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ABSTRACT 

Along with the construction of non-Lorentz-invariant effective field theories, recent studies which are based on geomet- 
ric models of Finsler space-time become more and more popular. In this respect, the Finslerian approach to the problem 
of Lorentz symmetry violation is characterized by the fact that the violation of Lorentz symmetry is not accompanied by 
a violation of relativistic symmetry. That means, in particular, that preservation of relativistic symmetry can be consi- 
dered as a rigorous criterion of the viability for any non-Lorentz-invariant effective field theory. Although this paper 
has a review character, it contains (with few exceptions) only those results on Finsler extensions of relativity theory, 
that were obtained by the authors. 
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1. Introduction coordinates of the fiber. Despite the fact that the most na- 
tural generalization of this construction is known to the 
mathematicians for a very long time within Finsler geo- 
metry [1-3] which describes the locally anisotropic spaces, 
the first viable model of Finsler space-time [4] and the 
based on it special relativistic theory of locally anisotropic 
space-time [5-7] were promoted not long ago. These works 
were motivated by the suggested at that time and now 
popular idea [8,9] of Lorentz symmetry violation, which 
means that the “true” metric of the flat space-time deviates 
from the Minkowski metric. 

Nowadays, the program of geometrization and algebrai- 
zation of the fundamental laws of nature which was for- 
mulated at the early stage of GR development is still not 
fulfilled. Every step in realization of this program sug- 
gests partial or complete reconsideration of the common 
notions and of the properties of the corresponding to them 
physical objects. Many basic concepts of the modern phy- 
sics and mathematics are expressed in terms of the notion 
of manifold, which allows possibility of universal aryth-
metization of the events of the physical world and of the 
relations between them; the notion of manifold is also a 
symbiosis of  geometric and algebraic ideas. 

Generally speaking, the discussion on space-time ani- 
sotropy needs to clarify first two issues: 1) why this should 
be done, i.e. what are its physical premises and 2) what 
does the suggested anisotropy mean. The second question 
implies that geometry in mathematics corresponds to the 
theory of measurements in physics, that is, when we speak 
of, say, space-time curvature, we presume that it will 
show itself in measurements. If we have in mind the phy- 
sical applications of the geometrical constructions, the 
same must be true for anisotropy. Notice that to speak of 
the curvature or anisotropy of the empty space is possible 
only when we don’t deal with experimental science at all, 
and if we do deal with it, the characteristic scale for the 
possible applications of the theoretical speculations must 

Despite the abstract character of the manifolds studied 
in modern physics and mathematics and of a lot of addi- 
tional structures which geometrically describe the laws of 
nature, some of these structures still remain rather con- 
servative. First of all, we mention the manifolds endowed 
with metrics, while the majority of modern geometrical 
models deal with the metric tensor as a function on the 
tangent bundle. In every coordinate chart, the metric 
tensor field depends on the coordinates of the base in an 
arbitrary smooth way, and it depends bi-linearly on the  
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be provided. The last means that when the necessity to 
study the space-time anisotropy occurs, one should sug- 
gest its local source. 

The answer to the first question is less obvious and is 
rather vast from the point of view of the analysis of the 
situation in physics (see [10-15] and additional reasoning 
below). The result of this analysis has both general and 
concrete aspects. The general conclusion is that the gra- 
vitation theory, i.e. GR, was developed for and success- 
fully applied at the scale of planetary systems. When 
applied to cosmological (galactic) scales in the way in 
which this is done now, it demands the introduction of 
corrections that are 25 times larger than the value of mass 
of the observable Universe and which are related to the 
existence of the new (still unknown) substances—dark 
matter and dark energy, which were not supposed to be 
present in the initial theory. Obviously, alongside with 
their tracking, one should make sure that the theoretical 
models are valid. These models are: the so called simplest 
scalar used in the expression for the Hilbert-Einstein ac-
tion, i.e. scalar curvature; the geometry used for the 
space-time description, i.e. Riemann geometry; and the 
4D space-time used for the description of the physical 
reality itself. 

Important observations that make simple sense, have 
sufficient value and statistical validity, but contradict clas- 
sical GR, are the rotation curves of spiral galaxies. The 
attempts to modify the theory in order to describe them in 
an adequate way based on increase of complexity [16,17] 
or change [18] of the simplest scalar, or on the modifica-
tion of the metric [19], appeared to be either not consistent 
enough—f(R)-theories, or imposed as well to introduce a 
new unknown scalar field or some new unknown interac-
tion. The phenomenological MOND theory [20] required 
either an arbitrary change of the dynamics law, or an arbi- 
trary change of the expression of the gravitation force, in 
order to provide an acceptable description of the pheno- 
mena observed at galactic scales. Its covariant generaliza- 
tion [21] also leads to the introduction of the new scalar 
field. 

The concrete consequence of the analysis is that there is 
a necessity to make the next step and to study the possi- 
bility to use a new geometry to interpret the observations. 
The natural generalizations of Riemann geometry are 
Finsler and Lagrange geometries, both taking into account 
the dependence of the metric tensor on direction at the 
given point. This direction can be global—which corre- 
sponds to one of the geometries constructed on the com- 
mutative-associative algebra, namely, to Berwald-Moor 
geometry. If we use the Berwald-Moor metric to interpret 
the gravitation theory, there appear a fixed number of 
stationary global sources of gravitation whose nature is 
unclear. This direction could be local—and then the inter- 
pretation might correspond to the motion of the local 

sources of curvature. The last one seems well-grounded, 
since the common features of the gravitation theory and of 
electrodynamics from the point of view of Lorentz in- 
variance and of the inverse square law were long ago 
noticed. The corresponding attempts to generalize the 
theory with the help of the notion of mass currents were 
undertaken in [22,23], and the common geometrical back- 
ground of both theories was discussed in [12]. Neverthe- 
less, the gravito-electromagnetism [23] doesn’t seem to be 
self-consistent enough, because one cannot deal with the 
gravitation charges in the same way as with electric 
charges: the first are sources of curvature, while the se- 
cond are not. Instead of the introduction of Lorentz force 
according to a formal analogy, one should require that, in 
the case of gravitation, the metric becomes anisotropic. 
This would lead to the gravitational force dependence on 
the velocity of the test particle and on the vector field 
corresponding to the motion of the sources of curvature. 
The literal meaning of the equivalence principle suggests 
the same: the inertial forces might depend on velocities 
and have large values, while the usual relativistic correc- 
tions interpreted as the force dependence on velocities, are 
small. In this case the application of the Schwarzschild 
type solutions to the problems stated at galaxy scale is not 
appropriate, and cannot be used to describe the spiral 
galaxies dynamics which is revealed by observations. 

Turning back to the motivation of the research which 
deals with Finsler geometric structures of space-time, one 
should notice that the whole variety of astrophysical data 
including the anisotropy of the acceleration of the Uni- 
verse expansion and the anisotropy of relic radiation, 
points at the anisotropy of space-time only in an indirect 
way. The same can be said about the baryonic asymmetry 
problem, a breaking of the discrete space-time symmetries 
in weak interactions, the problem of anomalous magnetic 
moment of muon, etc. This emphasizes the significance of 
new results obtained in the two independent experiments 
which show directly the existence of the space-time ani- 
sotropy. 

In the first of them [24], the precise atomic interfere- 
ometer was used to measure the phase shifts of the freely 
falling atoms. The local Lorentz symmetry break larger 
than 2 standard errors was found, which means that there 
exists an anisotropic condensate of  unknown nature, and 
that, this interacts with the gravitation field in such a way, 
that the central symmetry of the gravitational potential is 
broken. Consider now the second experiment. 

Recently, at Large Hadronic Collider (LHC) there was 
found a new phenomenon [25] which is now known as 
Ridge/CMS-effect (CMS stands for Compact Muon So- 
lenoid which is both the detector and the name of the 
corresponding research collaboration). One of the features 
of the effect consists in the following. If the proton-proton 
collisions with the full energy 7 TeV produce more than 
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100 particles, the planes corresponding to the tracks of 
every pair of the produced charged particles are oriented 
in such a way that a significant part of them has a common 
cross-line coinciding with the initial protons collision axis. 
This resembles the situation with the elastic scattering of a 
moving particle on a particle at rest: due to the momentum 
conservation (the momentum is equal to the flying particle 
momentum), all the planes to which the tracks of the two 
particles belong after scattering, have the common cross- 
line which coincides with the track of the initial flying 
particle. But contrary to the elastic scattering on the par- 
ticle at rest, the total momentum of the colliding protons at 
LHC is equal to zero. This fact and also the fact that the 
Ridge/CMS-effect is characteristic only to the high mul- 
tiplicity events are hard to explain by regular considera- 
tions: the physical origin of the appearance of the pre- 
ferred direction coinciding with the protons collision axis 
when a hundred or more particles are emitted, remains 
unclear. 

Thus, the Ridge/CMS-effect directly demonstrates that 
in the early Universe there spontaneously emerged the 
axially symmetric local anisotropy of space-time with a 
group DISIMb(2) as an inhomogeneous group of local 
relativistic symmetry and the corresponding Finsler met- 
ric. As for the possibility of spontaneous emergence of the 
complete local anisotropy of space-time with the Abelian 
homogeneous group of local relativistic symmetry and the 
corresponding generalized Finslerian Berwald-Moor me- 
tric, the answer to this question will depend on the three- 
particle correlation function, whose measurement is al- 
ready planned by the CMS collaboration. 

In Section 2, we consider the relativistic Finslerian 
DISIMb(2)-invariant model of a flat space-time with par- 
tially broken isotropy in the 3D space. It will be shown 
that in this model the physical carrier of the anisotropy of 
flat space-time is axially symmetric neutrino-antineutrino 
condensate, and the model itself underlies the anisotropic 
special theory of relativity and admits a natural generali- 
zation to the case of curved space-time and the Finslerian 
extension of GR. The mentioned above Finsler extensions 
of general relativity necessarily leads to the existence of, 
at least, one gauge vector field and of its interaction with 
the conserved current of the rest mass.  

High multiplicity events take place in case of the central 
collision of the initial protons. Then the energy density at 
the moment of the collision is comparable to the energy 
density shortly after the Big Bang, when instead of had- 
rons there was quark-gluon plasma. It is clear that dealing 
with the high multiplicity events in the proton-proton 
collisions, one should account for the phase transitions 
corresponding to the high gauge symmetries violations 
that are accompanied by the vacuum rearrangement. The 
condensate appearing during such rearrangement is lo- 
cally isotropic (Higgs type) only in frames of the usual 
relativistic theory. In the relativistic theory with Lorentz 
symmetry violation, or, in other words, in the anisotropic 
theory of relativity, which will be discussed below, the 
role of the Higgs condensate is played by the axially sym- 
metric anisotropic fermion-antifermion condensate. Be- 
sides, when rapid cooling and hadronization of quark- 
gluon plasma takes place, an entirely anisotropic three- 
gluon condensate can appear. On the one hand, quantum- 
field vacuum, that includes the anisotropic condensate, is 
the physical carrier of the local anisotropy of space-time, 
and it can be regarded as an anisotropic quintessence, on 
the other—it imparts all the particles the properties of 
quasi-particles in the crystalline environment. In particu- 
lar, apart from the rest energy, the particles obtain a rest 
momentum. With regard to the Ridge/CMS-effect, this 
means that in the reference frame coinciding with the 
center of masses of the colliding protons, (relative to the 
laboratory), the total momentum of the appearing pri- 
mordial plasma differs from zero and lies on the collision 
axis (this is due to the anisotropy of the condensate, which 
arises spontaneously along the collision axis). This is why 
the correlation of paired tracks in the CMS experiment has 
turned out such that the planes to which the tracks belong 
cross mostly on the axis of proton collisions. 

A number of astrophysical effects of this interaction 
were studied in detail in the framework of the approach 
proposed by S. V. Siparov. It is suggested to model the 
physical real world by the 8-dimensional phase space- 
time, one of the coordinates of which appears to have a 
constant value. The discussion of this approach, of its 
origination and of the corresponding calculated and ob- 
served effects is given in Section 3 of this review. 

As to Section 2, in addition to the flat space-time with 
partially broken isotropy of the 3D space, it contains a 
brief review of a three-parameter family of flat Finsler 
spaces with entirely broken 3D isotropy and with Abelian 
three-parametric group of relativistic symmetry. The Abe- 
lian group structure of the relativistic symmetry was the 
starting point for a deeper study of Finsler Berwald-Moor 
space, which for the four-dimensional case belongs to the 
specified family. 

In Section 4 we consider the geometric, algebraic, and 
physical aspects of the commutative associative algebras 
and Berwald-Moor geometries of various dimensions as- 
sociated with them. In recent years, studies of this kind 
were also conducted within the framework of interna- 
tional cooperation between the Romanian Academy and 
the Academy of Sciences of the Russian Federation. In 
particular, thanks to the work of Romanian geometers led 
by V. Balan, the results concerning the algebraic side of 
the theory of Berwald-Moor metrics for various dimen- 
sions were complemented by the specific results origin- 
nating from the modern differential geometry of Finsler 
spaces. Their description in a concentrate form can be 
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found in Section 5 of this review. 

2. Relativistically Invariant Finslerian 
Spaces with Local Lorentz Symmetry 
Violation 

As it is known, space-time is Riemannian within the fra- 
mework of GR, and the distribution and motion of matter 
only determines the local curvature of space-time without 
affecting the geometry of the tangent spaces. In other 
words, regardless of the properties of the material medium 
which fills the Riemannian space-time, any flat tangent 
space-time remains the space of events of SR, i.e. the 
Minkowski space with its Lorentz symmetry, which is 
usually identified with the relativistic symmetry. 

However, in recent literature there is an increasing in- 
terest in the problem of violation of Lorentz symmetry. 
Particularly, the string-motivated approach to this prob- 
lem is widely discussed. 

The point is that even if the original unified theory of 
interactions possesses Lorentz symmetry up to the most 
fundamental level, this symmetry can be spontaneously 
broken due to the emergence of the condensate of vector 
or tensor field. The appearance of such a condensate, or of 
a constant classical field on the background of Minkowski 
space, implies that it can affect the dynamics of the fun- 
damental fields and thereby modify the Standard Model of 
strong, weak and electromagnetic interactions. Since the 
constant classical field is transformed by the passive 
Lorentz transformations as a Lorentz vector or tensor, its 
influence on the dynamics of fundamental fields of the 
Standard Model is described by the introduction of the 
additional terms representing all possible Lorentz-cova- 
riant convolutions of the condensate with the Standard 
fundamental fields into the Standard Lagrangian. The 
phenomenological theory, based on such a Lorentz-cova- 
riant modification of the Standard model is called the 
Standard Model Extension (SME) [26-32].  

By design, the phenomenological SME theory is not 
Lorentz-invariant, since its Lagrangian is not invariant 
under active Lorentz transformations of the fundamental 
fields against the background of fixed condensate. In 
addition, in the context of SME, a violation of Lorentz 
symmetry also involves the violation of relativistic sym- 
metry, since the presence of non-invariant condensate 
breaks the physical equivalence of the different inertial 
reference systems. 

It should be added that in the low-energy limit of gra- 
vitation theories with broken Lorentz and relativistic sym- 
metries, there appears an unlimited number of possibilities 
to build a variety of effective field theories, each of which 
could potentially explain at least some of the recently 
discovered astrophysical phenomena (see, e.g., [33]). 

The very existence of the Finsler geometric models of 
space-time within which a violation of Lorentz symmetry 

occurs without the violation of relativistic symmetry 
strongly constrains the possible effective field theories 
with broken Lorentz symmetry: in order to be viable, such 
theories, in spite of the presence of Lorentz violation, 
should have the property of relativistic invariance. 

Since only two types of Finsler spaces with broken Lo- 
rentz symmetry are relativistic invariant [34], we first 
consider the Finsler spaces of the first type. 

2.1. The Relativistically Invariant Finslerian Spaces 
with Partially Broken 3D Isotropy 

The metric of such spaces suggested in [4] has the fol-
lowing form 

   
2

02 2 2
02 2

0

d d
d d d

d d

r

x
s x

x

 
  

  

ν x
x

x

,ν

,ν

     (1) 

This metric depends on two constant parameters r and 
 and generalizes the Minkowski metric, where r de- 

termines the spatial anisotropy, characterizing, thus, the 
degree of deviation of (1) from the Minkowski metric. 
Instead of the 3-parametric group of rotations of Min- 
kowski space, Finsler spaces (1) can have only an 1-pa- 
rametric group of rotations around the unit vector  
which presents a physically preferred direction in the 3D 
space. The translational symmetry suffers no change: 
space-time translations preserve metric (1) invariant (in 
this sense, it is natural to consider the family of spaces (1) 
as a family of flat Finsler spaces. With regard to the 
transformations connecting different inertial reference 
frames, the usual Lorentz boosts conformally modify me- 
tric (1). Therefore, they do not belong to a group of iso- 
metries of this metric. However, by using them, we can 
construct such transformations [5] which belong to the 
group of isometries of metric (1). The corresponding ge- 
neralized Lorentz transformations (generalized Lorentz 
boosts) are as follows 
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where  stands for the velocities of the moving (primed) 
reference frames, the matrices  are the usual 
Lorentz boosts, the matrices j  are the additional 
rotations of the spatial axes of the moving systems around 
vectors  vν  at angles 
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present the additional dilatational transformations of the 
coordinates of events. 

In contrast to the usual Lorentz boosts, the generalized 
boosts (2) determine a 3-parametric non-compact group 
with generators 1 2 3, ,X X X

ν

 
 

 

. Thus, with inclusion of 1- 
parameter group of rotations around the preferred direc- 
tion  and 4-parameter translation group, the inhomo- 
geneous group of isometries, or in other words, inhomo- 
geneous group of relativistic symmetry of flat Finsler 
spaces (1) appears to have 8-parameters. To obtain the 
simplest representation for its generators, it is enough to 
send the third spatial axis along  and rewrite the trans- 
formation (2) in the infinitesimal form. As a result, we 
come to the following eight generators 
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According to [5], these generators satisfy the commu- 
tation relations 
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This shows that the homogeneous isometry group of 
flat Finsler spaces with partially broken 3D isotropy 
contains four parameters (generators 1 2 3X X X Rand 3 ). 
It is a subgroup of the 11-parametric Weyl group [35], and 
it is isomorphic to the corresponding 4-parametric sub- 
group (with generators 1 2 3 0r

 and 3 ) of the 
homogeneous Lorentz group. Since the 6-parametric ho- 
mogeneous Lorentz group does not have any 5-parametric 
subgroup, while its 4-parametric subgroup is unique up to 
isomorphisms [36], the passage from Minkowski space to 
Finsler spaces (1) implies a minimum possible violation 

of Lorentz symmetry. With this, the relativistic symmetry 
represented now by the generalized Lorentz boosts (2) 
remains valid [37]. 

, ,X X X R

0r
Here it is worth noting the following. Despite the fact 

that at   the Finsler metric (1) reduces to Minkowski 
metric 0  the 3-parametric non-compact 
transformations (2) that serve as the homogeneous rela- 
tivistic symmetry transformations for Finsler metric (1) 
don’t reduce to the usual Lorentz boosts 

2 2 2d d d ,s x  x
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but reduce to the transformations 
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that differ by additional rotations kx R x  v ν
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 of the 
space axes. These rotations are designed so that if a 
light-beam in one inertial frame has the direction of  
then it will have the same direction in all inertial frames. 

Thus, at   i.e. in frames of the usual SR, the trans- 
formations (5) are the alternative to the Lorentz boosts, 
however, in contrast to the Lorentz boosts, for any value 
of  they present a 3-parameter non-compact subgroup 
of the 6-parametric homogeneous Lorentz group. As it 
was noted in [37], in order to realize these transformations 
physically, it is enough to choose  as a direction at any 
star and then perform an arbitrary Lorentz boost, sup-
plementing it with such rotation of spatial axes that in the 
new reference system, the direction at the star does not 
change. Taken together, these transformations form the 
specified subgroup (5) of the 6-parametric homogeneous 
Lorentz group. As a result, we can say that within the 
framework of SR,  has no physical meaning and serves 
to the relativistically invariant calibration of the directions 
of spatial axes of inertial frames. 

,ν

ν

ν

ν
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In connection with the last statement, it is necessary to 
make another important remark concerning the 3-parame- 
tric non-compact group of homogeneous transformations 
(5). If one complements this group by the 1-parametric 
group of rotations around  and 4-parametric transla- 
tion group, the result is an 8-parameter subgroup of the 
Poincare group, whose generators and Lie algebra have in 
our basis the forms (3) and (4) assuming that   For 
such a group the name ISIM(2) is now used, and its ho- 
mogeneous 4-parametric subgroup SIM(2), which in- 
cludes (5) and the rotations around , is the basis for the 
so-called Very Special Relativity (VSR) [38]. According 
to VSR, SIM(2) symmetry suggests a more fundamental 
local space-time symmetry than the local Lorentz sym- 
metry. In particular, the requirement of SIM(2) symmetry 
was sufficient to show [39] that neutrinos may have mass 
along with the lepton number conservation, and it is im- 
portant that this result can not be obtained within the 
framework of Lorentz-invariant approach without intro- 
ducing sterile neutrinos. However, a significant drawback 
of the VSR is that  is regarded only as a phenomenolo- 
gical parameter and VSR can not say anything of its 

ν

ν
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physical nature. 
Much more meaningful from the physical point of view 

is the special relativistic theory of the locally anisotropic 
space-time [5-7], based on Finsler metric (1), which de- 
scribes a family of flat relativistically invariant spaces of 
events with partially broken 3D isotropy, and hence with 
broken Lorentz symmetry. Most of the results obtained 
under such a theory have been reproduced in [40] using 
alternative methods (see also [41]). In particular, the in- 
homogeneous 8-parametric group of relativistic symmetry 
of metric (1) with its Lie algebra (4) were obtained using 
the method of continuous deformations of algebra ISIM(2). 
As a result, the corresponding symmetry is more fre- 
quently called DISIMb(2) symmetry (where b is the new 
designation of the parameter r), and the theory itself [5-7] 
is more frequently called General Very Special Relativity 
(GVSR).  

2.1.1. The Rest Momentum in Addition to the Rest 
Energy 

In order to modify the usual relativistic mechanics in 
accordance with the requirement of invariance with re- 
spect to DISIMb(2) it is enough to replace the Minkowski  

line element 2 2
0d d ds x  x

d
b

a

S mc s  

 in the integral of action 

               (6) 

by the Finsler line element (1). As a result, the Lagrange 
function corresponding to a relativistic particle in a locally 
anisotropic space (1), is the following 

2 2 21 .
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   
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vν

v
    (7) 

With this, one can get the expression for the energy  
and momentum  of the relativistic particle [6]: 

2 2 21 1
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c
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v v
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2E mc
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        (9) 

According to (8), the particle energy E reaches its ab- 
solute minimum  at . As for the momen- 
tum  then according to (9), at  it takes the value 

.  Thus, in the anisotropic space with metric (1), 
in addition to the rest energy , any massive par- 
ticle obtains another observable parameter—the rest 
momentum  Note also that as shown in [6], the 

4-momentum 

E m

.mcr ν

,p
mcr ν

0 ,ip p E c  p  satisfies the DISIMb(2) 
-invariant dispersion relation, which we give here in the 
form: 
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2
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  (10) 

In the non-relativistic limit, the Lagrange function (7) 
has the following form 

   22
2 1 1 .

2 2

mm
L mc mcr r r r      

vνv
vν

 2mc mcr  vν

 

Since this expression  which is pre-
sent here is the total derivative over time, it can be omitted. 
As a result, we see that the kinetic energy and momentum 

 

1
v ,

2

v ,

, 1,

v

2,3

T m

p m

 



 

 


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

 

of the non-relativistic particle  in the anisotropic space (1) 
are determined by the tensor of the inertial mass [34]: 

  1 .m m r r       

 

        (11) 

Let us now rewrite the Finsler metric (1) so that it is 
expressed through the four-dimensional quantities:

                    

 

22
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Since ν  it is clear that here we have 

   
 
1, , 1, 1, 1, 1 ,

1, , 0.

i ik

i i
i

diag 

  

     

 

ν

ν

0,r 
1,r 

d .i

 

Finally, we present the physical carrier of the anisot- 
ropy of the flat space of events (12) and outline a plan for 
the further development of the theory. In order to do this, 
we first turn our attention to the unique property of Finsler 
metric (12). On the one hand, for  this turns into 
Minkowski metric, on the other, at  it transforms 
into the total differential d is x

d

 The latter means 
that in this case the action (6) does not depend on the 
shape of the world line connecting the points a and b In 
other words, the space-time loses such a physical char- 
acteristics as spatial extension, and only a temporal dura- 
tion which represents the absolute time interval s   

d i
i x  is left. Moreover, according to (11), the inertial 
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masses of all particles also vanish, and i  becomes not 
the spurionic vector field but is transformed into a co- 
variant constant vector field defined on this degenerate 
(from the metric point of view) space-time manifold. 
Incidentally, we note that it is on the space-time manifold, 
and not on the Minkowski space-time, that the massless 
fundamental fields (for example, those of the Standard 
Model) are introduced before spontaneous violation of the 
initial gauge symmetry and before the appearance of 
masses of the initially massless particles. It is clear due to 
the fact that in the massless world there are no inertial re- 
ference systems, with their mandatory attribute—the refe- 
rence stick. 

In accordance with (6) and (12), a constant non-zero 
field r defines the specific inseparable interaction of the 
constant spurionic field i  with massive particles. The 
effect of this interaction is that the particles obtain—ac- 
cording to (11), the properties of quasi-particles in an 
axially symmetric crystalline medium. The complex of 
constant fields containing the scalar field r and the spu- 
rionic field i  is, thus, the physical carrier of the anisot- 
ropy of the flat space of events (12). As it turned out, the 
null-vector spurionic field i  presents a neutrino-anti- 
neutrino condensate constructed out of constant Weyl spi- 
nors. Such spinors are an exact solution of the DISIMb(2) 
-invariant generalized massive Dirac equation [42], whose 
Lagrangian has the form 

 
22
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       

i



 

        (13) 

If the constant scalar field r is set to zero, the 
DISIMb(2)-invariant generalized massive Dirac equation 
becomes the standard massive Dirac equation, which does 
not have any solution in the form of constant spinors. 
However, the Weyl equations, arising from the standard 
massless Dirac equation have solutions in the form of 
constant spinors, and they provide the possibility to build 
a constant null-vector spurionic field  . But physically, 
it would be unobservable, since at  we come back 
to the framework of SR: the Finsler metric (12) becomes 
the Minkowski metric, the rest momentum 

0r 

mcrp ν

,r

 
disappears, the tensor of inertial mass (11) ceases to be a 
tensor and becomes a scalar m. Accordingly, all the other 
effects of spatial anisotropy discussed in [43] will be lost. 

2.1.2. On the Problem of Construction of the 
Finslerian GR Based on the Group DISIMb(2) 

As noted in the Introduction, the Ridge/CMS-effect which 
was observed at the LHC, directly suggests that in the 
early Universe the axially symmetric anisotropy of space- 
time spontaneously arose, and it had the DISIMb(2) group 

as an inhomogeneous group of local relativistic symmetry 
and the respective Finsler metric (12). This is the first and 
most important reason to regard the problem of con-
structing a Finslerian general relativity based on the group 
DISIMb(2) Needless to speak about the complexity of such 
a problem, especially because it involves the answers to 
the questions concerning the nature of the dark matter and 
dark energy. Despite some advances in this direction, this 
problem is still not completely solved. So, in the end of 
Section 2.1, we suggest a possible way the progress on 
which is likely to lead to the planned purpose. 

The key point in the generalization of the flat DISIMb(2)- 
invariant Finsler metric (12) to a Finsler metric, which 
describes the corresponding curved locally anisotropic 
space-time is the following. If the constant values on 
which the metric (12) depends, namely a scalar  the 
spurion null-vector vi and the spurion tensor ik   

 1, 1, 1, 1diag     are replaced by the corresponding 
conventional fields defined on the space-time manifold, 
i.e. in the metric (12) the substitutions  ,r r x  

   ,i i ik ikx g x   

 

 are performed, then the result 
will be the curved Finsler metric of the following form 
(see [44,45])  

/22
d

d d d ,
d d

r
i

i i k
iki k

ik

x
g x x

g x x

 
   
  

s       (14) 

 ik ikwhere g g x
 r r x

 

 is the Riemannian metric tensor as- 
sociated with the gravitational field,  is a scalar 
field, which characterizes the magnitude of the local 
space-time anisotropy and i i x 

.ν

 is a null-vector 
field that indicates the locally preferred directions in the 
space-time. 

At any point of the curved Finsler space (14), the corre- 
sponding flat tangent Finsler space (12) has its own values 
of the parameters r and  These values are nothing but 
the values of the fields  r x   and xν  at the point of 
tangency. 

Obviously, the dynamics of a Finsler space (14) is 
completely determined by the dynamics of the interacting 
fields      ,  ,  ,ik ig x r x x  and these fields together 
with fields of matter form a unified dynamic system. 
Therefore, in contrast to the existing purely geometric 
approaches to the Finsler generalization of Einstein’s equ- 
ations, our approach [44,45] to this problem is based on 
the use of methods of the conventional theory of interact- 
ing fields. 

The fact that during the transition from a flat DISI- 
Mb(2)-invariant Finsler metric (12) to a curved Finsler 
metric (14), we replaced the spurion tensor 

ik  1, 1, 1, 1diag    and the spurion null-vector i      
by the conventional fields, became the property of metric 
(14) invariance with regard to the following local trans-
formations 
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where x  is an arbitrary function. 
In addition to metric (14), the local transformations (15) 

leave invariant all the observables. Therefore, in the the-
ory of gravitation based on the group DISIMb(2) the 
transformations (15) have the meaning of local gauge 
transformations. For example, the action 
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*1 i
i

i k
ik

v
S

c g v v


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for a compressible fluid in a Finsler space (14) is gauge 
invariant. In this formula,   is the invariant energy 
density of the liquid, d d ,i iv x s

, ,

 and ds is metric (14). 
In connection with the above-mentioned local gauge 

invariance, the dynamical system consisting of the fields 

ik ig r   and a compressible fluid must be supplemented 
by two vector gauge fields iA  and i  that under local 
transformations (15) are transformed in the corresponding 
gradient manner. The i

,B

A  field for a certain class of pro- 
blems is a pure gauge field, and the  field, whose 
gauge transformation has the form 

iB

   
;

1 ,
i

x r  

,ij
i

iB j

  

i iB B b r   

where b is a constant with the dimensionality of length, 
interacts with the conserved rest mass current  adding 
the term proportional to  to the full gauge invariant 
Lagrangian. 

2.2. The Relativistically Invariant Finslerian Spaces 
with Entirely Broken 3D Isotropy 

In general case, the metric of relativistically invariant Fin- 
slerian spaces with entirely broken 3D isotropy [46,47] is: 
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     (16) 

The three parameters ( 1 2  and 3 ) characterize the 
anisotropy of spaces (16) and have the following restric- 
tions 
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1 2 3
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r r r
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It should be noted that if 1 2 3  then the 
metric (16) becomes the fourth power root of the product 
of four 1-forms 
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Thus, in this particular case, we obtain the well-known 
Berwald-Moor metric, but written in the basis, which 
was introduced in [46].

 Now consider the group of isometries of flat Finsler 
space (16). The homogeneous 3-parametric non-compact 
group of isometries, i.e. the group of the relativistic sym- 
metry of space-time (16) appears to be Abelian, and the 
transformations belonging to such a group have the same 
meaning as the ordinary Lorentz boosts. The explicit form 
of these transformations is 

x DL x                 (17) 
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ik  are the unimodular matrices that are given by the 
formulas  
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1 , 2 , 3  are the parameters of the group. Along with 
the parameters i ,  the components 0i iv d dx x

vi i

 of the 
coordinate velocity of the primed reference frame can also 
be used as group parameters. The parameters  and   
are related by 
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The reverse relations have the form 
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As for the generators iX  of the homogeneous 3-para- 
metric group of isometries (17) of the space-time (16), 
they can be represented as follows 
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where p x   are the generators of the 4-parame- 
tric group of translations. Thus, with inclusion of the latter, 
a inhomogeneous group of isometries of the entirely ani-
sotropic Finsler space of events (16) is a 7-parametric 
group. As to its generators, they satisfy the commutation 
relations 
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3. Modeling Real World by the Phase 
Space-Time and Physical Results 
Obtained on This Way 

The theory and results briefly given below are discussed 
in detail in the monograph [83]. 

Let M  
C

; 0,1, 2,3.i 

 be a differentiable 4-dimensional mani-
fold of class .  Let TM be its tangent bundle with co- 
ordinates  If c is a parame- 
trizable curve on M, 
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that the metric introduced above depends on y, i.e. 

ij ijg g x y
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 In general, this metric corresponds to the 
generalized Lagrange geometry, ijg x y

det g

 is a twice 
covariant symmetric tensor on TM with the only restric- 
tions: a) ij  for any    0  ,x y  on TM and b) when 
the coordinates on TM change in the way corresponding to 
the change of coordinates on M, the components of the 
metric vary in the same way as the components of the 
(0,2)-tensor on the main manifold M. This means that TM 
is an 8-dimensional Riemannian manifold, analogous to 
the 6-dimensional phase space well-known in physics. Its 
geometry is quite complicated and uses such concepts as 
nonlinear connection (Ehresmann). But if we limit our- 
selves to the case of linear coordinate transformations 

with constant coefficients and of weak gravitational field, 
i.e. 
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the geometry essentially simplifies, and the definition of 
y  makes it possible to use the Sasaki lift for raising and 

lowering indices on the vertical and horizontal compo- 
nents of the bundle, that is use the same metric tensor. The 
tensor ijg  is a zero-order homogeneous in y tensor, i.e. 
the metric depends only on the direction of y, but not on its 
value. This is expressed by the relation  

  0.k k
ijg y y    If there also holds the condition 

  0,k jg y yij    then this metric becomes the usual  
Finsler one [1], but in this approach this is not assumed. 

The described formalism means that alongside with the 
use of a new geometry for the modeling of phenomena in 
the physical world, instead of the space and time of 
Newton or of the Minkowski space-time, the 8-dimen- 
sional phase space-time is introduced. The character of its 
extra dimensions is not formal, but they have clear phy- 
sical meaning, due to the used approach. Clearly, the 
correspondence between the Lagrangian and Hamiltonian 
formalism now obtains a new dimension. It should be 
noted that similarly to the situation when the transition 
from Newton’s time and space to the Minkowski space- 
time took place and the fundamental constant c with the 
dimension of speed was demanded, the transition from 
Minkowski space-time to the 8-dimensional phase space- 
time demands another fundamental constant, l, this time 
with the dimension of length. One can associate it with the 
fundamental speed and take ,H

1.
l c  then H will be a 

new constant which has the dimension s  This suggests 
that in the interpretations, the following correspondence 

 
 

0 1 2 3 0 1 2 3, , , , , , ,

, , , , , , ,x y z

x x x x y y y y

ct x y z c H v H v H v H


 

should be borne in mind. One should also pay attention to 
the fact that all the events would take place in the 7-  
dimensional subspace of the 8-dimensional phase space- 
time, one of the coordinates of which is constant accord- 
ing to construction. The symmetry groups corresponding 
to this space will be the generalized Lorentz group and de 
Sitter group. The last can be contracted and be used in the 
Carroll space and in the Newton-Hooke space that are of 
interest for the astronomical applications. The possibility 
of separating the resulting space into such parts as 

 , ,x y z  and , , , ,ct c H v H v H v Hx y z  allows the 
use of Lobachevsky geometry to describe the space of 
velocities, this geometry was previously used only in the 
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theory of high-energy particles.
 Preserving only linear terms proportional to ,k

ij x   
k

ij y   and 2 ,k l
ij x y    one can obtain the gener- 

alized geodesics similarly to [48-50] in the following form 

2d 1

d 2

i
i it kl
lk j t

y

s x y





  

 
0j k ly y y

 
  

 
   (21) 

where 1

2
i ih k

jk hj hk j h
jkx x x            is  

the Christoffel symbol depending on y. Thus, in order to 
obtain the equations of motion (dynamic equations) in the 
weak field limit in the anisotropic space, one should use 
(21), but not geodesic equation d d 0,i i l ky s y y  lk  
which is appropriate in the same approximation only in a 
space with Riemann geometry. As a result, after certain 
simplifications and extraction of the anti-symmetric part 
of the auxiliary tensor introduced in [10-15], the equation 
of motion obtained from the geodesic (21) and applied to 
the spatial cross-section of the space takes the form 

2
00

00

d

d 2

c
rot

t


      
 

v
v 00, ,

        
v

v v
 (22) 

where 00  is the only (temporal) component of the metric 
tensor, which remains in the equation of motion in the 
approximation of the weak field. Regarding (22) as the 
equation of dynamics, we obtain the expression for the 
generalized gravitational force depending on velocities 
[10-15] 

 
2

00
002

g mc
rot

      
 

F v 00, ,
       

v
v v

 (23) 

The last two equations are obtained from the geodesics 
corresponding to the field equations for an anisotropic 
metric. They do not require a special choice of the energy- 
momentum tensor, and any additional a priori assump- 
tions. The field equations in the anisotropic space in the 
linear approximation for weak fields retain their form [51], 
although their terms may now depend on y. 

To study the dynamics of spiral galaxies, one could 
choose 

 00 , ,


 


Ω r
v

2

4

c 
u  

where 
2

00

4

c
rot




v

   

Ω  

and 

0

d
mj r

V
r r

 
 
  

   mj r

 

rot Ω  

where  is the mass current density, and r0 corre- 
sponds to the observer. Then the equation for the gravita- 
tional force obtains the form 

 
2

00 2

2
4 ,

2
g mc

c
      

 
F u v

 

     (24) 

If we demand the existence of limit transition to the 
usual GRT, then 

 
2

,

2

2
4 ,

2
g n s

n n

rmc

r c

       
  
F u v

~v const

  (25) 

and it can be shown that the second term under the gra- 
dient has the same order of magnitude as the first one at 
distances of the order of a galaxy radius. It is this that 
prevents the vanishing of orbital velocity required by the 
general relativity. At the same time, the motion in the 
galactic plane and perpendicular to this plane is now de- 
scribed by the different laws, which removes the well- 
known paradox [52] in the observations of motion of stel- 
lar globular clusters. 

In the framework of the suggested approach—anisot- 
ropic geometrodynamics (AGD)—the notion of a point 
mass is not sufficient to model the elementary (effective) 
source of gravitation, and one should use a system of 
“center plus current” which represents a gravitational 
analogue of the circular coil with current around the cen- 
tral charge. The use of such a system for simulation of a 
spiral galaxy, leads to the expression orb  for the 
orbital velocity corresponding to the observed flat rotation 
curve, and to the empirical Tully-Fisher law 1 4~ ,v Lorb lum  
which has no explanation in general relativity. The same 
model can explain the observed substantial excess of 
deflection in some gravitational lenses over the theoretical 
calculations, which appears to be due to the internal mo- 
tions of the masses in the galaxy-lens. It has been also 
shown that in addition to the known convex gravitational 
lenses, in the AGD there exist concave gravitational 
lenses. This can lead to the incorrect determination of 
distances to the sources compared to “standard candles”. 
And this can account for another interpretation of the data 
which led to the idea of the acceleration of the Universe 
expansion and to the notion of dark energy. 

Calculation of the explosion of the central body in the 
“center plus current” model, resulting in the release of the 
two equal masses in opposite directions in the plane of the 
coil leads to trajectories that resemble the well-known 
observations obtained by the HUBBLE telescope (com- 
pare Figures 1(a) and (b)).  

Besides, there are also the images received recently by 
the space observatory HERSCHEL [84] (compare Fig- 
ure 1(b) and Figure 2) when photographing the center of 
our galaxy. Thus, there could be a new approach to the 
study of the origins of the arms and bars, characteristic of 
most spiral galaxies. 

The theory presented in this section is based on the new 
notion, which serves the basis for the description of 
physical reality—the phase space-time admitting the use 
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(a) 

 
X1, X2, X1 

(b) 

Figure 1. (a) Galaxy NGC-1365 (Hubble telescope image, 
NASA/ESA); (b) Numerical calculation based on the “center 
plus current” model in the framework of AGD (the exact 
view of the central details depends on the step of the calcu- 
lation but they remain always present). 
 

 

Figure 2. Details discovered by Herschel orbital observa- 
tory in the center of milky way. 
 
of various geometries to describe its subspaces. The AGD 
approach is consistent with observations at the galactic 
scale, and does not require the introduction of dark matter. 
Besides, it includes a new (or additional) interpretation of 
the Hubble law, which takes into account not the radial 
expansion of the Universe but the various tangential mo- 
tions of its distant parts. The last being regarded in the 
framework of AGD leads to a linear decrease of frequency 

with distance to the radiation sources explained by the 
gravitational red shift. The observations of extremely 
high tangent velocities of the distant quasars present an 
indirect evidence supporting this idea. 

4. Mathematical, Physical and Geometric 
Aspects of Hyper-Complex Numbers 
Algebra 

The natural basis for Finsler geometries of special type 
(the so-called Berwald-Moor spaces  with metric n

 1 2ˆ d d d ,n nG S x x x  

Ŝ

.P

n


         (26) 

where  is the symmetrization operator (without the 
numerical factor)) represent the well-known associative- 
commutative algebras   n

This section of the review is devoted to presenting the 
geometrical, algebraic and physical results obtained in the 
study of poly-numbers associative-commutative algebras 
and Berwald-Moor geometries of various dimensions 
related to them. 

4.1. Conformal Gauges and Non-Linear 
Symmetries 

It is well known that the Finslerian Berwald-Moor space 
 have a rich (infinite) group of conformal symmetries 
.n  We denote by f

n  the Berwald-Moor manifold in 
a special conformal gauge, which can be obtained from 

n  by the action of some n Instead of the 
transformations of the manifold n  belonging to the 
group  we now have the transformations of the 
manifold 



 .f 

Iso ,n
f

n  belonging to the group   Iso ,
f f

n n  
whose elements 

 
f  are defined by the formula 

1.f f f      Iso The action of the group 
f

n  in the 
coordinate space of the manifold 


f

n  in general case is 
described by nonlinear functions, so this group is naturally 
called the nonlinear 



f -representation of the group 

n  In general, the group Iso . Iso
f

n  can always be 
regarded as a (generally nonlinear) group of isometries 



Iso f
n

f
n  of a manifold  , which differs from f

n , 
only by its metric. The form of this metric depends on the 
type of the gauge function 



f . 
In [53,54] there are concrete examples that illustrate the 

fact that the isometry group and the group of conformal 
symmetries of the Berwald-Moor metric can interact with 
each other in a non-trivial way leading to nonlinear sym- 
metries of the known geometries. 

4.2. Osculating Riemannian Metrics 

With the disposal of the metric (26) and vector fields of 
Lie algebras of the groups n  (and n ), one can 
naturally obtain an infinite number of Riemannian metrics 
out of the metric (26) with the help of the following gene- 

Iso 
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ral technique. Consider the “incomplete” scalar poly- 
product of the form:  

 (1) (2), ,ng G X X ( 2), , , ,nX   

where  jX  are the elements of Lie algebras of the 
groups  and (or) n  that are for convenience 
numbered by the indices corresponding to their places as 
the arguments of the Berwald-Moor metric. It is obvious 
that 

Is ,o n

g  is a (pseudo-) Riemannian metric, depending on 
the chosen fields  jX . The described method leads to a 
generalization of the concept of “Riemannian metric os- 
culating to a given Finslerian metric”, discussed in [1]. 

Consider as a reference vector field a common element 
of the Lie algebra of the subgroup of the uni-modular 
dilations D  of the complete group Is  which 
has the form:  

3Iso  3o ,

 1 1 2 2 1 1 2 1X b D b D b x b b     1 2 3
2 2 3 ,x b x  

,b b

 
 

 

3 2

3 3 1

2 1

d

d d

d .

x

x x x

x



 



 1 2 3
2 1 .

 

where 1 2  are arbitrary real parameters. The Rieman- 
nian metric osculating along this field has the form: 

 

1 2 3
1

2 1
2 1

3 1 2
2

d d d

d d

d d d

g b x x x x

b b x x

b x x x x

  

  

  

    (27) 

This metric is generally not flat. Its determinant defin- 
ing a local volume element is given by:  

  1 2det 2g b b b b x x x 

0, b b

3.n 

 
   

, ,

, , 

j

k
ij kc g 

 

One can see that the metric (27) is nonsingular only if 
all of the conditions: 1b  2  1 2  are ful- 
filled simultaneously. The standard study of isometries 
and conformal symmetries of this metric reveals the fact 
that this metric has a 3-dimensional algebra of isometries 
and 10-dimensional algebra of conformal symmetries. 
Such a rich algebra of conformal symmetries is a residual 
“track” of the infinite-dimensional algebra of conformal 
symmetries of the original Berwald-Moor metric (26) for 

 

0, b

The study of residual symmetries of the Riemannian 
metrics osculating to the Berwald-Moor metrics admits a 
more general setting in which we obtain the following 
basic relations: 

    ( ) ( )

( ) ( )           ,

iiX Xj

i j

L g L G X

G X X



  
     (28) 

and 

        
        ,

k k k
i j ij

, ,

           

i ij jX X

i ijj k k

L g L G X

g c g 



   c g 

( )

 (29) 

where jX  is an element of the Lie algebra of the group 

3  Iso ,  jX  is an element of the Lie algebra of the 
conformal group 3  ij  and , kc kc

3Iso 3

 

ij  are the structural 
constants or the structural functions of the Lie algebra of 
the groups  and   respectively. 

Thus, the families of metrics  jg  and   jg

 

 form 

differential ideals with respect to their Lie differentiation 

along the families of fields  jX  and   jX

 

 respec- 

tively. This is a general property and it allows us to for- 
mulate some general theorems concerning the symmetry 
of Riemannian metrics jg  and g   [55]. j

4.3. Metric Bingles in  3

Studying the properties of angles in Finsler geometry is of 
particular interest for its physical applications. One of the 
approaches to the problem of constructing of additive 
poly-angles (e.g. bingles and tringles) is to formulate and 
solve the corresponding functional equations that satisfy 
the additivity condition [56]. Instead of solving the func- 
tional differential equations in the space of basic con- 
formal invariants of B-M geometry, one can from the very 
beginning relate all the types of poly-angles with notions 
additive by their definition, such as lengths, areas or 
volumes, calculated on the unit sphere (indicatrix) of the 
B-M geometry. 

It turns out that for any pair of non-isotropic vectors A 
and B one can introduce two types of bingles—mutual and 
relative. The expression for the mutual bingle has the 
following form: 

    ,A B A B   

 ,
3X

           (30) 

where  is a bi-projection operation in 3  which acts 
on an arbitrary element 

 

 according to the rule: 

ln .
ii X

X
X



, ,

 

The norm in (30) is calculated with the help of the 
standard Berwald-Moor metric in the isotropic coordi- 
nates. The bingle defined by (30) is additive by definition, 
i.e. for any triplet of the “coplanar” vectors A B C  there 
is a condition which is analogous to the Euclidean one: 

     , , , .A C A B B C   

, ,

     (31) 

AThe condition of coplanarity of the vectors B C



 
has the form of the condition of collinearity of the corre- 
sponding -images: 

       0.A B A C              (32) 

Expressions for the second (mutual) bingle (there may 
be three types of it, depending on the mutual orientation of 
vectors A and B) have the form: 
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
, 1, 2,3,i i i 



cfh,

      

cfh ,
B A

i A B e





    (33) 

and the function, which is inverse to the Finsler-hyper- 
bolic cosine  is defined by the integral: 

     
 

1/3

2 3

2

1/
3 3

4 3

arccfh( )

1
4 3

2
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( 4)
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d .
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





  

     


     (34) 

Finally, the expression for the value analogous to the 
solid angle on the vectors A, B and C is given by the fol- 
lowing integral: 

     
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
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

  

                                 

(35) 

The exact formulations, proofs and illustrations can be 
found in [57]. 

4.4. Classification of Homogeneous Cubic 
Metrics 

Symmetry analysis of geometric objects is a key means of 
study of their internal invariant properties (i.e. being in-
dependent on the coordinates). In order to understand the 
place of Berwald-Moor metric among other related cubic 
metrics, the study of the isometry group of the general 
homogeneous cubic form 

d d dx xG G x    

G

         (36) 

was undertaken. Here   are the constant real com- 
ponents of the cubic form. The results of the study are 
summarized in Table 1. 

This proves that the symmetry analysis reveals 6 diff- 
erent symmetry classes (7th class is empty, and the 6th 

coincides with the 5th), the previously known 13 projec- 
tive classes [58] are distributed amongst them. The Ber- 
wald-Moor metric falls into the 1st symmetry class. One 
of the important findings of this study is the conclusion on 
the incompleteness of the classification of cubic homo- 
geneous metrics according to their isometry algebras [59]. 

4.5. h-Holomorphic Functions of a Double 
Variable 

For the interpretation of  as a plane of a double 
variable  it is natural to consider only the maps that 
preserve the hyperbolic complex structure of the plane, i.e. 
by the maps  of the form: 

2
,

   .F h
2 2 

h s  The 
differentiable functions  which satisfy the 
condition: 

,h
0,F   are called h -holomorphic functions 

of double variable h. 
Let us formulate some important properties of the h- 

holomorphic functions as theorems. 
Theorem 1. Any -holomorphic function maps zero 

divisors into zero divisors. 
h

V hTheorem 2. The components U  and  of the - 
holomorphic function F U jV 

;U V .
 satisfy the hyperbolic 

Cauchy-Riemann conditions: , ,t x  , ,x t

Theorem 3. For any -holomorphic function 
U V

h
 

F  in 
 there holds the integral Cauchy Theorem: ,D

 d 0,F h h


  

where   is a simple closed piecewise smooth contour 
which has no isotropic elements and lies entirely in  .D

hTheorem 4. For any -holomorphic function F  in D, 
there holds true the integral Cauchy formula: 

 
0

d 0,
F h

h
h h


  

where   is a simple closed piecewise smooth contour 
which has no isotropic elements, lies entirely in  and 
encloses the point  

.D
.h0

Other versions of Cauchy’s integral formula are given 
in [60]. 

Theorem 5. For a simple closed piecewise smooth 
contour   that has no isotropic elements and encloses 
the point  we have the formula: 0 ,h

 0

0, 1;
d

, 1.H

h h h
j

 


 
    

       (37) 

 
Table 1. Projective and symmetry classes of 3D cubic metrics.  

Symmetry classes 1 2 3 4 5 6 7 8 

Projective classes III, XII V 
1):VIII, 

2):VI,XIII, 
3): VII 

IV II, X, XI ? — Gen., I, IX 
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where   is any real number, H

2π

 is the improper “fun- 
damental constant” in the plane of double variable that 
determines the amount of space of the hyperbolic angles 
(analogous to the constant  in the complex plane). 

Theorem 6. The pseudo-Euclidean metric  
 Re d dh h 

2

( )

  is conformal relative to an arbitrary 
h-holomorphic mapping of the plane of the double vari- 
able. 

In [60] the properties of the basic elementary h-holo- 
morphic functions of the double variable were studied in 
detail. 

4.6. Hyperbolic Field Theory on the  Plane 

We consider an arbitrary h-holomorphic function F h   
 as complex h-potential of a certain 2-dimen- 

sional vector field (h-field) in the plane of double vari- 
able. The real part U  of this function we associate with 
the potential of the field ( -potential function) and the 
imaginary part V we associate with the strength function 
of this field. We define the strength,  of the -field by 
the formula: 

U jV

h

h

 , , ,t xj U jU 
d d

d d
t x

F F

h h
            (38) 

which can be regarded as a double form of representation 
for the vector field of the gradient of the function U with 
respect to the pseudo-Euclidean metric. Equation (38) is 
obtained taking into account the hyperbolic Cauchy- 
Riemann conditions. 

In view of the relation  z   (antiholomorphicity 
of strength), arising from the definition (38), we obtain the 
following identity: 

 , , 0,x x t
  

, ,

, ,

0;

0,
t t x x

t x x t

  

  





h

h

  ln ,

, ,

1

2 t t x x tj
h

   


     (39) 

which is equivalent to two identities: 

divh

roth

 

 
         (40) 

expressing, respectively, the solenoidal and -potential 
properties of the electrostatic field1. 

As an example, consider the -potential of the form 

F h q h              (41) 

which is obviously the hyperbolic generalization of the 
Coulomb potential. The corresponding field strength is 
given by (38) and has the form: 

2 2 2 2 2

q qh t x
q j

t x t xh h

       


const,

.    (42) 

The field lines of a hyperbolic point source are the ra- 
dial lines with    and the equipotential lines are 
the hyperbolas const.  The picture of the field lines in 
all 4 wedges is shown on the figure: 
 

 
 

The dual interpretation of the hyperbolic point source is 
obtained by passing from the potential  F h  in (41) to 
the potential  jF h


 At the same time for a new dual 

field  we get the following expression: 

2 2

d
.

d

F qj x jt
j q

t xh h


    






      (43) 

Field  is a hyperbolic analogue of a point vortex. Its 
lines of force are shown in the picture and present the 
hyperbolas: 

 

1Notice that the divergence of the vector field is defined in the same 
way in the complex and hyperbolic cases, as opposed to the operation 
of the curl of a vector field, which includes the symmetric combination 
of partial derivatives in the hyperbolic case.  
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By analogy with the complex case, it is possible to 
combine the above two situations into one introducing the 
concept of hyperbolic vortex-source with the complex 
charge  Then the potential takes the form: 

With the help of (47), one can easily verify the validity 
of equations for function 

.q jm 

 ln .j m q

F  in the form of (46) by the 
direct calculation in components 

  ln

ln

F z h

q m

† ‡

31 2
1 2 3

1 2 3

0;

,

F F

h h
FF FF

e e e
h   

 
 

 
 

  
   

 iF F

 

1 1
const,x

   

 

    


  (44) 

Such a potential can be most naturally interpreted in the 
framework of dual-symmetric hyperbolic field theory in 
which the hyperbolic electric and magnetic charges and 
currents are present on “equal footing”. The equation for 
the field lines of such field is obtained from (44) by 
equating the imaginary part to a constant: 

  t x t        (45) 

where .q m 
2

 The picture of the field lines for 
    is shown on the figure: 

 

 
 

For physical applications it is necessary to generalize 
the concept of the h-field for the case of commutative and 
associative algebras of higher dimensions. In what follows 
we illustrate the idea of such a generalization by the ex- 
ample of the algebra of 3-numbers  3

We start with an isotropic basis in the 3  in which the 
h -holomorphic function has the following representation: 

.P
,P

     1 1 2  2 3 3.F h F e F   e F e

† ‡, ,h h h

    (46) 

The operators of differentiation with respect to the in- 
dependent variables  have the following form: 

1 2

1 2†

1 2‡

e e
h

e e
h

e e
h

     (48) 

where here and further i 

1 2 3, ,j j j

1 1 2 3

2 1 2 3

3 1 2 3

;

;

j e e e

j e e e

j e e e

 is the same function 
of various isotropic variables. 

The conditions of holomorphicity (multidimensional 
analogue of the standard Cauchy-Riemann conditions), in 
symmetric non-isotropic basis   which is de-
fined by: 

  

            (49)    

   

and by the rules of multiplication: 

 
 

2
1 2 3 ;

· ,

i

i k l

j j j j

j j j j k l

   
         (50) 

  

have the form of matrix differential equations: 

3
1 2 3

3
3 1 2

3
2 3 1

;

;

.

e

e

e

  

  

  

 


 

 




 




 
 

 

 
 

 
 

 
 

     (47) 

 
 

 

3 2 1 1 2
1

2 3 1 3 2 2

3
1 3 3 1 2

0,

U

U

U

 

 

 

         
                    

 (51) 

 
 

 

2 1 3 3 1
1

1 2 3 2 1 2

3
3 2 2 3 1

0

U

U

U

 

 

 

         
                    

  (52) 

for every h-holomorphic function  
  1 1 .2 2 3 3F h U j U j U j   ,   Here i j i j    

1 2 3.      

U

 Due to the invariance properties of the 
h-holomorphy with respect to the choice of the algebra 
basis, we can say that the general solution of (51) and (52) 
is written by representing i  in terms of iF  (components 
in the isotropic basis) expressed in terms of x-coordinates: 

   
   
   

1 2 1 3 3 1 2

2 1 2 3 3 1 2

3 1 2 3 2 1 3

;

;

.

U F x x x F x x x

U F x x x F x x x

U F x x x F x x x

     

     

     

 

   (53) 

This fact can be verified by direct substitution of (53) 
into (51) and (52). The combinations of coordinates in the 
arguments of F present the higher analogues of retarded 
and advanced arguments in the double plane. 

The third-order operator 

 3
1 2 3† ‡

1 2 3

e e e
h h h


  

    
       (54) 

    
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is proportional to the algebraic unity, so for every smooth 
function 

The integral curves of the field  are spatial sec-
tions of 2-dimensional space-time, orthogonal to the lines 
of time at every point. Thus, the scale factor “governs” 
both the course of the proper time and spatial distances. 

V
 † ‡, ,F h h h

  3
2 3 3 .

 

       3 3 3
1 1 2F U j U j     U j 

 3 †h
‡ ,h  3 0,

 0 1, 2,3 .U i 



.

  (55) 

For arbitrary motions of test particles, the length and 
time intervals are calculated as:  If the function F is h-holomorphic, then because the 

operator  contains differentiation with respect to  
and  there holds the relation   which is 
equivalent to its three components: 

F  
 3

i             (56) 

Equation (56) is a 3-dimensional analogue of the har- 
monicity conditions or the hyperbolic harmonicity condi- 
tions which are identically satisfied by holomorphic 
functions of complex or of double variable, respectively. 

The discussion and development of these ideas can be 
found in [61]. 

4.7. Conformal Two-Dimensional Theory of 
Relativity 

We extend the Poincare group acting on the two-dimen- 
sional space-time 2  to a group of arbitrary h-holomor- 
phic transformations that operate on points-events of 
space-time as on the elements of 2  Using the expo- 
nential representation for the derivative of F  : 

     ,, ,j t xt x e F h F         (57) 

we conclude that locally h-holomorphic transformations 
implement not only reflections and boosts known in the 
theory of relativity but also the extension of lengths of the 
vectors (scalar factor  ,F t x ). Let us consider the 
function F U j  V  as the complex potential of the 
reference vector field of the 2-velocity or the reference 
field of the proper time. The field of 2-velocity u is de-
termined by the formula: 

d

d
,

F U U
j

h t x
u

 
 

 
        (58) 

which uses the definition of the operator of complex dif-
ferentiation and the hyperbolic Cauchy-Riemann condi-
tions. The square of the modulus of the 2-velocity is 

   2
u U   

22 2
.V F 



    (59) 

“The velocity field” of the proper time for any integral 
curve  of this field is given by: 

d
.

d
F

s

 

.

             (60) 

Now in the h-holomorphic theory of relativity under 
consideration, the intervals of the pseudo-Euclidean length 
and time become different and the relationship between 
them at each point is governed by the hyper-complex 
potential F  

 d d
, ; , ,

d d
U w V w

s s

     


w

    (61) 

where  is the standard vector of the 2-velocity of the 
test particle  1 .w  

The simplest version of the variational principle of the 
dynamics theory of the hyperbolic field that takes into 
account the non-holomorphy of the hyperbolic potential 
inside the sources is determined by the action of the form: 

2

22

, ,
,  d d ,h h

F F F F h h             


    (62) 

where the first term under the integral is a hyperbolic 
“kinetic term”. It is responsible for the dynamics of the 
hyperbolic potential in vacuum. The second term repre- 
sents a hyperbolic “potential term” and is responsible for 
the properties and for the contribution of sources. This last 
term depends only on the hyperbolic modulus of the 
magnitude of non-holomorphy, and in the region outside 
the sources, where the non-holomorphy becomes equal to 
zero, it defines (in the action) a certain “full divergence” 
that does not give any contribution to the equations of 
motion. The standard procedure of varying the action (62) 
over the field variables F F,  leads to the following field 
equations: 

 , ,

1
.

4 h h
F F 

.

         (63) 

This expression is the inhomogeneous wave equation 
with a source on the right-hand side, depending only on 
the non-holomorphy of F  As expected, the field equa- 
tions are nonlinear, since the field ,F  as follows from 
the principles of the theory, describes its own sources 
through effective self-interaction. In this sense the de-
veloped theory is adjacent to the versions of the unified 
field theory by Mie. 

A remarkable feature of Equation (63) is the existence 
(regardless of the specific form of the potential function 
 ) of the first integral  

   ,
1

h
h F           (64) 

 hcontaining an arbitrary function . 
The explicit expressions for the energy density of the 

algebraidized matter   and its pressure p, obtained using 
the standard formalism of the field theory (Noether’s 
theorem), have the form: 
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 X

 
1 ;

1 ,

XY

XY

 

 



p X

   

  

 

 
     (65) 

2

, .hY F  where 

With the help of the super-variational principle intro- 
duced in [62], it appears possible to calculate the general 
form of the potential   in the theory presented here 

  0 1
1

ln 1 ,3 2
X

X X U   U
U



0U 1

3S

       (66) 

where  and U  are two fundamental constants of the 
theory. 

5. Differential-Geometric Aspects of the 
Theory of Berwald-Moor Type Finsler 
Spaces of Various Dimensions 

In order to find out the fundamental relations between the 
scalar poly-product and geometric objects induced by it, 
as a continuation of research on these interrelations 
(which started by the works of M.Matsumoto, H. Shimada, 
S.Numata, K.Okubo and of Romanian geometers [70, refs. 
[29-32] and [43]] and [75, refs.[3,4]]), new correlations 
were obtained between the Berwald-Moor m-th root 
pseudo-norms and geometric objects from the classical 
Finslerian context ([75, §2 and 5-7]). Such relations were 
investigated in [72] and [74]. Their role is a methodo- 
logical one: they enhance the process of deriving proper- 
ties of certain structures (e.g., projective ones, [75]), or 
passing from algebraic aspects of m-th root metric theory 
to differential geometry specific aspects from the theory 
of Finsler spaces. 

Description of the Obtained Results 

The study of connections which are compatible with re- 
markable geometric structures was performed in [72], 
where, for specific connections from Finsler geometry 
(e.g., for Cartan, Barthel and Miron connections), the 
authors point out the properties of induced connections on 
hypersurfaces, as a necessary step in the study of mean 
Y-curvature within the N-extremality framework. In this 
study, the authors propose an original software for the 
calculation and the use of Finslerian geometric objects 
specific to the study of y-minimal submanifolds. With the 
help of Maple symbolic calculations, they determine the 
coefficients of these geometric objects for low-dimen- 
sional manifolds equipped with 3-rd and 4-th root metrics 
and with Berwald-Moor conformal metrics. The under-
lying algorithm of this Maple software, was introduced by 
M. Matsumoto ([72, refs. [39,40]]) and is likely to pro-
vide a wide range of applications in the study of anisot-
ropic media.  

Moreover, in the paper [75,§3], there are indicated the 

essential connections to be used in determining whether 
an m-th root metric space is of Berwald or of Douglas type, 
and are derived original results concerning spaces with 
Berwald-Moor type metrics. 

On the other side, in [68], Landsberg spaces are char-
acterized by means of classical connections (Vasiman and 
Levi-Civita) and the connections which are subsequently 
induced into the structural and transversal fibers of the 
bundle, are indicated. 

The work [63,§2-3] performs a preliminary study of the 
cotangent bundle of spaces endowed with Berwald-Moor 
metric; in the cited paper, one defines the v-curvature 
tensors and the T-tensor of the Berwald-Moor space, for 
the case of Shimada-type m-th root metrics; the results are 
specialized for the case of dual m-th root metric spaces 
having the indicatrix given by the product of the mo- 
mentum components. In this case, the classical results 
regarding the vanishing of the torsion tensor and of the T 
-tensor, obtained by M. Matsumoto and H. Shimada ([63, 
refs.[5,11]]) and also the property of -likeness for the 
Berwald-Moor space, were obtained for the first time for 
the dual case. 

The determining of connections and of induced geo- 
metric objects on submanifolds of m-th root metric spaces 
was carried out in the paper [72], by summing up known 
results and by original implementation of their construc-
tion into Maple code, using macros and supplementary 
procedures which simplify the use of the code and allows 
to extend the results specific to the study of the indicatrix. 

The procedure for obtaining the mean curvature and 
minimal (Y-extremal) surfaces/hypersurfaces and corre- 
sponding computer simulation are presented in [72], 
which embeds two addenda devoted to the 4-dimensional 
case. Here, the mean curvature and the equations of Y - 
extremal (hyper-)surfaces are explicitly obtained by the 
use of symbolic software, and the calculation of the ex- 
plicit form of the normal field to a submanifold (theo- 
retically described in [72, ref. [40]]), represents a concrete 
application of software procedures in solving nonlinear 
equations. Also, the mean curvature – depending on the 
energy of a space-like or light-like normal vector field, is 
obtained by using specific procedures of the relativistic 
pseudo-Finslerian approach. This approach imposes re-
strictions on the submanifolds for the indicated practical 
applications, aiming to find solutions of the equations of 
Y-extremal submanifolds. 

Another aim of an earlier planned research ([68, ref. [2]]) 
relates to determining specific types of cohomology in m- 
th root metric spaces ([68,77]), including the cohomolo- 
gies of certain Berwald-Moor Finslerian spaces. These 
papers present new results concerning fibered structures 
of Finsler type: in [77], it is proved the existence of a 
diffeomorphism between the 2-jet vertical bundle induced 
by the canonical bundle and the product of the horizontal, 
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vertical and mixed subbundles of 2-jets induced by the 
second order tangent bundle. In [68], it is introduced the 
Vaisman connection and it is proven that the pair Levi- 
Civita connection—Vaisman connection induces a pair of 
connections of the same type as the initial ones in the 
structural bundle, only if the base manifold M is a Land- 
sberg space, and that the slit tangent bundle (the tangent 
bundle without the image of its null section, denoted as 

) is a Reinhart space if and only if the base manifold 
is Riemannian. Further, the 2-leaf jets on  are stu- 
died, it is obtained a decomposition of this space, and the 
1-dimenional Cech cohomology group with coefficients 
from the sheaf of basic functions is constructed in terms of 
fields on leaves of 2-jets. It is defined the Mastrogiacomo 
coholology group with respect to the connection on the 
structure sheaf induced by a connection on the manifold 

 and it is proven that the associated cohomology 
group is isomorphic to the 1-dimensional Cech cohomo- 
logy group on the manifold , having as coefficients 
germs of functions on TM , which are related to the 
induced connection; in particular, for 4-dimensional m-th 
root spaces, it is proven that this sheaf is isomorphic to the 
sheaf of basic functions on . 

0TM
0TM

0TM

( )

0TM
0

0TM
In [78,79], the HC n

 

 Halphen-Castelnuovo problem 
for smooth curves is split into two parts: the study of the 
lacunary and of the non-lacunary domain. The latter one is 
studied: existence obstructions are determined and ex- 
amples of curves on rational surfaces and irrational scrolls 
are built. There are studied for the first time the existence 
of smooth irreducible non-degenerate curves of degree d 
and genus g from the projective space (the Halphen- 
Castelnuovo HC n nD

;d g nD

nD

 problem). For the domains 1  
and 2  , built in the plane ( ), it is shown that 1  is 
simply connected, by using curves which are displaced on 
rational surfaces related to hyper-elliptic type sections, 
and are presented well known theorems of Ciliberto, Ser- 
nesi and Pasarescu. As well, using results of Horrowitz, 
Ciliberto, Harris and Eisenbud, it is conjectured that  
is exactly the targeted lacunary domain. 

nD

Geodesics and Jacobi fields are investigated in [75,§2] 
and [74,§3], where geodesic equations and spray coeffi-
cients are introduced and studied for conformal flag met-
rics. In [75], the hv-curvature tensor is determined for 
arbitrary m-th root structures; this result is further used in 
determining the specific characterizations of Landsberg 
and Berwald-type m-th root metric spaces. Relations be-
tween the coefficients of two sprays for non-decom- 
posable metrics are obtained in an explicit form, for cubic 
metrics in [74,§6]. All these results complete known re- 
sults obtained for m-th root metric spaces by M. Matsu-
moto and H. Shimada. It is emphasized the role of flag 
curvature, which is a key one in describing the behavior of 
geodesics. This is continued in [73], where there are de- 
scribed the geodesic equations perturbed by the presence 

of an electromagnetic field. In Finsler spaces, the 4-poten- 
tial 1-form is anisotropic, and represents a horizontal 
1-form on the tangent bundle, having specific properties. 

Relativistic models based on 4-dimensional m-th root 
metric are subject of intensive research. In [48], original 
results were obtained for the OMPR (optic-metrical pa- 
rametric resonance) effect, with applications to relativity 
theory and to experimental physics (detection of gravita- 
tional waves). This work has been carried out in collabo- 
ration with the Russian physicist S. Siparov. The influ- 
ence of a weak deformation of a flat pseudo-Finslerian 
metric upon the electromagnetic field tensor is studied in 
[73] and, in particular—for the case of m-th root metrics 
of Berwald-Moor type. The generalized geometric models 
are obtained and the physical meaning of such a gener- 
alization, together with its role in the equations of elec- 
tromagnetism in Finsler spaces is pointed out. Geodesics 
and Jacobi fields are also studied in [70,§1-2] in the con- 
text of structural stability of second order differential 
equations, where the authors obtain original results for 
sheaves of curves and for the forces which deviate tra- 
jectories from geodesics in the case of conformal defor- 
mations of m-th root structures or locally Minkowski 
metrics. With the help of supplementary software design- 
ed to determine geodesics by means of the computer, 
original procedures for defining the invariants which cha- 
racterize the stability of structures were derived. 

In [75,§3-6], there are studied m-th root Berwald and 
Landsberg spaces and projectively flat spaces and, in the 
work [74,§4]—cubic spaces. In [75, Th.17 and Th.18], 
there are investigated m-th root projective spaces and, in 
particular, Riemann-projective spaces with m-th root 
metrics [75, Th.19, 20 and Prop.22]. All these results are 
original and they complete, in the case of m-th root met-
rics, known results obtained by S. Bacso, Zs.Szabo, L. 
Tamassy and Cs. Vincze. 

In [70], the authors present the basic notions from the 
theory of structural stability (KCC—Kosambi-Cartan- 
Chern)—created and developed by P. L.Antonelli, I. Bu- 
cataru and S. Sabau [70, refs. [1-8, 48-49]] and carried out 
by V. Balan and I. R. Nicola for biological and ecological 
models ([70, refs. [10-13]]). The five KCC-invariants are 
described and in the Appendix, original Maple programs 
for determining the invariants describing Jacobi stability 
of dynamical systems associated with the Finslerian ap- 
proach, are presented. Sections 4 and 5 contain original 
results for the case of conformal deformations of m-th root 
metrics and describe the properties of the associated de- 
formation algebras. 

The papers [64,66] extend known results for symmetric 
positive definite tensors for Z, H and E-spectra of Ber- 
wald-Moor and Chernov tensors in 4-dimensional spaces. 
The algebraic properties of these tensors induce geomet- 
rical properties: by spectral techniques it is shown that the 
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indicatrices of the associated Finsler metric are not ruled 
and compact, and that the problem of the minimal distance 
between the origin of the frame and the indicatrix has a 
solution depending on the Z-eigenvalue with maximal 
absolute value and with the corresponding direction given 
by the generating Z-eigenvector. The problem of asymp-
totic behavior of the indicatrix is solved by means of 
spectral properties of the symmetric tensor associated to 
the fundamental Finsler function. There are defined: re- 
cession vectors, degenerate vectors, singular points of the 
indicatrix and the best first-order approximation. The qua- 
litative description of the three types of eigenvalues is 
obtained in [71] with the help of the theory of resolvents 
for the cubic Berwald-Moor metric. 

Hamilton equations, Legendre duality and physical mo- 
dels associated with m-th root metric spaces on the tangent 
or on the cotangent bundle are studied in [67], where it is 
indicated an essential parallelism between different trans- 
formations with physical meaning, and it is emphasized a 
Legendre-type relation between the Lagrangian formal- 
ism and the Hamiltonian one. It is investigated the alter- 
native given by the use of the Rashevskii transformation 
commonly used in mechanics and its degenerate nature. 
The hyperbolic character of the Finsler and Cartan func- 
tions is emphasized and the correspondence between the 
basic geometric objects and their duals given by Legen- 
dre-Finsler duality for general Berwald-Moor metrics of 
arbitrary dimension is described. 

In [51,80-82], the authors build models for the gravita- 
tional and for the electromagnetic fields, based on gener- 
alized Lagrange metrics and in particular, on the locally 
Minkowskian Berwald-Moor metric. 

In [65], it is studied the geometry of submanifolds in 
m-th root metric spaces and in [67] the hyperbolic char- 
acter of the Berwald-Moor metric is emphasized; in [65], 
the author proposes a pseudo-Finslerian formalism for 
Finsler metrics of locally Minkowski type, including the 
Berwald-Moor metric; a special attention is paid to the 
objects which allow to characterize minimal surfaces. 
Linear and nonlinear Cartan connections are studied and 
Gauss-Weingarten, Gauss-Codazzi, Peterson-Mainardi and 
Ricci-Kuhn equations are obtained. In [64,66], geometric 
properties of the Berwald-Moor indicatrix are obtained by 
means of spectral theory associated to a supersymmetric 
tensor; the spectra are obtained with the help of the Maple 
software. 

The study of cohomology classes for m-th root metric 
spaces and the study of associated bundles extend known 
results by addressing to the initial context of Finsler 
spaces (in particular, for locally Minkowskian metrics). 
The results include an explicit description of the Vaisman 
connection for a vertical fiber with respect to the verical 
bundle and a proof of the fact that its leaves are Reinhart 
spaces [76]. Further, in [77], in a vertical fiber of a Finsler 

manifold it is defined an adapted basis to the Liouville 
fibration, the vertical bundle of 2-jets and the leaves of 
vertical bundles of 2-jets of transversal and mixed types. It 
is proven that there exists a canonical diffeomorphism 
between the total space of the vertical bundle of 2-jets and 
one of the product bundles of vertical, transversal and 
mixed leaves of 2-jets. 

Specific variational features of the energy in m-th root 
metric spaces and the behavior of geodesics is studied in 
[81,82]; the authors investigate extensions of Lorentz 
geodesics to generalized Lagrange relativistic models 
obtained for small deformations of Berwald-Moor and 
locally Minkowski metrics. In [82], it is described a class 
of solutions of the Einstein field equations for such mo- 
dels. In [69], a system of second order differential equa- 
tions is considered as an extension of geodesic equations 
and it is investigated by means of the KCC approach. 

The study of constant scalar curvature and constant flag 
curvature is continued in [65]; there, it is investigated the 
horizontal curvature of a pseudo-Finsler manifold. It is 
proven that, in the Berwald-Moor case, the horizontal and 
the flag curvature of the space vanish, while the induced 
curvatures on submanifolds are generally nontrivial. 

The investigation of rheonomic KCC models is con- 
tinued in the work [69]; the autonomous case is extended 
to the rheonomic one by means of a geometrization of 
classical KCC theory on first order jet spaces. Here, the 
authors study the relations between spatial and time 
semisprays and define a nonlinear connection on the 1-jet 
space. They find the five invariants of the theory and point 
out the differences between the rheonomic case and the 
autonomous one, considering the geometric objects re- 
lated to induced connections and KCC invariants. 
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