
Circuits and Systems, 2010, 1, 18-29
doi:10.4236/cs.2010.11004 Published Online July 2010 (http://www.SciRP.org/journal/cs)

Copyright © 2010 SciRes. CS

FPGA Design of an Intra 16 × 16 Module for H.264/AVC
Video Encoder

Hassen Loukil1, Imen Werda1, Nouri Masmoudi1, Ahmed Ben Atitallah2, Patrice Kadionik3
1University of Sfax, National School of Engineering, Sfax, Tunisia

2University of Sfax, High Institute of Electronics and Communication, Sfax, Tunisia
3IMS laboratory-ENSEIRB-MATMECA-University Bordeaux 1-CNRS UMR 5218, 351 Cours de la Libération, Talence

Cedex, France
E-mail: Nouri.Masmoudi@enis.rnu.tn

Received May 16, 2010; revised June 18, 2010; accepted June 23, 2010

Abstract

In this paper, we propose novel hardware architecture for intra 16 × 16 module for the macroblock engine of
a new video coding standard H.264. To reduce the cycle of intra prediction 16 × 16, transform/quantization,
and inverse quantization/inverse transform of H.264, an advanced method for different operation is proposed.
This architecture can process one macroblock in 208 cycles for all cases of macroblock type by processing 4
× 4 Hadamard transform and quantization during 16 × 16 prediction. This module was designed using VHDL
Hardware Description Language (HDL) and works with a 160 MHz frequency using ALTERA NIOS-II de-
velopment board with Stratix II EP2S60F1020C3 FPGA. The system also includes software running on an
NIOS-II processor in order to implementing the pre-processing and the post-processing functions. Finally,
the execution time of our HW solution is decreased by 26% when compared with the previous work.

Keywords: Nios H.264, FPGA, Intra 16 × 16, NIOS-II, SOPC Design

1. Introduction

Currently, video system development is generally based
on embedded systems. Such systems need to find a com-
promise between computational complexity and timing
execution constraints. On the other hand, the H.264/AVC
standard for video compression [1-5], due to its high
complexity, needed powerful processors and hardware
acceleration in order to respect application requirements.

In order to take advantages of hardware acceleration,
each functional module of the H.264 video encoder has
been carefully studied in order to determine its computa-
tional complexity. Furthermore, the intra process pre-
sents one of the highest computational complexities in
H.264/AVC encoder [6]. This process is based on the
hybrid encoding scheme shown in Figure 1 which uses
the intra prediction, integer cosine transform and quanti-
zation. The intra process is used to remove spatial redun-
dancy. There are two types of intra modes: intra 4 × 4

 Current
Frame
(Fn)

Reconstructed
Frame
F(n)

Intra
Prediction

+

-

+

+

Transform Quantization CAVLC

Inverse
Transform

Inverse
Quantization

Deblocking
Filter

Figure 1. Hybrid encoder for video compression.

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

19

and intra 16 × 16 modes. The intra 16 × 16 is composed
of intra 16 × 16 prediction (IP 16 × 16), integer cosine
transform (ICT), quantization AC (QAC), inverse integer
cosine transform (IICT), inverse quantization AC (IQ-
AC), quantization DC (QDC), Hadamard transform (HT),
inverse quantization DC (IQDC) and inverse Hadamard
transform (IHT). Special hardware implementations of
intra 16 × 16 for H.264 have been proposed [7,8]. They
were shown that some of these parts can be optimized
with parallel hardware structures implemented into the
hardware system. These previous works have implement-
ed the intra 16 × 16 algorithm with serial [7] and parallel
[8] architectures directly into hardware device. But, our
architecture uses both a parallel and pipelined structures
in order to reduce the number of operations and the abil-
ity to achieve fast execution. Our design is described
with VHDL (VHSIC Hardware Description Language)
language and has been synthetized with the Altera NIOS
II softcore processor for experimental validation into a
single Altera Stratix II EP2S60 FPGA (Field Program-
mable Gate Array) device.

This paper is organized as follows: Section 2 presents
an overview of intra 16 × 16 algorithm. In the next Sec-
tion, we present the intra 16 × 16 architecture. The exp-
eriment results are shown in Section 4. Finally, Section 5
concludes the paper.

2. Overview of the Intra 16 × 16 Algorithm

The intra 16 × 16 algorithm is a critical component used
in the H.264/AVC. There are eleven functional opera-
tions in this module: intra 16 × 16 prediction, residual
calculation, integer transform, AC coefficient quantiza-
tion, DC coefficient quantization, inverse AC coefficient
quantization, inverse DC coefficient quantization, Hada-
mard transform, inverse Hadamard transform, inverse
integer transform and pixel reconstruction. The 16 × 16
intra prediction mode is designed according to directions:
vertical, horizontal, DC and plane modes are specified in
the H.264 standard based on the reconstituted pixels
from the previous macroblock (MB). Figure 2 shows the
intra 16 × 16 prediction mode.

For each MB, we compute the difference between the
predicted pixel and the original pixel. After this step, we
calculate the integer transform coefficients. In the H.264/
AVC standard, the equation of the 4 × 4 integer trans-
form is defined by [3,4].

1221

1111

2112

1111

I ×

1121

2111

2111

1121

XXXX

XXXX

XXXX

XXXX

15141312

111098

7654

3210

 (1)

“Xi” is the residual 4 × 4 block.
After this operation, we obtain two coefficients types:

AC and DC coefficients. For the AC coefficients, we
compute the quantization operation. In general the AC
quantization operation is defined by [3,4].

)
QStep

PF
Iround(Z ijij (2)

We can write (5) as follows:

)
2qbits

MF
Iround(Z ijij (3)

where:

Qstep

PF
qbits2

MF
 (4)

qbits = 15 + floor(QP/6) (5)

Iij is the uncalled coefficients after ICT for QAC. PF
represents the scaling factor of the integer transform and
QStep is the quantization step size. A total of 52 values
of QStep are supported by the standard as shown in Tab-
le 1 where QStep doubles in size for every 6 values of
the step of quantization QP.

V …………… .

Mode 0 (vertical)

V

…
…
…
…
..

Mode 1 (horizontal)

V
Mean (H+V)

Mode 2 (DC)

V

Mode 3(plane)

H H

H H

Figure 2. 16 × 16 intra prediction mode.

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

20

Table 1. Quantization step size in H.264/AVC.

QP 0 1 2 3 4 5

QStep 0.625 0.6875 0.8125 0.875 1 1.125

QP 6 7 8 9 10 11

QStep 1.25 1.375 1.625 1.75 2 2.25

QP … … … … … …

QStep … … … … … …

QP 48 49 50 51

QStep 160 … … 224

Hence, the shift operation can be greatly used in the qu-

antization and rescaling stages. To simplify the arithmetic,
the quantization stated in (6) can be rewritten as (9, 10)
for the AC coefficients [3,4].

qbitsf).MFI(Z ijij (6)

)Isign()Zsign(ijij (7)

Zij is the uncalled coefficients after QAC operation.
The first 6 values of MF used in the H.264 references are
listed in Table 2.

The 2nd and 3rd columns are the different positions in
the scaling matrix. QP%6 represents the QP division rest
by 6.

After the calculation of QAC, we must compute the
inverse AC quantization. This operation is defined as
[3,4].

.QstepZY ijij (8)

A constant equal to 64 is integrated in order to avoid
rounding errors. The inverse quantization AC equation
becomes therefore:

.64 .PF .QstepZY ijij (9)

Yij is the result of inverse AC quantization. It must be
divided by 64 for recovering the exact value without
factor of scaling. The H.264 draft standard doesn’t pre-
cise Qstep or PF directly. It uses a parameter given by:

64)(Qstep.PF.V (10)

The final equation for the inverse quantization is:
)floor(QP/6.2.VZY ijijij (11)

The first 6 values of V used in the H.264 standard are
listed in Table 3. The 2nd and 3rd columns are the diff-
erent positions in the scaling matrix.

For the DC coefficients, Hadamard transform is ap-
plied. The equation of 4 × 4 hadamard transform is de-
fined by [3,4].

1111

1111

1111

1111

H ×

1111

1111

1111

1111

DDDD

DDDD

DDDD

DDDD

15141312

111098

7654

3210

 (12)

“Di” is the DC coefficients.
In next step, we calculate the quantization operation

for the DC coefficients. This operation is defined by [3,
4].

1)(qbits2f)0)(Hij.MF(0,Kij (13)

Kij is the uncalled coefficients after QDC operation.
MF (0, 0) is the multiplication factor for position (0, 0) in
Table 2. After the calculation of QDC, we must compute
the 4 × 4 inverse hadamard transform. This operation is
defined by [3,4].

15141312

111098

7654

3210

D'D'D'D'

D'D'D'D'

D'D'D'D'

D'D'D'D'

1111

1111

1111

1111

H'

1111

1111

1111

1111

 (14)

Table 2. Multiplication factor MF in H.264/AVC.

QP%6
Positions
(0,0),(2,0),
(0,2),(2,2)

Positions
(1,1),(1,3),
(3,1),(3,3)

Others positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

Table 3. Values of V used in the H.264 standard.

QP%6
Positions

(0,0),(2,0),
(0,2),(2,2)

Positions
(1,1),(1,3),
(3,1),(3,3)

Others positions

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

21

“D’i” is the block 4 × 4 quantified DC.
The final step for the DC coefficient is the inverse DC

quantization. This operation is defined by [3,4].

ij ij

for(QP 12)

floor(QP / 6) 2W H' .V(0,0).2

 (15)

ij ij

for(QP 12)

1 floor(QP / 6)W [H' .V(0,0) 2] (2 floor(QP / 6))

where V(0,0) is the multiplication factor for position (0,0)
in Table 3.

After all operations, we can combine the AC and the
DC coefficients for compute the inverse integer trans-
form. Equation (19) gives the equation of 4 × 4 inverse
integer defined as [3,4].

1/2111

111/21

111/21

1/2111

X'X'X'X'

X'X'X'X'

X'X'X'X'

X'X'X'X'

1/2111/2

1111

11/21/21

1111

I'

15141312

111098

7654

3210

 (16)

“X’i” is the block 4 × 4 after all operations (AC and
DC coefficients).

3. Intra 16 × 16 Architecture

The intra 16 × 16 architecture partitions the MB into six-
teen 4 × 4 blocks. The scanning order for one MB is
shown in Figure 3. This order is scanned in the x direc-
tion first and then performs the scanning in the y direc-
tion. The scanning order is the label order from top to
bottom, from left to right which is the actual processing
order for one MB. The MB is partitioned into sixteen 4 ×
4 small sub-blocks. The partitions between the 16 × 16
scanning order labels and the 4 × 4 scanning order labels
are shown in Figure 4.

The 4 × 4 scanning order labels are shown in Figure 5.

0 1 2 3

16 17 18 19

32

48

4 5 6 7

20 21 22 23

8 9 10 11

24 25 26 27

12 13 14 15

28 29 30 31

64

80

96

112

128

144

160

176

192

208

224

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

129 130 131 132 133 134 135 136 137 138 139 140 141 412 143

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

x

y

Figure 3. 16 × 16 scanning order labels.

Figure 4. Relationship between 16 × 16 and 4 × 4 scanning order labels.

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

22

 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
Figure 5. 4 × 4 scanning order labels.

Figure 6 shows the functional flow diagram of the in-

tra 16 × 16 process.
In the first step, we compute the intra prediction 16 ×

16 for all 4 × 4 blocks. After this, we calculate the resi-
dual, the integer transform, the AC quantization and the
inverse AC quantization for each 4 × 4 block. During the

calculation of integer transform, we extract the DC coeff-
icient for each 4 × 4 block. After obtain the 16 DC coeff-
icients, we calculate the hadamard transform, the DC
quantization, the inverse hadamard transform and the
inverse DC quantization. Finally, we combine AC and
DC coefficient for each 4 × 4 block to perform the in-
verse integer transform and the reconstruction pixels.

The intra 16 × 16 hardware architecture is composed
by two modules. The first component contains the intra
16 × 16 prediction module and the residual module. The
second component contains the coding chain module and
the reconstruct module. The block diagram of the pro-
posed hardware architecture for H.264 video coding is
shown in Figure 7.

intra 16x16 prediction

Combine reconstructed
coefficients

Inverse Integer
transform

Reconstruct pixels

For 4x4block from 0 to 15

Wait until all 4x4 blocks
were Integer transformed

Extract DC coefficients
(16 coeff = one 4x4

block)

Hadamard

DC Quantization

Inverse Hadamard

Inverse DC
Quantization

Calculate residual

Integer transform

 AC Quantization and
inverse AC

Quantization

For 4x4block from 0 to 15

Store and reorder quantized
coefficients

and output them when
needed

AC path DC path

4x4block = 15

Yes

No

4x4block = 15

Yes

No

Start

End

Figure 6. Intra 16 × 16 functional flow diagram.

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

23

3.1. Intra 16 × 16 Prediction

Different works have been proposed [9-13]. For our arc-
hitecture, the MB pixels are loaded into a dual RAM
(Random Access Memory) for reordering and then give
(to the residual or reconstruction blocks) by sets of 16
pixels (4 × 4 block).

This block calculates the predicted pixels of MB for
all 3 intra 16 × 16 prediction modes specified in the
H.264 standard (horizontal, vertical and DC) in parallel
based on the reconstituted pixels from the previous MB
(planar mode is not used [14]). Figure 8 presents the

intra prediction hardware architecture. These predicted
pixels are stored into RAM for all modes. We also use a
SAD_ 4 × 4 block for calculating the SAD value for each
mode. We accumulate this value 16 times in order to ob-
tain the SAD_16 × 16 for each mode. Those absolute va-
lues permit to give the sum of absolute differences (SAD)
for each prediction mode. The comparator compares the
SAD values for all prediction modes and picks the lowest
value for determining which prediction mode will be
used. After obtaining the best SAD (MIN_SAD), the best
MB is given. The difference between the predicted pixels
and the source pixels is then calculated for the best pre-
diction mode for obtain the residual MB.

Control Unit

START

Done

Intra 16x16
Prediction

SRC_0

SRC_15

.

.

.
8

RECON_IN0

RECON_IN31

.

.

.
16

Residual_0

Residual_15

.

.

. Coding chain

Residual_out0

Residual_out15

.

.

.

16

16

Reconstruction

RECON_OUT0

RECON_OUT15

.

.

.

8

8

Start_PRED Start_CHAIN Start_RECON

8

8

8

16

16

Pred_pixel_0

Pred_pixel_15

.

.

. Residual

Start_RES

8

8

Figure 7. Intra 16 × 16 hardware architecture.

Horizontal
mode

Vertical
mode

DC mode

RAM
Horizontal

RAM
Vertical

RAM DC

Pixels_h

128 bits

Pixels_dc

128 bits

Pixels_v

128 bits

Pixels_h

128 bits

Pixels_v

128 bits

Pixels_dc

128 bits

Horizontal
SAD4x4

Vertical
SAD4x4

DC
SAD4x4

+

+

+

Comparator

12 bits

SAD4x4_h Hor_SAD_16x16

Ver_SAD_16x16

DC_SAD_16x16

16 bits

16 bits

16 bits

MIN_SADRECON_IN0

RECON_IN31

8 bits

8 bits

SRC_0

SRC_15

12 bits

SAD4x4_v

12 bits

SAD4x4_dc

Start_pred

Start_pred

Start_pred

Wren Rden

Wren Rden

Wren Rden

Start_sad

Start_sad

Start_sad Start_comp

Control Unit
CLK

Reset

Start

Start_pred

Wren

rden

Start_sad

Start_comp

Figure 8. Intra 16 × 16 prediction hardware architecture.

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

24

3.2. ICT and HT Architectures

Different works have been published on the integer trans-
form [15-19]. It is obvious that “I” shown in (1) or “H”
shown in (12) can be implemented by a 1-D transform.
Figure 9 shows the fast implementation for the integer
transform. The matrix contains only four coefficients: 1,
–1, 2, and –2. It also can be implemented by using addi-
tion, subtraction and shift operations.

The Hadamard transform matrix is very similar to the
integer transform matrices. The difference is that the co-
efficients of Hadamard transform are only 1 or –1. There-
fore, the fast implementation for the Hadamard trans-
form is shown in Figure 10.

The hardware implementation of 1-D ICT or HT is
given in Figure 11. The input for this module is a 4 × 4
block. For full transform operation, we use two 1-D
transforms in order to obtain the 2-D transform. Figure
12 presents the architecture for the 2-D transform.

x0-x3x0+x3 x1+x 2 x 1-x2

< <
< <

y1 y3y2y0

Figure 9. Fast implementations of H.264 integer transform.

x0-x3x 0+ x3 x 1+x2 x1-x2

y1 y3y2y 0

Figure 10. Fast implementations of H.264 Hadamard trans-
form.

ICT_0

y0

y3

y1

y2

x0

x3

x1

x2 ICT_1

y0

y3

y1

y2

x0

x3

x1

x2

ICT_2

y0

y3

y1
y2

x0

x3

x1
x2 ICT_3

y0

y3

y1
y2

x0

x3

x1
x2

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

xxxx

xxxx

xxxx

xxxx

3,32,31,30,3

3,22,21,20,2

3,12,11,10,1

3,02,01,00,0

yyyy

yyyy

yyyy

yyyy

3,0

2,0

1,0

0,0

x

x

x

x

3,1

2,1

1,1

0,1

x

x

x

x

3,2

2,2

1,2

0,2

x

x

x

x

3,3

2,3

1,3

0,3

x

x

x

x

0,3

0,2

0,1

0,0

y

y

y

y

1,3

1,2

1,1

1,0

y

y

y

y

2,3

2,2

2,1

2,0

y

y

y

y

3,3

3,2

3,1

3,0

y

y

y

y

1-D transform block

reset

CLK

Done

start

Figure 11. Fast implementations of H.264 1-D transform.

1-D
transform

1-D
transform

CONTROL

CLK
reset
start

Input_0..15
9

output_0..15
9

Done

Figure 12. Fast implementations of H.264 2-D transform.

3.3. QAC & QDC Architectures

The Quantization hardware architectures have been pro-
posed in [8,20]. The architecture of DC quantization is
similar to the AC quantization presented in Figure 13.
The multiplication factors stated in Table 1 are stored
into ROM (Read Only Memory) and selected according
to the QP%6 values. The correct factor is multiplied by
the uncalled coefficient in the corresponding position.
The shifter will shift the product to right with qbits.

The QAC or QDC modules will quantify at the same
time 16 pixels according to QP factor. These modules are
composed by a quantization block (noted 0…15), a me-
mory for storing the input pixels (noted input_0..15) and
two read-only memories for storing QE (equal to QP%6)
and F values noted respectively ROM_QE and ROM_F.
The AC and DC quantization blocks are constituted by
three basic components presented in Figure 14.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

ROM_F

ROM_QE

F

QE

Input_0..15

Input_0..15

CLK

reset

start

6

qp

16 16
Input_0..15 Output_0..15

Figure 13. Quantization architecture.

>> out

MF(i,j)

F

QE

input

SIGN

30

15

16

4
16

Figure 14. AC or DC quantification.

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

25

A multiplier deals perform the multiplication opera-
tion of AC coefficients with the corresponding MF (i, j)
factor and gives the absolute value. An adder will per-
form the sum operation of values given by the multiplier
with the F parameter given by the ROM memory. A
shifter allows performing the shift operation the result
from the adder by “qbits” (varies 15 to 23 according to
the value of QP).

3.4. IQAC & IQDC Architectures

The IQAC or IQDC modules will quantify 16 pixels acc-
ording to the QP factor. The architecture of these modu-
les is similar to the QAC or QDC modules respectively
presented by the Figure 13. The difference between quan-
tization (AC or DC) and inverse quantization (AC or DC)
is presented in the quantization block. For having the
inverse AC quantization values, we use a multiplier to
perform the multiplication operation between the QAC
coefficients and the V (i, j) values. We also use a shifter
for shifting the result from the multiplier floor (QP/6).
The architecture for this module is presented by the Fig-
ure 15.

For the DC coefficients, we use a multiplier to per-
form the multiplication operation between the QDC co-
efficients and the V (0, 0) value. An adder will perform
the sum of values given by the multiplier with {0, 1, 2}
(0 for QP > = 12, 1 for QP < 12, 2 others parts). A shifter
will perform the shift of result from the adder by floor
(QP/6) – 2) for QP >= 12 and by (2 – floor (QP/6)) for
QP < 12. The architecture for this module is presented in
Figure 16.

3.5. IICT and IHT Architectures

The IICT or IHT architectures are similar to the ICT or
HT architectures respectively presented by the Figures
12 and 13. The inverse integer transform matrix con-
tains only four coefficients: 1, –1, 1/2, and –1/2. Figure
17 shows the fast implementation for the inverse integer
transform. The inverse Hadamard transform matrix con-
tains only two coefficients, 1 and –1. Figure 18 shows
the fast implementation for the inverse Hadamard trans-
form.

> > out

V(i ,j)

inpu t

S IG N
qp

6

23

16

6

Figure 15. AC inverse quantification.

>> out

V(0,0)

{0,1,2}

QE

input

SIGN 6

6

6

23

Figure 16. DC inverse quantification.

y0-y2y0+y2 y1+(y3>>1) (y1>>1)-y3

x3 x1 x2x0

Figure 17. Fast implementations of H.264 inverse integer
transform.

y0-y 2y 0+y2 y1+y3 y1-y3

x 3x0 x 1 x2

Figure 18. Fast implementation of H.264 inverse Hadamard
transform.

3.6. Intra 16 × 16 Execution Time

The intra 16 × 16 execution time is presented in Figure
19. This figure is divided into two parts. The first part
concerns the intra 16 × 16 prediction. This part takes 115
clock cycles for the best predicted MB [21]. The second
part concerns the coding chain block that needs 77 clock
cycles. In this part, we use a pipeline as shown in Figure
19. To get the reconstructed MB, we need 16 clock cy-
cles. Finally, 208 clock cycles are necessary to achieve
the intra 16 × 16 operations. Comparing with [7] and [8],
the proposed architecture takes less clock cycles. Simu-
lation of our proposed RTL design shows major im-
provements by reducing clock cycles for the intra 16 ×
16 operation as shown in Table 4. Thus, our hardware
implementation is optimized to achieve higher perform-
ances for the H.264 video encoder than the hardware
architecture presented in [7-8].

4. Experimental Results

The whole design has been designed by using VHDL

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

26

(RTL level). The VHDL code of all modules was synth-
esized for an EP2S60F1020C3 Altera Stratix II FPGA
circuit by using the Altera Quartus tool. Table 5 shows
the implementation results of the intra 16 × 16 module
for the Stratix II EP2S60 FPGA circuit.

For experimental verification, we have developed a C
language reference model of H.264 software. We have
compared the output results of our C reference model
with the JM 10.1 model [22] and we have confirmed the
correctness of our model. We have also used the NIOS II
softcore processor for sending data to the intra frame hard-
ware coprocessor. The block diagram of the implement-
ed H.264 intra frame encoder is shown in Figure 20. The
design is composed by three parts: the NIOS II processor,
the intra 16 × 16 frame module and the other peripherals
connected to the Altera Avalon Bus. The Avalon bus has
control, data and address signals and has its bus arbitra-
tion logic.

Our embedded system has been tested by using the Al-
tera NIOS II development board. The heart of the target
board is the Altera Stratix II EP2S60F1020C3 FPGA
circuit. For all experiments, CIF test sequences are coded
at 30 Hz. We have focussed on the following video test
sequences: “Foreman”, “Paris”, “Mobile”, “Tb420” and
“Akiyo”. These test sequences have different movement
and camera particularities.

We have determined the processing time of intra 16 ×
16 for the SW (software) solution. From the Table 6, we
can conclude that a 35 time improvement for the proce-
ssing speed compared to the software solution can be
obtained by using our HW implementation.

Table 4. Comparison between different intra 16 × 16 archi-
tectures.

architectures [7] [8]
Proposed

architecture

Number cycles/MB 3307 269 208

Frequency (Mhz) 71 54 160

Execution time/MB(ns) 46.57 4.98 1.3

Table 5. Implementation results for Stratix II FPGA.

 Used Resources

ALUTs 22,685/48,352 (47%)

Memory (KB) 27/2484 (1%)

Pins 526/719 (73%)

DSP block 124/288 (43%)

Table 6. Time comparison between SW and HW implemen-
tations.

Total time (ms) Sequence SW HW

Time Foreman 684.74 18.73

(ms) Paris 688.21 18.88

 Mobile 689.40 18.72

 Tb420 685.78 19.08

 Akiyo 687.95 18.70

ICT 0 ICT 1 ICT 15

QAC 0 QAC 1 QAC 15

IQAC
0 IQAC 1 IQAC 15

HT QDC IHT IQDC

IICT 0 IICT 1 IICT 15

2 4 3 2 4 2 4 2

77 cycles

2 4 3
9 +(15 x 2) = 39 cycles 2 x 16 = 32 cycles 5 cycles 1 cycle

F
I
F
O

Intra prediction 16 x16 Coding chaine Reconstruction

115 cycles 77 cycles 16 cycles

Figure 19. Intra 16 × 16 execution time.

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

NIOS-II
CPU

A
V

A
L

O
N

IRQ

Timer

UART USB

RAM
Interface

 H.264 Encoder

FLASH, SRAM, SDRAM

Hardware
part

µClinux

Software
part

Figure 20. H.264 embedded system video encoder.

Table 7. PSNR comparison between SW and HW impleme-
ntation.

PSNR Sequence SW HW/SW

 Foreman 38.08 38.08

 Paris 37.15 37.15

 Mobile 36.37 36.37

 Tb420 37.04 37.04

 Akiyo 40.01 40.01

In order to evaluate the image quality given by this ar-

chitecture, we have used the average peak signal-to-noi-
se ratio (PSNR) which is here used as a measure of obje-
ctive quality. The PSNR metric as shown as in Table 7
has not detected any difference between the SW and HW
solutions. Thus, the quality comparison confirms the cor-
rectness of the designed architecture.

The Figure 21 presents the original and the two recon-
structed (one from SW, the other from HW) of the 10th
frame of the test video sequences.

5. Conclusions

In this paper, we have described a new flexible and effic-
ient HW architecture for H.264 video encoder. The hard-
ware part has been implemented by using VHDL langu-
age. Comparing with [7] and [8], our proposed RTL imp-
lementation gives major improvements by reducing clo-
ck cycles for the intra 16 × 16 operation. The execution
time is decreased by 26% even when compared with the
best previous work for intra frame coding [8]. We have
also designed an embedded system based on an Altera
Stratix II FPGA platform running at 160 MHz in order to

Foreman sequence PSNR – Y = 38.08 dB PSNR – Y = 38.08 dB

Foreman Mobile PSNR – Y = 36.37 dB PSNR – Y = 36.37 dB

Paris sequence PSNR – Y = 37.15 dB PSNR – Y = 37.15 dB

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

28

Tb420 sequence PSNR – Y = 37.04 dB PSNR – Y = 37.04 dB

Akiyo sequence PSNR – Y = 40.01 dB PSNR – Y = 40.01 dB

(a) (b) (c)

Figure 21. (a) Original, (b) Reconstructed from SW and (c) Reconstructed from HW/SW of the 10th frame of the test video
sequences.

evaluate the performance of our design in HW/SW code-
sign context. We have shown that our HW solution impr-
oves considerably the intra 16 × 16 process (35 times fa-
ster) compared to an all software solution with the same
image quality.

6. References

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard and A. Luthra,

“Overview of the H.264/AVC Video Coding Standard,”
IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 7, 2003, pp. 560-576.

[2] A. Luthra, G. J. Sullivan and T. Wiegand, “Introduction
to the Special Issue on the H.264/AVC Video Coding
Standard,” IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 13, No. 7, 2003, pp. 557-559.

[3] I. Richardson, “H.264 and MPEG-4 Video Compression,”
John Wiley and Sons Ltd., Chichester, 2003.

[4] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, “Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification (ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC),” May 2003.

[5] G. J. Sullivan and T. Wiegand, “Video Compression―
from Concepts to the H.264/AVC Standard,” Proceed-
ings of the IEEE, Vol. 93, No. 1, 2005, pp. 18-31.

[6] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen and L. G. Chen,
“Analysis, Fast Algorithm, and VLSI Architecture De-
sign for H.264/AVC Intra Frame Coder,” IEEE Transac-
tions Circuit and Systems for Video Technology, Vol. 15,
No. 3, 2005, pp. 378-401.

[7] İ. Hamzaoğlu, Ö. Taşdizen and E. Şahin, “An Efficient
H.264 Intra Frame Coder System Design,” IEEE Trans-
actions on Consumer Electronics, Vol. 54, No. 4, 2008,
pp. 1903-1911.

[8] K. Suh, S. Park and H. Cho, “An Efficient Hardware Ar-
chitecture of Intra Prediction and TQ/IQIT Module for
H.264 Encoder,” ETRI Journal, Vol. 27, No. 5, 2005, pp.
511-524.

[9] B. Meng, O. C. Au, C.-W. Wong and H.-K. Lam, “Effi-
cient Intra-Prediction Mode Selection for 4 × 4 Blocks in
H.264,” Proceedings of International Conference on
Multimedia and Expo, Baltimore, 2003, pp. 521-524.

[10] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu
and S. Wu, “Fast Mode Decision Algorithm for Intra pre-
diction in H.264/AVC Video Coding,” IEEE Transac-
tions on Circuits and Systems for Video Technology, Vol.
15, No. 7, 2005, pp. 813-822.

[11] B. Meng, O. C. Au, C. W. Wong and H. K. Lam, “Effi-
cient Intra-Prediction Algorithm in H.264,” Proceedings
of International Conference on Image Processing, Bar-
celona, 2003, pp. 837-840.

[12] S. S. Chun, J.-C. Yoon and S. Sull, “Efficient Intra Pre-
diction Mode Decision for H.264 Video,” Lecture Notes
in Computer Science, Vol. 3767, 2005, pp. 168-178.

[13] H. Loukil, A. Ben Atitallah and N. Masmoudi, “An Effi-
cient FPGA Parallel Architecture for H.264/AVC Intra
Prediction Algorithm,” Proceeding of International Con-
ference on Embedded Systems and Critical Applications,
Gammarth, Tunisia, 2008, pp. 191-196.

[14] A. Kessentini, B. Kaanich, I. Werda, A. Samet and N.
Masmoudi, “Low Complexity Intra 16 × 16 Prediction for

H. LOUKIL ET AL.

Copyright © 2010 SciRes. CS

29

H.264/AVC,” Proceedings of International Conference
on Embedded Systems & Critical Applications, Tunis,
Tunisia, 2008, pp. 197-201.

[15] T.-C. Wang, Y.-W. Huang, H.-C. Fang and L.-G. Chen,
“Parallel 4 × 4 2D Transform and Inverse Transform Ar-
chitecture for MPEG-4 AVC/H.264,” Proceedings of the
2003 IEEE International Symposium on Circuits and
Systems, Bangkok, 2003, pp. 800-803.

[16] L. Liu, Q. Lin, M. Rong and J. Li, “A 2-D Forward/In-
verse Integer Transform Processor of H.264 Based on
Highly-Parallel Architecture,” Proceedings of the 4th
IEEE International Workshop on System-on-Chip for
Real-Time Applications, Banff, July 19-21, 2004, pp.
158-161.

[17] K.-H. Chen, J.-I. Guo and J.-S. Wang, “An Efficient Di-
rect 2-D Transform Coding IP Design for MPEG-4
AVC/H.264,” IEEE International Symposium on Circuits
and Systems, Kobe, May 23-26, 2005, pp. 4517-4520.

[18] G. Raja, S. Khan and M. J. Mirza, “VLSI Architecture &

Implementation of H.264 Integer Transform,” The 17th
International Conference on Microelectronics, Islamabad,
December 13-15, 2005, pp. 218-223.

[19] C.-P. Fan, “Fast 2-Dimensional 4 × 4 Forward Integer
Transform Implementation for H.264/AVC,” IEEE Trans-
actions on Circuits and Systems—II: Express Briefs, Vol.
53, No. 3, 2006, pp. 174-177.

[20] R. Kordasiewicz and S. Shirani, “Hardware Implemen-
tation of the Optimized Transform and Quantization
Blocks of H.264,” IEEE Canadian Conference on Elec-
trical and Computer Engineering, Canada, May 2-5,
2004, pp. 943-946.

[21] H. Loukil, S. Arous, I. Werda, A. Ben Atitallah, P. Kadi-
onik and N. Masmoudi, “Hardware Architecture for H.264/
AVC INTRA 16 × 16 Frame Processing,” IEEE Interna-
tional Multi-Conference on Systems, Signals and Devices,
Djerba, March 23-26, 2009, pp. 1-5

[22] “JVT H.264 Reference Software Version JM10.1,” http://
iphome.hhi.de/suehring/tml/download/old_jm/

