug-
gest to keep for physical reality Euclidean 3D sub-inter- 
vals in curved 4D intervals of moving probe particles. 

The first attempt to interpret GR in parallel terms of 
curved and flat spaces was made by Rosen [9], Einstein’s 
co-author of the unpublished 1936 paper about the non- 
existence of plane metric waves from line singularities of 
cylindrical sources. Later, Sommerfeld, Schwinger, Bril- 
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louin and many other theorists tried to justify Euclidean 
space for better modern physics. Moreover, the original 
proposal of Grossmann (to use 4D Riemannian geometry 
for geometrization of gravitational fields in the 1913 
Entwurf version of GR) relied exclusively on 3D Euclid- 
ean sub-space. Grossmann did not join further GR metric 
developments with curved 3D intervals. In 1913 Einstein 
clearly underlined that space cannot exist without matter 
in the Entwurf geometrization of fields. However, at that 
pre-quantum time there were not many options for ge-
ometrization of particles, because all (but Mie) consid-
ered them localized entities for local events. This might 
be the reason why in January 1916 Einstein promptly 
accepted Schwarzschild’s warping of 3D space around 
the point particle. Nonetheless, in 1939 Einstein finally 
rejected Schwarzschild metric singularities for physical 
reality. The well derived Schwarzschild’s solution has no 
mathematical errors in the empty-space paradigm. How-
ever, we tend to use the non-empty-space paradigm for 
the global superfluid overlap of self-coherent elementary 
particles, when each continuous particle is distributed over 
the entire Universe together with the elementary field. 
This nonlocal approach to matter can avoid difficulties of 
the Entwurf geometrization of fields, proposed in 1913 
without geometrization of particles, and, ultimately, can 
avoid non-physical warping of the universal spatial ruler, 
which becomes the same for all local observers in the flat 
Universe. 

Contrary to non-metric approaches to gravitation with 
spatial flatness, for example [10], we shall comply with 
the Einstein-Grossmann extension of Special Relativity 
(SR) to gravitation through warped space-time with non- 
Euclidean pseudo-geometry, founded by Lobachevsky, 
Bolyai and Riemann [11]. Inertia and gravitation keep 
the same metric nature in our reiteration of the Einstein- 
Grossmann approach. The proposed 4D geometrization 
of matter together with fields will be made under six 
metric bounds for g  (called sometime intrinsic met-
ric symmetries) in the GR tensor formalism for every 
physical object. In other words, the author is planning to 
revise neither Einstein’s Principle of Relativity nor the 
GR geometrization concept. On the contrary, I am plan-
ning further GR geometrization of continuous particles 
together with the already available geometrization of 
gravitational fields. Local nullification of the Einstein 
tensor curvature for paired densities of the distributed 
astroparticle and its field will be requested in their rest 
frame of references. I intend to prove, for example, that 
Schwarzschild’s solution for a central field is not “the 
only rotationally invariant GR metric extension of the SR 
interval”. One should admit non-empty (material) space 
or Newtonian stresses of the material medium-aether 
associated with continuous very low dense distributions 
of non-local gravitation/inertial mass-energies. Then bound 

ensembles of elementary radial energies form so called 
“macroscopic” bodies with sharp visual boundaries (ob-
served exclusively due to experimental restrictions to 
measure fine energy densities). 

First, we discuss a local time element,  
   d d dv l  , which should be considered as a chain 

function of speed = d dv l   or spatial displacement  
of a passive material point in external gravitational field. 
Then, we discuss the electric Weber-type potential en- 
ergy  

dl

 2 1 1= 1 = 1W
o o N o o o oU U v m U P U P    

for a point planet with mass Nm
=P m V

 and relativistic energy 

o N o  in the Sun’s static field generated by the ac-
tive energy-charge ME . Ultimately, this paper presents 
the self-contained GR scheme with the energy-to-energy 
interaction potential = G E r

   

o o MU P  for Machian 
mechanics of nonlocal astroparticles with an analytical 
radial density 

22= 4πon r r r r r o  instead of the 
Dirac delta density  r . One should see arguments for 
the singularity-free gravitational contribution o oU P  to 
the smooth metric tensor component   2

= 1g U P


oo o o

P

. 
The main challenge here was to keep the free fall uni-
versality and the GR Principle of Equivalence for all car-
riers of probe (passive, inertial) energies o  in radial 
fields of the Sun’s gravitational (active) energy EM . 

In the speed-dependent time approach, the warped GR 
four-interval  d d d ,ds l l    cannot be approximated in 
weak fields by pure time and pure space subintervals, 
like in Schwarzschild-type solutions [8] with their formal 
time and space metric split without chain relations. In 
order to justify the indivisible non-linear involvement of 
space displacements into physical time  d dl

=N

 of a 
probe particle under the the geodesic motion, one should 
clarify how the already known gravitational tests of GR 
can be explained quantitatively without departure from 
spatial flatness. Then we discuss our energy-to-energy 
attraction under the Einstein-Grossmann geodesic motion 
in metric fields with flat 3-section (i.e. without Schwar- 
zschild singularities). The author also accepts the Ein-
stein-Infeld-Hoffmann approach (but under flat 3-space) 
to non-point slow-moving gyroscopes in order to de-
scribe the Gravity Probe B quantitatively. 

In 1913, Einstein and Grossmann put weak Newtonian 
field only into the temporal part of the Entwurf 4D in- 
terval. Today, one tends to justify that strong-field GR 
metric may also admit for reality six metric bounds 

ij ij   which preserve universal 3D interval in spe-
cifically curved space-time for any elementary particle N. 
Then the metric tensor g  for curved 4D with flat 3- 
section depends on four gravitational potentials  

oG U P   for the particle energy-charge  

2= 1o N ooP m g v . 
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This finding matches 6 metric bounds for spatial flat-
ness under any gravitational fields and their gauges. 
Since 2000, this post-Entwurf metric scheme with warp- 
ed space-time, but strictly flat three-space, became con-
sistent with the observed Universe’s large-scale flatness, 
confirmed at first by balloon measurements of the Cos-
mic Microwave Background and then by all ongoing 
Wilkinson Microwave Anisotropy Probe (WMAP) Ob-
servations of the flat Universe [12]. This new reading of 
curved 4D geometry with non-linearly dilated anisotropic 
time and flat non-empty space, explains quantitatively all 
GR tests, the known planet perihelion precession, the 
radar echo delay, and the gravitational light bending, for 
example [13]. 

Speed-dependent time corrections to post-Newtonian 
dynamics in Sun’s flat material space lead to computa-
tion results similar to numerical computations of other 
authors who traditionally correct Newton in empty, but 
curved 3-space. Observable dynamics of matter in mod-
erate and strong static fields provides, in principle, an 
opportunity to distinguish our metric solutions with iso-
tropic flat space and speed-dependent time from Schwar- 
zschild’s solutions, based on curved 3-space and dilated 
time. Alternative empty-space and non-empty space pa- 
radigms can also be distinguished through different probe 
body dynamics in stationary fields of rotating astro-
physical objects. 

2. Warped Four-Space with Intrinsic Metric 
Symmetries for Flat Three-Space 

To begin, we employ the GR tetrad formalism, for ex-
ample [14,15], in covariant expressions for an elementary 
rest-mass Nm

i
 in order to justify the mathematical op-

portunity to keep a flat 3D subspace Nx  in curved four- 
space Nx  with a pseudo-Riemannian metric tensor  

=Ng g   (for short). First, we rewrite the curved four- 
interval, 



 

d d d

d d

,

N

   

 

2d d

d d

vN
N Ns g x x

e e

x x

g x x

x x

  


 

 

 

 
  











 

in plane coordinates    d dx e x  
 d and   dx e x  


with 

 1, 1, 1, 1   

, 

diag  . 

One can find    = ; oo ie g g g
    = 0,b b

ie e

o
oo  and  

 from the equality  

  2
d d d ,i j

ij
2d d

.

o i
oo i

i oi oo

s g x g x

g g g

   
 

x x

( ) ( )
i

b b
i

 

At first glance, the spatial triad 
N

e e

,

 (a, b = 1,2,3 

and    = 0,1,2,3) should always depend essentially 
on the gravitational fields of other particles because this 
triad is related to components of Ng . However, this 
might not be the case when there are internal metric rela-
tions or bounds in the general pseudo-Riemannian metric 
with the warped tensor Ng . Shortly, a curved mathe-
matical 4D manifold does not necessarily mean a curved 
3D section for real matter (warped 2D paper in 3D trash, 
for example, keeps parallel Euclidean lines due to steady 
metric relations between neighboring points of paper). 

It is not obvious that physical restrictions for four-ve- 
locities of real matter, like   , might require to 
keep flat 3D sections of curved pseudo-Riemannian 4D 
manifolds. Therefore, let us look at three spatial com- 
ponents i  of the four-vector 

= 1g V V

V d dx s
V g   by us- 

ing the conventional tetrad formalism, 

  
 

 
 

 
 

 

   
  

1 2

1 2
( )

1

)(1 .

i
oo i i i

o b
i i i io b

bb
oo i i b b

g g v v v

V e V e V e V

g g e v v v








  

   

   

 

Here, we used ( ) =o
i oo ie g g

   
 

 and  

     
   1 2 1 2

= 1 ; 1b b
b b bV v v v v v

 
  

 
 i iV e V

. 

Now one can trace that the considered equalities  

  
 = bi

i bv v v v
 

 
 

 = =b b
i i ib bv e v v

 admit trivial relations  and  

 between the curved velocities, 

 d d d d dj o i j
i ij oo i ijv x g x g x x    

 

,  

and the plane velocities,   = d dav xabb  

  =b be

. All spatial 
triads for these “trivial” relations may be considered as 
universal Kronecker delta symbols, 

i iN
 , and, con- 

sequently, the three-space metric tensor is irrelevant to 
gravitation fields, i.e.  

1= = =N K
ij oi oj oo ij ij ij ijg g g g      . 

All components g , involved in these six relations, 
may depend on gravitations fields or system accele- 
rations but their combination should always keep spatial 
flatness under admissible coordinate transformations. 
One could, surely, ignore flat 3-space option within curv- 
ed 4D manifold, as was suggested by the above tetrad 
analysis, by trying curved 3D solutions in iV  when 

i iN

( ) ( )b be 

1 =g g g g

. But we do not see much physical sense in 
such complications and, therefore, restrict GR geome- 
trical constructions by a partial case with six metric 
relations oi oj oo ij ij

  . Applications of pseudo- 
Riemannian space-time with flat 3-sections will quan- 
titatively describe all known gravitational experiments 
plus magnetic flux quantization. The latter and the Ahar- 
onov-Bohm effect require only flat 3-space for satisfac- 
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tory interpretations. 
   Kg e e 

Again, we shall read      though  

   = ;oo oo ig g

    = 0, b b
i

oe g  

and  

 be   

    , o o
oi o i

 

for all physical cases we are interested in describing. 
This means for our consideration that  

  o o
oo o og e e g e e 

( ) ( )= o o
i j ije e

, 

and 
( ) ( ) ( ) ( )o o a b

ij i j ab i jg e e e e 

d = d di j i j
ijx x x 

  1
K
ij ijg

  . 

And Euclidean spatial geometry,  
2d dK
K ijl x , 

will be applied to pseudo-Riemannian 4-intervals of all 
particles (due to intrinsic metric relations 

K K K
oi oj oog g g 


 

l

). 

Contrary to universal spatial displacements d , in- 
variant four-intervals have differently warped metrics for 
particles K and N, because N Kg g   and k N d ds s  
in different external fields (for example, in the two-body 
problem). The GR four-interval for a selected mass- 
energy carrier, 

 
2 2 2d d d

= d do i
oo oi oo

s l
2

d d ,i j
ijg x g x g

 

x x 
    (1) 

is defined for only one selected probe mass Nm  despite 
notifications d dNs s  and d N dx x

 2d d

  are regularly used 
for brevity. This geometrical 4-interval should be phy- 
sically commented in terms of time x  and space 

ij  elements, albeit 3-space differ- 
entials 

2d dij
d

d = di j ix x d jxl x
ix  contribute to particle’s physical time  d dx

d
. 

We prove below that particles proper time   depends 
on  even in constant gravitational fields (where there 
is a first integral of motion ). Such an ani- 
sotropic time element  

dl
= coP onst

     d do i
o id dN ox g x x g x   

of the moving mass Nm
l

= 0g

 always counts its spatial dis- 
placement  in a oriented gravitational field, despite 
the fact that it is not immediately obvious from the phy- 
sical time definition for metrics with oi . This post- 
Newtonian phenomenon, related to the energy nature of 
anisotropic time, appears in nonlinear gravitational equa- 
tions through the energy(velocity)-dependent potentials. 
Our interpretation of the warped four-interval (1), based 
on warped anisotropic time in isotropic non-empty flat- 
space rather than in empty warped space, may be con- 

sidered as a prospective way for further developments of 
the 1913 metric gravitation through joint geometrization 
of distributed fields and distributed elementary particles. 

d

Now we return to components of the four-vector  
= d dN NV g x s

 

 
 

 
 

. Notice that 

 
 

 
 

         

( )
( )

1

= =

,

b o
b o

b o o o
b o o

N

V e V e V e V

e V V e V

V m U


    

   

 

 




   

 

 
 

 
  =b o

b oV e V V V

 

with the four-velocity 

      

  = 0be ( ) ( )=b be

, 

because o  and i i . Flat three-space geo- 
metry is a promising way to introduce gauge invariant 
gravitational potentials,  

=o NG U P G        

with 

  = ,o o
N o o NU e m V U P          

for the passive (probe) mass Nm , in close analogy to 
four-component electromagnetic potentials for the clas- 
sical electric charge. The point is that a four-momentum 

N NP m VN   of the selected scalar mass  Nm  (without 
rotation) can be rigorously decomposed into mechanical, 

NK , and gravitational, NU , parts only under strict 
spatial flatness,  

 
  

2 2

2 2

1 ; 1

 1 1 ; 1

,

N
N N i

N oo N i oo

N N

P m v m v v

m g v m g g v

K U



 

   

    

 

 (2) 

where 

 1 22, , d d , d d ,

d = d ,d d , ;

= = .

j i i i
i ij i

N i oi oo

ij i j oo ij ij ij

v v v v v v x ds x x

x g x x x g g g

g g g g




  
 

 

  

   

  

  

d = d > 0ot x

 

Again, we use a time-like worldline with  
and  1 2d = d d > 0o ig x g x  

> 0m
oo i  for the passive-inertial 

N . The gravitational energy-momentum part U  
is defined in (2) for a selected mass Nm

= > 0P m V
 and its posi- 

tively defined passive energy o N o , associated 
with the global distribution of all other masses Km

U G P
. This 

gravitational part, o  , is not a full four-vector in 
pseudo-Riemannian space-time, like P N

 , nor is the me- 
chanical summand K Nm V  . 

      = 0, =b b b
ieBecause  

 
 d = d and x e x

   , 

the tetrad with the zero (i.e. time) label takes the follow- 
ing components from (2):  
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 ( ) 2 1

( ) 2

= 1 1 ;

= 1

o
o N

o
N

e v U

v U m



  

 

 

2 1

1

1

.

i Nm v U m 

 

 

Ultimately, the tetrad e 
  for the selected particle 

 and the metric tensor N    Ng e e 
    , with  

=g g  
  , depends in Cartesian coordinates only on 

the gravitational four-potential oU P G 

No ocP cP
 (introduced 

for the relativistic energy-charge  [16]),  

     

     

 
 

   

         

2 1

1 1

2
( ) ( ) 2 1

21

2 1

1

2

1

= 1

= 1

= 1 1

= 1 1

= (1 1 )

=

= 1

=

= (1 )

o N

o o o

o oN
oo o o o N

o o

o oN
oi o i o N

N
oo i o

o o a bN
ij i j ab i j

N
oo i j o ij

oo
N o o

e v U

U P U P

g e e v U m

U P

g e e v U m

g U P

g e e e e v

g U U P

g U P

2 1

2 2

1

o

i N

i j N ij

m

v U m

U U m

  

 
 

 

 

  

 





 





 









 

 

  



   

   



 2 2

1

,

= , = ,

ij
i j o

oi ij ij
N i o N

U U P

g U P g


























 
 

  (3) 

where we used      2
21 ov U= 1o o

oo o og e e 
 

 and  
2 2= 1o ooV g v  to prove that  

 1 11 o o= 1 = 1oo oo o og g U P U P   . 

Therefore, the passive-inertial GR energy,  

 
 2

= 1 =

= 1 ,

o oo

o

P m g v m

m v U

 

 

2 2 11 1 o ov U P

S

 

takes a linear superposition of kinetic and potential 
energies in all points of pseudo-Riemannian space-time 
warped by strong external fields. Note that we did not 
assign spin   or internal angular mechanical momen- 
tum to the Einstein-Grossmann “material point” or the 
probe mass Nm  with the energy-momentum (2). The af- 
fine connections for the metric tensor (3) depend only on 
four gravitational potentials oU  in our space-time 
geometry, which is not relevant to warped manifolds 
with asymmetrical connections and torsion fields, for 
example [17]. 

P

Every component of the metric tensor in (3) depends 
on the gravitational part N N oU m  V  m V G P    of 
the probe carrier energy-momentum P . At the same 
time, all the components of the three-space metric tensor, 

ij oi oj oo ij ij
1 =g gg g   , are always independent from 

the gravitational potential = oG U  P  or its gauge. 
Such inherent metric symmetries for 3D subspace may 

be verified directly from (3). In fact, our tetrad, and the 
metric tensor, depends formally on the inharmonic Weber- 
type potentials,  

 2 1 11 = 1N o o oU v m U P U P 
   , 

2 2 2= d dv lassociated with the particle speed  . In 1848 
Weber introduced [18] the non-Coulomb potential  

 21 2q q v r
q q

2 1v 

2 2 2d d d d d

12 121 2
 based on lab measurements of acce- 

lerating forces between moving charges 1  and 2  
with the relative radial velocity 12 . This might was 
the first experimental finding that mechanical inertia and 
acceleration depend on the kinetic energy or speed of 
interacting bodies. 

By substituting the metric tensor (3) into the interval 
s g x x l    

d = d
 , one can rewrite (1) and sub- 

mit the chain relation for the proper time N 

   

 of 
the probe mass-energy carrier N in external gravitational 
fields,  

 

 

1 22
1

2 2

d d d d d

= d d 1 d d d .

oo iN N
oo N oi

o N
N

l g x g g x e x

x x U m l l











     

 

   (4) 

Notice that the proper-time differential,  

 1d = d 1o K
O o Kx U m  , 

of the local observer K , with K  and d =K , 
differs from the time element (4) of the moving mass  
with the GR energy-charge 

d = 0ix 0l
m

2= 1P m g vo oo  . The 
proper interval ds  of the moving mass and its proper 
time element (4) depends, in general, on all four com- 
ponents of U . Therefore, the observable three-speed 
d dl O , of a moving particle always differs in rela- 
tivistic gravito-mechanics from the non-linear ratio  

 d d dl l v  , called the particle’s physical speed (1). 
The chain relation  d = df   in the physical time (4) 
of a moving particle changes the GR interpretation of the 
geodesic motion and allows to apply flat 3D space for 
gravitational tests. 

The metric tensor (3), the interval (1), and the local 
time element (4) are associated with warped space-time 
specified by external fields for one selected mass Nm  or, 
to be precise, for the passive energy-charge N

o . We 
may employ common three-space for all elementary par- 
ticles (due to universal Euclidean geometry for their spa- 
tial displacements), but we should specify warped space- 
times with differently dilated times for the mutual motion 
of gravitational partners. The particle’s time element 

P

 d d d ,l v  N  in (4) may depend on the particles vel- 
ocity or displacement. Ultimately, a non-linear time rate 

( )= d do oe x x d d ,d d ot f t x c f  (hereinafter ) of 
moving material objects in (4) depends on the ratio 

2 2 2=l v  . This non-linear chain relation can be sim- 

Copyright © 2012 SciRes.                                                                                 JMP 



I. E. BULYZHENKOV 1348 

plified in several subsequent steps through the following 
equalities to (4): 

1 2

1 1

1 1

d d 1 1 1

d 1

d 1 1 .

i
o N

i
o o o i

i
i o o o

t U m v

t U P P U v

t U P x U P


 

 

   

  

  

1 21i Nv U m v  

    (5) 

Such anisotropic time dilatation in (5) by the external 
four-potential =N N NG U P

oP

d

o o  results in the gravitatio- 
nal Sagnac effect when an observer compares the dyna- 
mics of different elementary energy-charges  in fields 
with . 0iU 

Now, one may conclude that the anisotropic time ele- 
ment   in the metric interval (1) and, consequently, in 
the physical speed = d d ,v l   depends only on univer- 
sal four potentials G  for positive probe charges o . 
The potential energy part N NN

> 0P
 m Vm U P    con- 

tributes to GR energy-momentum of the probe body and, 
therefore, to its passive energy-charge, 

 

=N o o . The 
universal ratio 

m V P

oU P  should be tried in Einstein’s 
gravitation as a metric field four-potential (which is not a 
covariant four-vector) of active gravitational charges for 
passive energy-charges. Contrary to Newton’s gravitation 
for masses, Einstein’s gravitation is the metric theory for 
interacting energies. The static Sun, with the active 
energy-charge , keeps the universal potential 2=ME Mc

= GE

= = cono mE

01;r

2st mc

m M  in the Sun’s frame of reference 
for the passive, inertial energy content  

 of the probe mass 

U E

cP Nm . Below, 
we employ the universality of the Sun’s potential,  

=N N
o oU P GE

r

=r r r

2 4r

M o , for all planets in our com- 
putations for gravitational tests of General Relativity 
with dilated time (4)-(5) and flat material space filled 
everywhere by  gravitational fields and the   ex- 
tended masses. 

3. Flatspace for the Planetary Perihelion 
Precession 

Now we consider the metric tensor (3) for a central 
gravitational field with a static four-potential, , 

o o M , where 

1 = 0i oU P

= G 1 1E rU P 2
M oE Mc r= = constG

G

 is 
the active gravitational energy of the ‘motionless’ Sun 
(in the moving Solar system). We use Euclidean geo- 
metry for the radial distance  from the Sun’s 
center of spherical symmetry in agreement with spatial 
flatness maintained by (3) for any gravitational four- 
potential 

1r u

  and its gauge  . Let us denote the 
energy content of a probe mass  in the static central 
field as a passive energy-charge 

m

 21 =o mv E

= 0i

 

= =o N o N oP m V m g . 

Then, the interval (1) for the passive energy carrier in 
a central field with U  takes two equivalent pre- 

sentations due to (4) and (5),  

 
 

2
2 2 2 2 2

22 2

d = 1 1 d d d d d

d 1 d ,

M m

M

s GE E rm l l t l

t GE r l





  

  
  (6) 

where iterations  

     
2

2 2 2 2d 1 1 d d d = d dM mt GE E rm l l l     

 2d dl

 

over the chain function  in the Lorentz factor  

result in   22d 1 Mt GE r  for the Sun-Mercury po-    
tential energy = E E ro M mU G . In other words, the 
specific, Weber velocity-dependent potentials exhibit 
after chain iterations common for all probe particles local 
time, 2 2d d d = ds l N K  

2 2 2 2 2 2 2d = d d sin d = d di j
ijl r r r x x    

, in static fields. Spherical 
coordinates can be equally used in (6) for the Euclidean 
element in flat 
laboratory space. 

The static metric solution (6) for probe elementary 
energy-charges in non-empty space of the radial energy- 
charge does not coincide with the Schwarzschild metric 
[8] in empty space. Therefore, the Schwarzschild exten- 
sion of the SR interval is not the only rotationally in- 
variant solution which GR’s tensor formalism can propose 
for tests of space-time-energy self-organizations. Ultra- 
relativistic velocities, 21 0vd d 1v l   and   

4r

, 
in the Weber-type energy-to-energy interaction in (6) re- 
vise the Schwarzschild singularity. The latter is not ex- 
pected at the finite radius in the energy-charge formalism 
of Einstein’s gravitation. Einstein, “the reluctant father of 
black holes”, very strictly expressed his final opinion re- 
garding the Schwarzschild solution: ‘The essential result 
of this investigation is a clear understanding as to why 
Schwarzschild singularities do not exist in physical re- 
ality’ [19]. In authors view, Schwarzschild’s metric so- 
lution, and all Birkhoff class solutions for the empty 
space dogma, originates with ad hoc modeling of matter 
in the 1915 Einstein equation in terms of point particles. 
However, Einstein anticipated extended sources for his 
equation and for physical reality. Below, we prove that 
the static metric (6) corresponds to the  radial energy- 
charge or the extended source of gravity. Therefore, our 
analysis denies the empty space paradigm. Non-empty 
material space is in full agreement with Einstein’s idea of 
continuous sources and Newton’s “absurd” interpretation 
of distant attractions through stresses in an invisible ma- 
terial ether (called in 1686 as “God’s sensorium”). 

Our next task is to derive integrals of motion for the 
passive (probe) mass-energy in a strong central field 
from the geodesic equations 

2 2 2d d = d d dp x x p   
x . 

Nonzero affine connections   for the metric (6) 
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take the following components:  
2 2d d = = ,

= d 2d , d

r r

r
tt oo

x p r

g r




 


2

2

= sin ,

d d

r

x x p





 

 

 


 

= = =

= sin cos ,

r r r r
   
   

 
 

= 1 ,

= = ctg ,

r

  

   

  
 

and = =t t
tr rt d d2oo oog g r oo  , where g  is the function 

next to  in the interval (6), 2dt 2 2 2d = d doos g t l . 
By following the verified approach with  
= π 2 = const  for the isotropic central field, for ex- 

ample [15], and by substituting flatspace connections 

  into GR’s geodesic equations, one can define the 

parametric differential  and write the following gra- 
vitational relations, 


dp

   
  

 

2

2

2

2 2

2

d d = 1,d d

= = const

= const, d d =

= const d d

= const =

d d

oo

m

m

2 1

2

2 2

= d d

 d d =

d d

= 1,

oo

m

oo

m oo

g t p p

E m r

r s

r p

m E

r s E







 

s g t s

p J

J E m L

J r g

r s

m g













 



, ,m

        (7) 

with the first integrals m  and E J  of the relativ- 
istic motion in strong static fields. 

The last line in (7) is the interval equation  
2 2 2d dood =s g t l  with two integrals of motion  

2 2E m g t s2 2 2= d dm oo  and = π 2 . Therefore, the sca- 
lar invariant (6) is actually the equation of motion for the 
constant energy charge m  in a central field 
with the static Weber-type potential  

= constE

   
 

2= 1

= ,

W
o o

M M

U U m v

GE r GE

 

 
o m oU E U

2 0WU 

r 0r 

 

which is inharmonic for the Laplacian, o . 
Recall that Schwarzschild’s curved 3D solution not only 
differs from (6), but results in conceptual inconsistencies 
[20] for the Einstein equation. We can use (6) and (7) for 
relativistic motion in strong central fields in order to 
reinforce the ignored statement of Einstein that Schwar- 
zschild singularities do not exist in physical reality. 
There are no grounds for metric singularities either in the 
interval (6), or in the radial potential  for , 
because 

W
oU

 d d =t g r

2 WU

1= =U GE E r r E u 

=oo  is a smooth func- 
tion. One can verify that the non-empty space metric 
tensor (3), as well as o , does correspond to the 
continuous energy-source in the 1915 Einstein equation. 

r GM

0

2 = constr GM c

The strong field relations (6) and (7) can be used, for 
example, for computations of planetary perihelion pre- 
cession in the solar system. The planet’s gravitational en- 
ergy for the GR energy-to-energy attraction,  

o M m o m , where o  
and 1u r , is small compared to the planet’s energy, 

= constU Eo m , that corresponds to the non-rela- 
tivistic motion of a planet N (with = const 1E mm  , 

m M , and 2 2 2d d 1v l  
= 0U

E E ) in the Sun’s rest 
frame, with i . The GR time element for the planet 
reads from (6) or (7) as 

 

  
 

2 2 2

2
2 2 2

2 2

d d d d

= d 1 1 d d d

1 2 d d ,

o m

o o

s l l

t r uE m l l

r u t r u l





 

 

  

1or u

       (8) 

 2 2d d dl l , and where we set , = 1mE m , 
 2 2 2d d d dt l t 

2dr u l

2d

. 
The field term with spatial displacement o  on 

the right hand side of (8) belongs to the physical time 
element within the invariant s . This displacement cor- 
responds to the non-linear chain nature of anisotropic 
time    d d = d dl f l  , originating from the Weber- 
type energy potential 21U v m  in (3). There is no 
departure from Euclidean space geometry with the flat 
metric  

 2 2 2 2 4 2 2 2d = π 2 d d d dl r r u u u        

in the chain reading of geometrical intervals (6) or (8). 
Again, a particle’s non-linear time with chain spatial dis- 
placement  d dl

 1/2
d = 1 2 dr u t 

 differs in (8) from the proper-time 

O o  of the local (motionless) observer. 
Displacement corrections, 2 2d dr u l to , for the non-re- 
lativistic limit are very small compared to the main gra- 
vitational corrections,  2r u o , to Newtonian time rate 

2 2 21 2 d dt r u r u l t  
2d

o o . However, the chain depen- 
dence of a particle’s time element   from spatial dis- 
placement  accounts for the reverse value of this 
time element, 

2dl
2 2d dr u lo  , that is ultimately a way to 

restore strict spatial flatness at all orders of Einstein’s 
metric gravitation. Here there is some kind of analogy 
with electrodynamics where small contributions of Max- 
well’s displacement currents restore the strict charge 
conservation in Ampere’s quasi-stationary magnetic law. 

 Two integrals of motion 1 2 d d =r u t s E m o m  and 
2d dr s L   result from (7) and (8) for weak fields in a 

rosette motion of planets, 

    2 2 2 2 2 21 2 1 3 = ,o or u L r u u u E L m         (9) 

where u du d   and o . Indeed, (9) may be dif- 
ferentiated with respect to the polar angle 

1r u
 , 

2 2 2= 92 3 32 ,o o o ou u r L r u r u u r u     

 2= 1 cosu r L

     (10) 

by keeping only the largest gravitational terms. This 
equation may be solved in two steps when a non- 
corrected Newtonian solution, o o    , is 
substituted into the GR correction terms at the right hand 
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side of (10). 
The most important correction (which is summed over 

century rotations of the planets) is related to the “re- 
sonance” (proportional to cos  ) GR terms. Therefore, 
one may ignore in (10) all corrections apart from  

2 22u L 4 cos   u u  and o
2 4 cosr L   

4 cos

. Then the 
approximate equation for the rosette motion, 

2 36o oL r Lu u r      , leads to the well known 
perihelion precession  2 2π 6r L 2π 1r a= 6 o o   , 
which may also be derived through Schwarzschild’s me- 
tric approximations with warped three-space, as in [13-15]. 

It is important to emphasize that the observed result 
for a planet perihelion precession 

= ,ij ij

 (in the Solar non- 
empty flatspace with dilated time by Sun’s energy den- 
sities) has been derived here from the invariant four- 
interval (1) under flat three-space,    rather than 
under empty but curved three-space. 

4. The Radar Echo Delay in Flatspace 

The gravitational redshift of light frequency   can be 
considered a direct confirmation that gravity couples to 
the energy content of matter, including the massless 
photon’s energy E , rather than to the scalar mass of the 
particle. Indeed, Einstein’s direct statement  for 
all rest-mass particles is well proved, but the inverse 
reading, 

2=E mc

2=m E c
= 0m

2 0E m c 

, does not work for electromagnetic 
waves (with ) and requires a new notion, the wave 
energy-charge  or the relativistic mass 

. 


0 m
In 1907, Einstein introduced the Principle of Equiva- 

lence for a uniformly accelerated body and concluded 
that its potential energy depends on the gravitationally 
passive (“heavy”) mass associated with the inertial mass 
[21]. This correct conclusion of Einstein was generalized 
in a wrong way that any energy, including light, has a 
“relativistic mass” (the gravitational energy-charge in our 
terminology) for Newtons mechanics. Proponents of this 
generalization in question proposed that photon’s “rela- 
tivistic mass” is attracted by the Sun’s mass M in agree- 
ment with the measured redshift  

 1 2
SGMR m c
= =E E m       .  

Nonetheless, the coherent application (in the absence 
of the correct EM wave equations in gravitational fields) 
of the “relativistic mass” to zero-mass waves promptly 
re- sulted in the underestimated light deflection,  

2 2GM R c r R   = 2 S o S , for the “mechanical free 
fall” of photons in the Sun’s gravitational field [22]. In 
1917, when Schwarzschild’s option [8] for spatial cur- 
vature had been tried for all GR solutions, the new non- 
Newtonian light deflection, = 4r Ro S 

E

, had been pre- 
dicted due to additional contributions from the supposed 
spatial curvature in question. Later, all measurements sup- 

ported this curve-space modification for the “relativistic 
mass” deflection by the Sun that provided false “experi- 
mental evidences” of non-Euclidean three-space in con- 
temporary developments of metric gravitation. 

Below, we prove that Einstein’s GR for the Maxwell 
wave equation firmly maintains the flatspace concept for 
interpretation of light phenomena in gravitational fields if 
one coherently couples the Sun’s rest energy to the 
photon’s wave energy  . We consider both the radar 
echo delay and the gravitational deflection of light by 
coupling its energy-charge with local gravitational poten- 
tials. Our purpose is to verify that Euclidean space can 
match the known measurements [13,23,24] of light phe- 
nomena in the Solar system. Let us consider a static 
gravitational field ( i , for simplicity), where the 
physical slowness of photons, 

= 0g
1n v c  , can be derived 

directly from the covariant Maxwell equations [14], 
1 = =n g   oo . Recall that a motionless local ob- 

server associates oog  with the gravitational potential 

o o  at a given point. The light velocity U P = d dv l O , 
measured by this observer, as well as the observed light 
frequency = d dt o O  , is to be specified with respect 
to the observer’s time rate d = dO oog t . This con- 
sideration complies with Einsteins approach, where the 
light’s redshift is associated with different clock rates (of 
local observers) in the Sun’s gravitational potential [21]. 

Compared to the physical speed of light,  
1= d d =ov l cn  , its coordinate speed 

   2

d d d d = =

1 1 2

O O oo oo

o o

l l t cn g cg

c r r c r r

 


  

   


      (11) 

is double-shifted by the gravitational potential  
=o o oU P r r , where  2= = 1.48 kmr GM c

o Sr r R
o S  and 

 . Notice that both the local physical slowness 
1 = oon g  and the observer time dilation 

d d =t gO oo  are responsible for the double slowness 
of the coordinate velocity (11), which is relevant to ob- 
servations of light coordinates or rays under gravitational 
tests. 

A world time delay of Mercury’s radar echo reads 
through relation (11) as 

  2 2

2

= 2 d 1 1 2 2 d

4 4 = 220 μs,

M M

E E

l x

ol x

o MS ES S

t l l c c r x x y

r cln r r R

   



 

6= 0.7 10Sy R 
6= 149.5 10r  6= 57.9 10r 

 

    (12) 

where  km is the radius of the Sun, 
while ES km and MS km are 
the Earth-Sun and Mercury-Sun distances, respectively. 
Notice that in flat space we use the Euclidean metric for 
spatial distance, 

1 22 2=r x y , between the Sun’s cen- 
ter (0,0) and any point (x, y) on the photonic ray. One can 
measure in the Earth’s laboratory only the physical time 
delay = E

E oog t , which practically coincides with  
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the world time delay  in the Earth’s weak field, i.e. 

E

t
20 μs= 2t   . From here, the known experimental 

results [13,24] correspond to the radar echo delay (12), 
based on strictly flat three-space and dilated time as in 
1913 Entwurf metric scheme. 

5. Gravitational Light Bending in 
Non-Empty Flatspace 

A coordinate angular deflection =     of a light 
wave front in the Sun’s gravitational field can be pro- 
mptly derived in flat space geometry by using the co- 
ordinate velocity (11) for observations, 



 
 

0 0

3/22 2

0

2 2d 2 d 2

d = 4 = 1.75 .

o

o S S o S

l y lc x y r x y

r R x x R r R

 



    = 2

4



  

 





 
  (13) 

The most rigorous classical procedure to derive the ray 
deflection (13) is to apply the verified Fermat principle to 
light waves. This basic principle of physics should also 
justify spatial flatness under suitable applications [25]. 

In agreement with Einstein’s original consideration 
[21], one may relate the vector component oK  in the 
scalar wave equation  to the measured (physi- 
cal) energy-frequency 

= 0K K 

  of the photon  

= = =E d d , constto o o ocK   

2 4m c
= 0K

 

= g K 

 

=P P


). Recall that 

o  is also the measured particle’s energy in the similar 
equation, , for a rest-mass particle. The 
scalar wave equation 

N    has the fol- 
lowing solution for the electromagnetic wave, 

P

K K

 
 

 

2 2

2 2 2 2 2

d d =

= =

= d d

= d d d d

= d d

o o oo

o i
oo i o oo

i
o oo

i
o oo

i oo i d d ,

o i i j
i ij

i

o oo

K t c g K g K K K

g K g K K g

t c g K

t x c g lK

x l g g t c g

  

 

 

 

 



   







   (14) 

with    1d i= , d j
ij ooK E E x g l g c     . 

The Fermat-type variations with respect to   and 
u  ( ,1r u  , and = π 2  are the spherical coor- 

dinates) for photons in a static gravitational field are 

 2 2

d d d

= d d 1 = 0,

i j i
i o ij oo

o o

x cg l x

c u u r u u

   

  



  

 




 2 2 2

d =K x

oo

 (15) 

(where   2
= 1 og r u = 0 =


ig , , ij ij  ,  

2 2dr r 2di jxd = ijl x  
or u

) resulting in a couple of 
light ray equations for , 1

2 = 2 o ou r u 

 1 2= sin 2 1 coso o ou r u r u   

 r u  2 2 2= = consto ou u u u 
      1 4  (16) 

Solutions of (16),  

 

and 1r u r Ro o o S  , may be used for the Sun’s weak 
field. The propagation of light from  

   = , = πr       ,r to     

 

  

corresponds to the angular deflection  
1= arcsin 4 1 cos

4 = 1.75

o S

o S

r R

r R

 
    

  

1.66 0.18

 

from the light’s initial direction. This deflection coin- 
cides with (13) and is in agreement with the known 
measurements    , for example [13]. 

We may conclude that there is no need to warp Eu- 
clidean three-space for the explanation of the “non-New- 
tonian” light deflections if one strictly follows Einstein’s 
original approach to light in gravitational fields [21]. In 
fact, the massless electromagnetic energy exhibits an in- 
homogeneous slowness of its physical velocity,  

d d =v l c g o oo , and, therefore, a double slowness 
of the coordinate velocity, d d =l t cgoo . This coordinate 
velocity slowness is related to the coordinate bending of 
light measured by observers. In closing, the variational 
Fermat’s principle supports Entwurf physics of Einstein 
and Grossmann with dilated time and strict spatial flat- 
ness for light in the Solar system. 

6. Geodetic and Frame-Dragging Precessions 
of Orbiting Gyroscopes 

Precession of the orbiting gyroscopes in the Gravity 
Probe B Experiment [26] has been compared only with 
Schiffs formula [27] based on the Schwarzschild-type 
metric for curved and empty 3D space. Here the author 
plans to criticize the point spin model for GP-B com- 
putations in favor of the regular Einstein-Infeld-Hoffman 
approach to slowly rotating distributions of masses. This 
original GR approach practically coincides in the weak 
Earths field with our flatspace reading of Einstein’s ph- 
ysics. Recall that our Entwurf-type space interval is 
strictly flat due to the intrinsic metric bounds in the GR 
four-interval (1) with the metric tensor (3). However, the 
GR tensor formalism can be universally applied to any 
warped space-time manifold with or without intrinsic me- 
tric bounds. 

By following Schiff and many other point particle 
proponents in gravitation, one has to assume for a mo- 
ment that the vector geodesic equation,  

d d = d dS p S x p 
  

=

, 

in pseudo-Riemannian four- space with only symmetrical 
connections,   

S
, may be applied to the point spin 

“four-vector”   with “invariant” bounds V S  
or i  for orthonormal four-vectors,  

= 0


= i
oS x S 

Copyright © 2012 SciRes.                                                                                 JMP 



I. E. BULYZHENKOV 

Copyright © 2012 SciRes.                                                                                 JMP 

1352 

 .j j k
io ik j

d d =

=

o j
i i o i j

o j o k j
io ik

S t S x S x

x x x

 
   

  

 

   x S 

 

    (17) 

Our flat-space for a strong static field with (3) and 
21 = 1= 0, = 1oi oo

o o oog g U P g =ij ijg, and  ,  
would formally maintain an inertial conservation,  

 

  
ij

i j

i i
oo i j

S S=

=

o o oo

oo

g S S S S g

x g x


 

  g S S



2 = constS

 

 2
=i

iS S vS , 

in agreement with Einstein’s teaching for a free-falling 
body. At the same time, Schwarzschild’s metric option 
(curved space) tends to suggest [15,27] the non-com- 
pensated Newtonian potential = GM r 

 2 1 2S

 even in the 
“free fall” equation,  

 2
const = =Schg S S vS

   

S

. 

 
of material points) to localized spins   (which are not 
four-vectors in 4D manifolds with symmetrical affine 
connections) contradict the spirit of GR inertial motion 
and, ultimately, the Principle of Equivalence. 

Our affine connections = 
  , related to the 

metric tensor (3), depend only on four field potentials  
 

 1 1 1= ,o o o i oG U P U P U P 
   . This post-Entwurf metric  

tensor has been introduced for the local energy-mo- 
mentum (2) without any rotational or spin components. 
Moreover, neither the mechanical part, K , nor the gra- 
vitational part, oP G , in (2) are separately covariant 
four-vectors in warped space-time with the metric tensor 
(3). Therefore, there are no optimistic grounds to believe 
that four spin components S  might accidentally form a 
covariant four vector in space-time with symmetrical con- 
nections for translation of the energy-momentum four- 
vector, oP K P G  

Therefore, formal applications of the Einstein-Gross- 
mann geodesic relations (derived for spatial translations  



= 0o g




 

. Nonetheless, we try by chance 
these symmetrical connections for the point spin avenue 
(17) in question in constant fields (when , for 
simplicity), 

 
    
     

 

1 1 1

21 2 2 1 1 1

2 1 1 1 1

21 2

2 1

2 1

j o i oo j i o oo i i o oo

j
io o o i o i oo o i j i o oo i j o oo

j
ik j i k o oo k o oo i j o i o oo k i o oo

o ij
ik o o i j o

U P g U P g U P g

U P U P g P U U P g U P g

U U P g U P g U P U P g U P g

U P U U P

  

    

    

 

      

 

2 j
io

           

2

 

      

          
     

1 1

1 2 2 2

k k o oo k i o oo

o o i j k o oo k j k o oo j j k o oo

U P g U P g

U P U U P g U U P g U U P g





 

   

  

     

1 1= MGE r 



              (18) 

One could start with  and  o oU P 2 1oU U P  E M

1 = 2GIr 3
i o i

U P r   

1rangular velocity, i.e. i i , M ,   , 
and 2= 2 5I m x v MR  n n n En  for E  [14]. Then, 
by keeping only linear terms with respect to 

<R r

i o , one 
can rewrite (17) for a slowly rotating gravitational field: 

U P
for the homogeneous spherical mass M rotating with low  

   
   

1 1

1 1

d d 2

2 .

j jk
i j i oo j i k o oo k i o oo j j o i oo

j k
j i k o oo k i o oo oo

S t S x ln g S U P g U P g S U P g

S U P g U P g g

  

 

      

   



 

0

x x

 
                (19) 

The last three terms on the right-hand side of (19) are 
responsible for frame rotation and frame dragging, which 
vanish for non-rotating centers when 

0U P i o . Precessions of the constant magnitude vec- 
tor   

   and  

1= 2 2oJ S vS v UP 

2 2
= const,ij

j i jS J J 

, obtained for the weak- 
field limit of  

     1 2 11 2j i ij
o o i i o j j o j i ig S S U P U U P x S U P S x S S

 
         

   

  1o oU P when , , and 1i ix x   1i i
i o ox v U P  

 

 in (19), 

   
   

1 1 1 1

1 1 1 1

d d 2 2

,

j i jk
i j i o o j o o j i k o k i o

j j o i o o i o j o o

t J v U P v U P J U P U P

J U P U P U P U P

   

   

          
     

J
                (20) 
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may be compared with Schiff’s non-relativistic pre- 
diction  d d geo fdJ t J   



 for Gravity Probe B. 
The second summand at the right hand side of (20), 

  1 1 2jk
j i k o k i o fd i

J U P U P J         , takes exactly 
Schiff’s answer [27] for the frame-dragging precession, 

 3 32
12 =fd

GIr
GIr3 2 .

r r

r r


 

 
 

 

 1U P

 1 1 1.U P

      
 

 (21) 

The first and third precession terms in (20) depend on 
the Earth’s radial field i o o  and they count to- 
gether geodetic and frame phenomena. These terms pro- 
vide gf o o o  Such a preces- 
sion for a point spin model, formally borrowed from the 
Einstein-Grossmann theory for the probe mass without 
rotation, fails to reiterate the already well verified de Sit- 
ter geodetic precession, 

= 2 v U   P 

   1 32GM r v r

 , , = 0U U

S

= 3 2 = 3geo o ov U P   , 

of the Earth-Moon gyroscope in the Sun’s field, where 

1 2 2 . Why does the Einstein-Grossmann 
geodesic point mass fail for physics of spins and mass 
rotations? 

U U

First of all, there is a clear mathematical reason to re- 
ject point spins from the Einstein-Grossman metric for- 
malism. The point spin approach to GR matter cannot 
justify that   is a covariant four-vector in pseudo-Rie- 
mannian space-time where the metric tensor is defined 
exclusively for matter without self-rotations or for the 
four-momentum of a probe particle without spin. There- 
fore, one cannot place S  into the Einstein-Grossmann 
geodesic equation with symmetrical connections. Riemann- 
Cartan geometries with the affine torsion and asymme- 
rical connection [17] are still under discussions for pro- 
per applications. 

In 1938 Einstein already answered the point spin 
question by developing with Infeld and Hoffmann rela- 
tivistic dynamics of slowly moving distributions of active 
and passive masses. It is well known (Weyl in 1923 and 
Einstein-Infeld-Hoffmann in 1938 for example [14]) that 
the inhomogeneous GR time dilation (or inhomogeneous 

oo

The Einstein-Hilbert tensor formalism for energy den- 
sities of a gravitational source (rather than for a point 
source) requires non-Schwarzschildian interpretation of 
all gravitational tests, including Lunar-Laser-Ranging 
and Gravity Probe B data. In authors view, the 1913 
Einstein-Grossmann geodesic motion in pseudo-Rieman- 
nian space-time with flat space can provide a physical 
basis for translational dynamics of only point particles, 
but not for self-rotations of distributed relativistic matter. 
Point spin models for geodetic and frame-dragging an- 
gular drifts of free-falling gyroscopes cannot be reasona- 
ble for GR physics even under formal success of point- 
spin approximations for the observable geodetic preces- 
sion. Possible speculations that the de Sitter geodetic 
precession of the Earth-Moon gyroscope or that the Mer- 
cury perihelion precession have already confirmed non- 
Euclidean space geometry are against proper applications 
of the well-tested GR time dilation by gravitational fields, 
and, therefore, against Einstein-Infeld-Hoffmann’s phy- 
sics of slowly rotating systems having finite active/ 
passive masses at finite dimensions. In fact, the available 
GP-B releases (einstein.stanford.edu) of the processed 
geodetic precession data perfectly confirmed time dila- 
tation for Einstein-Infeld-Hoffmann rotating distributions 
of masses. Lunar laser ranging of the Earth-Moon gy- 
roscope and the GP-B geodetic precession are irrelevant, 
in fact, to experimental proofs of space warping by the 
missing inch. These tests are equally irrelevant to experi- 
mental proves of black holes existence. On the contrary, 
all known precision measure- ments in gravitation con- 
firms the strong-field metric (3) with time dilation and 
continuous gravitational masses in nonempty Euclidean 
3-space. 

7. Conclusions 

There are a lot of disputes in modern gravitation and 
astroparticle physics. Our main goal was to reinforce 
spatial flatness for real, non-point matter in a line of the 
original Entwurf geometrization of fields, rather than to 
discuss other consequences of the selfcontained SR-GR 
metric scheme [2,16]. In order to achieve this main goal, 
we derived quantitative geodesic predictions for Mercury’s 
perihelion precession, Mercury’s radar echo delay, and 
the gravitational light deflection by the Sun in strictly flat 
three-space without references on the 1915 GR equations 
at all. The numerical results are well known from the 
Schwarzschild empty-space approximation of reality. 
Recall that the conventional interpretation of post-New- 
tonian corrections relies on space warping around the 
localized gravitational source (including the ‘point’ Sun). 
On the contrary, our chain analysis of particles physical 
time allows us to infer that curved 4-interval can keep 
strict spatial flatness and the Entwurf metric scheme for  

 g r  for mass elements rotating over a joint axis) 
defines a relativistic Lagrangian for the classical non- 
point gyroscope. Therefore, Einstein’s relativity quan- 
titatively explains the de Sitter precession through local 
non-Newtonian time rates for distributed rotating systems. 
The non-Newtonian (three-times enhanced) precession 
originates exclusively from different GR time rates in 
neighboring material points, rather than from a local space 
curvature in question for the ill-defined GR spin of a 
point mass. The author does not understand Schiffs re- 
asons to ignore Einstein-Infeld-Hoffmann physics and 
Weyl results for relativistic gyroscopes prior to testing 
General Relativity through rotation of masses. 
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strong-field gravitation. The GR displacement  may 
be referred as a space interval (like in Special Relativity) 
in flatspace relativity of nonlocal superfluid masses with 
mutual spatial penetrations. Consequently, the integral 

 along a space curve does not depend anymore on 
gravitational fields and takes a well-defined meaning. 
Such a Machian-type nonlocality of superfluid astropar- 
ticles reconciles 3D space properties with the relativistic 
Sommerfield quantization along a line contour. Indeed, 
these are no reasonable explanations for quantized mag- 
netic flux in laboratory SQUIDs, unless one accepts 3D 
spatial flatness for any 2D surface [3]. 

dl

dl

2d
GR physics may attach all field corrections within the 

GR invariant s  to the time element  2d dl  with 
chain relations. Gravity indeed curves elementary space- 
time intervals (therefore d  and ds  are specific for 
each moving particle), but their space sub-intervals  
are always flat or universal for all particles and observers. 
It is not surprising that our approach to relativistic cor- 
rections, based on the strong-field equations (7), resulted 
in Schwarzschild-type estimations, which are based on 
very close integrals of motion in the Sun’s weak field. 
However, strong fields in (7) will not lead to further co- 
incidences with empty-space Schwarzschild-type solu- 
tions for dynamics of probe particles. 

dl

Both the Euclidean space interval d = d d > 0i
il x x  

and the Newtonian time interval  

d = dot x d d > 0o ox x   

are independent from local fields and proper parameters 
of elementary particles. This absolute universality of 
world space and time rulers is a mandatory requirement 
for these notions in their applications to different par- 
ticles and their ensembles. Otherwise, there would be no 
way to introduce for different observers one universal 
ruler to measure three-intervals and to compare dynamics 
of particles in common 3-space under the common time 
parameter. For example, it is impossible to measure or to 
compare differently warped four-intervals  

d =N ( )d dNs g x x x 


18 m

1510 m

 of different particles. In other  

words, there is no universal, non-specific pseudo-Rie- 
mannian geometry for all world matter. Therefore, joint 
evolution of energy carriers can be observed only in 
common sub-spaces when they maintain universal (for 
all matter) sub-metrics. 

Space-time-energy self-organization of extended mat- 
ter can be well described without 3D metric ripples, 
which have no much sense in strictly flat material space. 
Laboratory search of observable chiral phenomena for 
paired vector interactions in flat material space is worth 
to be performed before expansive projects to find 3D 
metric ripples in cosmic space. Record measurements of 
flat material space beyond the present limit 10  

might not be required for confirmation of the residual  
EM nature of elementary masses under their Einstein- 
type geometrization. Once chiral symmetry for hadrons 
was violated at , then this mass-forming symme- 
try was equally violated in the entire nonlocal structure 
of the superfluid astroparticle [2] or in its infinite mat- 
erial space. Non-empty Euclidean 3-space does match 
curved 4D space-time in metric gravitation. Such a match- 
ing allows the extended radial electron to move (both in 
theory and in practice) without spatial splits of mass and 
electric charge densities. Strict spatial flatness is a real 
way for quantization of elementary fields and for unified 
geometrization of extended gravitational and electric 
charges. 
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