
International Journal of Modern Nonlinear Theory and Application, 2012, 1, 97-101 
http://dx.doi.org/10.4236/ijmnta.2012.13014 Published Online September 2012 (http://www.SciRP.org/journal/ijmnta) 

Boundary Stabilization of a More General  
Kirchhoff-Type Beam Equation* 

Jianwen Zhang, Danxia Wang# 
Department of Mathematics, Taiyuan University of Technology, Taiyuan, China 

Email: jianwen.z2008@163.com, #danxia.wang@163.com  
 

Received July 12, 2012; revised August 12, 2012; accepted September 12, 2012 

ABSTRACT 

Simultaneously, considering the viscous effect of material, damping of medium, geometrical nonlinearity, physical 
nonlinearity, we set up a more general equation of beam subjected to axial force and external load. We prove the exis-
tence and uniqueness of global solutions under non-linear boundary conditions which the model is added one damping 
mechanism at l end. What is more, we also prove the exponential decay property of the energy of above mentioned sys-
tem. 
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1. Introduction 

The problem is based on the equation  

  2

0
, d

l

tt xxxx x xxu u u s t s u     0  

which was proposed by Woinowsky-krieger [1], as a 
model for vibrating beams with hinged ends. One of the 
first mathematical analysis for the equation 
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tt xxxx x xxu u M u x u    

was done by Ball [2], which was later extended to an 
abstract setting by defining a linear operator A by 
Medeiros [3]. In [4], Tucsnak considered the above beam 
equation which clamped boundary and obtained the ex-
ponential decay of the energy when a damping of the 
type a(x)ut is effective near the boundary. In the same 
direction, Kouemon Patchen [5] obtained the exponential 
decay of the energy for above-equation when a nonlinear 
damping g(ut) was effective in Ω. To [6] considered the 
above kirchhoff-type beam equation under non-linear 
boundary conditions 

     0, 0, , 0x xxu t u t u l t    
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which the model is clamped at x = 0 and is supported x = 

l. He proved the existence and decay rates of the solu-
tions. A rather general kirchhoff-type beam equation 
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was set up by Ball [7], who presented the existence and 
uniqueness of solution under linear boundary conditions. 
However the global solution and exponential decay for 
the more general beam equation is open under nonlinear 
boundary conditions. In the present work, we are con-
cerned with the existence and uniqueness of solutions 
and the exponential decay property of energy on the 
nonlinear beam equation with external load 
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0
d ,

tt xxxx xxxxt t

l

x xt x xx

u u u u

M u N u u x u q x

   

   t
     (1) 

with nonlinear boundary conditions 

     0, 0, , 0xx xu t u t u l t         (2) 

         , , ,xxx xxxt tu l t u l t f u l t g u l t   ,  (3) 

and initial conditions 

   0,0u x u x  and    1,0tu x u x   (4) 

2. Definition and Assumptions 
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In this paper, our analysis is based on the Sobolev spaces 

      2 0, 0 0xV u H l u u l    , 
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    4 0, 0 0xxW u V H l u     

espectively equipped with the norm xxV
 and u u

xx xxxxW
. We assume that f, g:R → R are 

continuously differentiable functions such that 
u u u 

  0f s s   

and            ˆ2 0,f s s f s s R            (5) 

where             
0

ˆ d
s

f s f z  z  and  

 0 0g   

and         2
, ,g r g s r s r s r s R     

,

   (6) 

for some ρ > 0. 
Assume that the functions  are 

non-negative functions and respectively satisfy 
     1, 0M N C   

      0 0M 

and               
0

ˆ d
l

M s M z  z             (7) 

       0 0N   

and                            (8)   0N s s 

3. Existence and Uniqueness of Global 
Solutions 

Now we come to the following conclusions of the exis-
tence and uniqueness of global solutions. 

Theorem 1. Assume that the assumptions of (5)-(8) 
and  hold. Then for any 

 satisfying the compatibility condition 
     2 2, 0, ; 0,q x t L L l 

0 1 W


,u u

        0 1 0 1
xxx xxxu l u l f u l g u l        (9) 

There exists a function u satisfying (1)-(4) such that 

       2 0 2, 20, ; 0, ; 0, ; 0,u L W C V W L l       

Proof. Let us solve the variational problem associated 
with (1)-(4), which is given by: find  such that  u t W
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(10) 

for all V . Let  j  be a complete orthogonal sys-
tem of W. For each , let us put  mN

 1 2span , ,m mW    ， . 

We search for a function 

   
1

m
m j

j

u t a t j


   

where  ja t
m

 is a unknown function such that for any 
, and it satisfies the approximating equation W
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 (11) 

with the initial conditions 

  00mu u and       (12)   10m
tu  u

Thus (11) and (12) are equivalent to the Cauchy prob-
lem of ODES in the variable t, which is known to have a 
local solution um(t) in an interval [0, tm) (tm < T) for any 
given T > 0. 

Estimate 1. By integration of (11) over [0, t] (t < tm) 
with  m

tu t  , we see that 
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where    
2m

xz t u  and  
21 d

2 d
m

t xz t u
t

 .  

Considering that 

      
2

, , ,m m m
t t tg u l s u l s u l s  0 , 

     0t tN z s z s   and the initial conditions, we get 

   
2 2 2

0 0
d ,

t tm m
t tu u s s C q x s d    s .  

Using Gronwall inequality, we have 
2m T

tu C e . 
Then there exists a constant M1 depending only on T 
such that 

2 2

1
m m
t xxu u M  .           (13) 

for any  0,t T  and for all . m N
In this paper, C is a constant independent of m, t and 

denotes different value in different mathematical expres-
sion. 

Estimate 2. Integrating by parts (11) with  0m
ttu   

and t = 0, and considering the compatibility condition (3) 
we get 
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ing the difference of (11) with t = t + ξ and t = t, and re-
placing ω by   m

t tu t u t  m , we get 

m
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Thus there exists a positive constant M2 such that 

  20 ,m
ttu M m  N .        (14) 

Estimate 3. Let us fix t, ξ > 0 such that ξ < T – t. Tak-  where  

                     1 0
d

l m m m
t x t x xt xt

mI M z t N z t u t M z t N z t u t u t u t x                  . 

where k3 > 0 is a constant. Putting Let us estimate 1I . Since  

     0, , 0, 0m m m
x xxu t u l t u t   ,          

2 2
, m m m m

m xx xx t tt u t u t u t u t          
we have 

and taking into account of (17)-(18) and the assumptions 
of g, we deduce from (15) that , ,m m m m m m

x x xx xu l u u l u u l u
 
   xx  (16) 

Noting that ΔM1 = M(z(t + ξ) – M(z(t)) and ΔM2 = 
N(zt(t + ξ)) – N(zt(t)), then integrating by parts we have     4

d
, , ,

d m mt k t t T
t
      0,

e

    (19) 
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where k4 = max{k1 + k3, k2}. Therefore 

    4, 0, k T
m mt              (20) 

Dividing the above inequality by ξ2 and letting ξ → 0 
gives 

Since , by the Mean value theorem, 
from estimates 1 and (16) we have 

   1 0,M C          4
2 2 2 2

0 0 k Tm m m m
xxt tt xxt ttu t u u u e   . 
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From estimate 2 we find a constant M3 > 0 such that 

   2 2

3 , , 0m m
xxt ttu t u M m N t T      , . 

where η1 is between  
2m

xu t   and  
2m

xu t . 
By the Mean value theorem, we also have 

       2
m m m m
xx xx t tM C u t u t C u t u t         

With the estimates 1 - 3 we can use Lions-Aubin Lem- 
ma to get the necessary compactness in order to pass (11) 
to the limit. Then it is a matter of routine to conclude the 
existence of the global solution in [0, T]. 

Theorem 2. The solution u(t) of theorem 1 is unique. Considering that M(z(t + ξ) ≤ C and N(z(t + ξ) ≤ C, we 
conclude that there exists constants k1 > 0 and k2 > 0 such 
that 

       
2

1 1 2
m m m m
xx xx t t

2
I k u t u t k u t u t        

(17) 

Proof. Let u, v be two solutions of (1)-(4) with the 
same initial data. Then writing p = u – v, putting ω = pt in 
(10) and using mean value theorem, chauchy-schwarz 
inequality and Gronwall inequality, we may get p = 0. 
Thus u = v. 

A argument for f yields 

         

       
2
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, , ,

, ,

m m m
t t t
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2
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(18) 

4. The Exponential DECAY of the Energy of 
System 

In order to establish our decay result, we define the en-
ergy of the system by 
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Theorem 3. Let u(t) be the solution given by theorem 
1 as q(x, t) = 0 and g = 0. And assume that N(s)s ≥ 0 and 
f(s)s ≥ 0. Then there exist constants λ2, λ4 > 0 and λ3 < 0 
such that     3 3

2 40 t tE t E e te    . 
To prove Theorem 3, we firstly introduce two lemmas. 

Let us define      2

0 0
d d

2

l l

tt uu x u
    x . 

Then we have the following lemmas. 
Lemma 1. Let Eε(t) = μE(t) + εψ(t). Then there exists a 

constant k5 > 0 such that  

     5 , 0E t E t k E t       . 

Proof. By xu l u


,  x xxu l u


 and 
xxu l u  there exists k5 > 0 such that 
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Lemma 2. There exist constants λ0 > 0 and λ1 such that 
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Proof. Taking the inner product of (1) with ut and 
considering that N(s)s ≥ 0, we have  
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    . 

Taking the inner product of (1) with u, we have 
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From the Mean value theorem, there exists a constant 
λ1 such that 
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On writing  2
0 min , , 2        , we have 
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The proof of theorem 3. From lemma 1, we have 
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By Gronwall inequality and combing (21), we have  
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Hence, for sufficiently small ε > 0 
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we have           3 3
2 40 t tE t E e te    . 

The proof of theorem 3 is now completed. 

x

. 

REFERENCES 
[1] S. Woinowsky-Krieger, “The Effect of Axial Force on the 

Copyright © 2012 SciRes.                                                                              IJMNTA 



J. W. ZHANG, D. X. WANG 

Copyright © 2012 SciRes.                                                                              IJMNTA 

101

Vibration of Hinged Bars,” Journal of Applied Mechanics, 
Vol. 17, 1950, pp. 35-36. 

[2] J. M. Ball, “Initial-Boundary Value Problems for an Ex-
tensible Beam,” Journal of Mathematical Analysis and 
Applications, Vol. 42, No. 1, 1973, pp. 61-90. 
doi:10.1016/0022-247X(73)90121-2 

[3] L. A. Mederios, “On a New Class of Nonlinear Wave 
Equations,” Journal of Mathematical Analysis and Ap-
plications, Vol. 69, No. 1, 1979, pp. 252-262. 

[4] M. Tucsnak, “Semi-Internal Stabilization for a Nonlinear 
Euler-Bernoulli Equation,” Mathematical Methods in the 
Applied Sciences, Vol. 19, No. 11, 1996, pp. 897-907. 
doi:10.1002/(SICI)1099-1476(19960725)19:11<897::AID-

MMA801>3.0.CO;2-# 

[5] S. Kouemou Patcheu, “On a Global Solution and As-
ymptotic Behavior for the Generalized Damped Extensi-
ble Beam Equation,” Journal of Differential Equations, 
Vol. 135, No. 2, 1997, pp. 299-314. 
doi:10.1006/jdeq.1996.3231 

[6] F. M. To, “Boundary Stabilization for a Non-Linear 
Beam on Elastic Bearings,” Mathematical Methods in the 
Applied Sciences, Vol. 24, No. 8, 2001, pp. 583-594. 
doi:10.1002/mma.230 

[7] J. M. Ball, “Stability Theory for an Extensible Beam,” 
Journal of Differential Equations, Vol. 14, No. 3, 1973, 
pp. 61-90. doi:10.1016/0022-0396(73)90056-9 

 
 

http://dx.doi.org/10.1016/0022-247X(73)90121-2
http://dx.doi.org/10.1002/(SICI)1099-1476(19960725)19:11%3c897::AID-MMA801%3e3.0.CO;2-%23
http://dx.doi.org/10.1002/(SICI)1099-1476(19960725)19:11%3c897::AID-MMA801%3e3.0.CO;2-%23
http://dx.doi.org/10.1006/jdeq.1996.3231
http://dx.doi.org/10.1002/mma.230
http://dx.doi.org/10.1016/0022-0396(73)90056-9

