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Abstract 
 
In this paper, we propose novel hardware architecture for intra 16 × 16 module for the macroblock engine of 
a new video coding standard H.264. To reduce the cycle of intra prediction 16 × 16, transform/quantization, 
and inverse quantization/inverse transform of H.264, an advanced method for different operation is proposed. 
This architecture can process one macroblock in 208 cycles for all cases of macroblock type by processing 4 
× 4 Hadamard transform and quantization during 16 × 16 prediction. This module was designed using VHDL 
Hardware Description Language (HDL) and works with a 160 MHz frequency using ALTERA NIOS-II de-
velopment board with Stratix II EP2S60F1020C3 FPGA. The system also includes software running on an 
NIOS-II processor in order to implementing the pre-processing and the post-processing functions. Finally, 
the execution time of our HW solution is decreased by 26% when compared with the previous work. 
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1. Introduction 
 
Currently, video system development is generally based 
on embedded systems. Such systems need to find a com- 
promise between computational complexity and timing 
execution constraints. On the other hand, the H.264/AVC 
standard for video compression [1-5], due to its high 
complexity, needed powerful processors and hardware 
acceleration in order to respect application requirements. 

In order to take advantages of hardware acceleration, 
each functional module of the H.264 video encoder has 
been carefully studied in order to determine its computa- 
tional complexity. Furthermore, the intra process pre- 
sents one of the highest computational complexities in 
H.264/AVC encoder [6]. This process is based on the 
hybrid encoding scheme shown in Figure 1 which uses 
the intra prediction, integer cosine transform and quanti- 
zation. The intra process is used to remove spatial redun- 
dancy. There are two types of intra modes: intra 4 × 4 
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Figure 1. Hybrid encoder for video compression. 
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and intra 16 × 16 modes. The intra 16 × 16 is composed 
of intra 16 × 16 prediction (IP 16 × 16), integer cosine 
transform (ICT), quantization AC (QAC), inverse integer 
cosine transform (IICT), inverse quantization AC (IQ- 
AC), quantization DC (QDC), Hadamard transform (HT), 
inverse quantization DC (IQDC) and inverse Hadamard 
transform (IHT). Special hardware implementations of 
intra 16 × 16 for H.264 have been proposed [7,8]. They 
were shown that some of these parts can be optimized 
with parallel hardware structures implemented into the 
hardware system. These previous works have implement- 
ed the intra 16 × 16 algorithm with serial [7] and parallel 
[8] architectures directly into hardware device. But, our 
architecture uses both a parallel and pipelined structures 
in order to reduce the number of operations and the abil-
ity to achieve fast execution. Our design is described 
with VHDL (VHSIC Hardware Description Language) 
language and has been synthetized with the Altera NIOS 
II softcore processor for experimental validation into a 
single Altera Stratix II EP2S60 FPGA (Field Program-
mable Gate Array) device. 

This paper is organized as follows: Section 2 presents 
an overview of intra 16 × 16 algorithm. In the next Sec- 
tion, we present the intra 16 × 16 architecture. The exp- 
eriment results are shown in Section 4. Finally, Section 5 
concludes the paper. 
 
2. Overview of the Intra 16 × 16 Algorithm 
 
The intra 16 × 16 algorithm is a critical component used 
in the H.264/AVC. There are eleven functional opera- 
tions in this module: intra 16 × 16 prediction, residual 
calculation, integer transform, AC coefficient quantiza- 
tion, DC coefficient quantization, inverse AC coefficient 
quantization, inverse DC coefficient quantization, Hada- 
mard transform, inverse Hadamard transform, inverse 
integer transform and pixel reconstruction. The 16 × 16 
intra prediction mode is designed according to directions: 
vertical, horizontal, DC and plane modes are specified in 
the H.264 standard based on the reconstituted pixels 
from the previous macroblock (MB). Figure 2 shows the 
intra 16 × 16 prediction mode. 

For each MB, we compute the difference between the 
predicted pixel and the original pixel. After this step, we 
calculate the integer transform coefficients. In the H.264/ 
AVC standard, the equation of the 4 × 4 integer trans- 
form is defined by [3,4]. 
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“Xi” is the residual 4 × 4 block. 
After this operation, we obtain two coefficients types: 

AC and DC coefficients. For the AC coefficients, we 
compute the quantization operation. In general the AC 
quantization operation is defined by [3,4]. 

)
QStep

PF
Iround(Z ijij            (2) 

We can write (5) as follows: 

)
2qbits

MF
Iround(Z ijij            (3) 

where: 

Qstep

PF
qbits2

MF
              (4) 

qbits = 15 + floor(QP/6)         (5) 

Iij is the uncalled coefficients after ICT for QAC. PF 
represents the scaling factor of the integer transform and 
QStep is the quantization step size. A total of 52 values 
of QStep are supported by the standard as shown in Tab- 
le 1 where QStep doubles in size for every 6 values of 
the step of quantization QP. 
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Figure 2. 16 × 16 intra prediction mode. 
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Table 1. Quantization step size in H.264/AVC. 

QP 0 1 2 3 4 5 

QStep 0.625 0.6875 0.8125 0.875 1 1.125 

QP 6 7 8 9 10 11 

QStep 1.25 1.375 1.625 1.75 2 2.25 

QP … … … … … … 

QStep … … … … … … 

QP 48 49 50 51   

QStep 160 … … 224   

 
Hence, the shift operation can be greatly used in the qu- 

antization and rescaling stages. To simplify the arithmetic, 
the quantization stated in (6) can be rewritten as (9, 10) 
for the AC coefficients [3,4]. 

qbitsf).MFI(Z ijij        (6) 

)Isign()Zsign( ijij              (7) 

Zij is the uncalled coefficients after QAC operation. 
The first 6 values of MF used in the H.264 references are 
listed in Table 2. 

The 2nd and 3rd columns are the different positions in 
the scaling matrix. QP%6 represents the QP division rest 
by 6. 

After the calculation of QAC, we must compute the 
inverse AC quantization. This operation is defined as 
[3,4]. 

.QstepZY ijij                    (8) 

A constant equal to 64 is integrated in order to avoid 
rounding errors. The inverse quantization AC equation 
becomes therefore: 

.64 .PF .QstepZY ijij             (9) 

Yij is the result of inverse AC quantization. It must be 
divided by 64 for recovering the exact value without 
factor of scaling. The H.264 draft standard doesn’t pre- 
cise Qstep or PF directly. It uses a parameter given by: 

64)(Qstep.PF.V                (10) 

The final equation for the inverse quantization is: 
)floor(QP/6.2.VZY ijijij           (11) 

The first 6 values of V used in the H.264 standard are 
listed in Table 3. The 2nd and 3rd columns are the diff- 
erent positions in the scaling matrix. 

For the DC coefficients, Hadamard transform is ap-
plied. The equation of 4 × 4 hadamard transform is de-
fined by [3,4]. 
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“Di” is the DC coefficients. 
In next step, we calculate the quantization operation 

for the DC coefficients. This operation is defined by [3, 
4]. 

1)(qbits2f)0)(Hij.MF(0,Kij      (13) 

Kij is the uncalled coefficients after QDC operation. 
MF (0, 0) is the multiplication factor for position (0, 0) in 
Table 2. After the calculation of QDC, we must compute 
the 4 × 4 inverse hadamard transform. This operation is 
defined by [3,4]. 
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Table 2. Multiplication factor MF in H.264/AVC. 

QP%6 
Positions 
(0,0),(2,0), 
(0,2),(2,2) 

Positions 
(1,1),(1,3), 
(3,1),(3,3) 

Others positions

0 13107 5243 8066 

1 11916 4660 7490 

2 10082 4194 6554 

3 9362 3647 5825 

4 8192 3355 5243 

5 7282 2893 4559 

 
Table 3. Values of V used in the H.264 standard. 

QP%6 
Positions 

(0,0),(2,0), 
(0,2),(2,2) 

Positions 
(1,1),(1,3), 
(3,1),(3,3) 

Others positions 

0 10 16 13 

1 11 18 14 

2 13 20 16 

3 14 23 18 

4 16 25 20 

5 18 29 23 
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“D’i” is the block 4 × 4 quantified DC. 
The final step for the DC coefficient is the inverse DC 

quantization. This operation is defined by [3,4]. 

ij ij

for(QP 12)

floor(QP / 6) 2W H' .V(0,0).2




     (15) 

ij ij

for(QP 12)

1 floor(QP / 6  )W [H' .V(0,0) 2 ] (2 floor(QP / 6  ))


   

 

where V(0,0) is the multiplication factor for position (0,0) 
in Table 3. 

After all operations, we can combine the AC and the 
DC coefficients for compute the inverse integer trans-
form. Equation (19) gives the equation of 4 × 4 inverse 
integer defined as [3,4]. 
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“X’i” is the block 4 × 4 after all operations (AC and 
DC coefficients). 
 

3. Intra 16 × 16 Architecture 
 
The intra 16 × 16 architecture partitions the MB into six- 
teen 4 × 4 blocks. The scanning order for one MB is 
shown in Figure 3. This order is scanned in the x direc-
tion first and then performs the scanning in the y direc-
tion. The scanning order is the label order from top to 
bottom, from left to right which is the actual processing 
order for one MB. The MB is partitioned into sixteen 4 × 
4 small sub-blocks. The partitions between the 16 × 16 
scanning order labels and the 4 × 4 scanning order labels 
are shown in Figure 4. 

The 4 × 4 scanning order labels are shown in Figure 5. 
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Figure 3. 16 × 16 scanning order labels. 

 
Figure 4. Relationship between 16 × 16 and 4 × 4 scanning order labels. 
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Figure 5. 4 × 4 scanning order labels. 

 
Figure 6 shows the functional flow diagram of the in- 

tra 16 × 16 process. 
In the first step, we compute the intra prediction 16 × 

16 for all 4 × 4 blocks. After this, we calculate the resi- 
dual, the integer transform, the AC quantization and the 
inverse AC quantization for each 4 × 4 block. During the 

calculation of integer transform, we extract the DC coeff- 
icient for each 4 × 4 block. After obtain the 16 DC coeff- 
icients, we calculate the hadamard transform, the DC 
quantization, the inverse hadamard transform and the 
inverse DC quantization. Finally, we combine AC and 
DC coefficient for each 4 × 4 block to perform the in- 
verse integer transform and the reconstruction pixels. 

The intra 16 × 16 hardware architecture is composed 
by two modules. The first component contains the intra 
16 × 16 prediction module and the residual module. The 
second component contains the coding chain module and 
the reconstruct module. The block diagram of the pro- 
posed hardware architecture for H.264 video coding is 
shown in Figure 7. 
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Figure 6. Intra 16 × 16 functional flow diagram. 
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3.1. Intra 16 × 16 Prediction 

 
Different works have been proposed [9-13]. For our arc- 
hitecture, the MB pixels are loaded into a dual RAM 
(Random Access Memory) for reordering and then give 
(to the residual or reconstruction blocks) by sets of 16 
pixels (4 × 4 block). 

This block calculates the predicted pixels of MB for 
all 3 intra 16 × 16 prediction modes specified in the 
H.264 standard (horizontal, vertical and DC) in parallel 
based on the reconstituted pixels from the previous MB 
(planar mode is not used [14]). Figure 8 presents the 

intra prediction hardware architecture. These predicted 
pixels are stored into RAM for all modes. We also use a 
SAD_ 4 × 4 block for calculating the SAD value for each 
mode. We accumulate this value 16 times in order to ob- 
tain the SAD_16 × 16 for each mode. Those absolute va- 
lues permit to give the sum of absolute differences (SAD) 
for each prediction mode. The comparator compares the 
SAD values for all prediction modes and picks the lowest 
value for determining which prediction mode will be 
used. After obtaining the best SAD (MIN_SAD), the best 
MB is given. The difference between the predicted pixels 
and the source pixels is then calculated for the best pre-
diction mode for obtain the residual MB. 

 

Control Unit

START

Done

Intra 16x16 
Prediction

SRC_0

SRC_15

.

.

.
8

RECON_IN0

RECON_IN31

.

.

.
16

Residual_0

Residual_15

.

.

. Coding chain

Residual_out0

Residual_out15

.

.

.

16

16

Reconstruction

RECON_OUT0

RECON_OUT15

.

.

.

8

8

Start_PRED Start_CHAIN Start_RECON

8

8

8

16

16

Pred_pixel_0

Pred_pixel_15

.

.

. Residual

Start_RES

8

8

 

Figure 7. Intra 16 × 16 hardware architecture. 
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Figure 8. Intra 16 × 16 prediction hardware architecture. 
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3.2. ICT and HT Architectures 
 
Different works have been published on the integer trans- 
form [15-19]. It is obvious that “I” shown in (1) or “H” 
shown in (12) can be implemented by a 1-D transform. 
Figure 9 shows the fast implementation for the integer 
transform. The matrix contains only four coefficients: 1, 
–1, 2, and –2. It also can be implemented by using addi- 
tion, subtraction and shift operations. 

The Hadamard transform matrix is very similar to the 
integer transform matrices. The difference is that the co- 
efficients of Hadamard transform are only 1 or –1. There- 
fore, the fast implementation for the Hadamard trans- 
form is shown in Figure 10. 

The hardware implementation of 1-D ICT or HT is 
given in Figure 11. The input for this module is a 4 × 4 
block. For full transform operation, we use two 1-D 
transforms in order to obtain the 2-D transform. Figure 
12 presents the architecture for the 2-D transform. 
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Figure 9. Fast implementations of H.264 integer transform. 
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Figure 10. Fast implementations of H.264 Hadamard trans- 
form. 
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Figure 11. Fast implementations of H.264 1-D transform. 
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Figure 12. Fast implementations of H.264 2-D transform. 

 
3.3. QAC & QDC Architectures 
 
The Quantization hardware architectures have been pro- 
posed in [8,20]. The architecture of DC quantization is 
similar to the AC quantization presented in Figure 13. 
The multiplication factors stated in Table 1 are stored 
into ROM (Read Only Memory) and selected according 
to the QP%6 values. The correct factor is multiplied by 
the uncalled coefficient in the corresponding position. 
The shifter will shift the product to right with qbits. 

The QAC or QDC modules will quantify at the same 
time 16 pixels according to QP factor. These modules are 
composed by a quantization block (noted 0…15), a me- 
mory for storing the input pixels (noted input_0..15) and 
two read-only memories for storing QE (equal to QP%6) 
and F values noted respectively ROM_QE and ROM_F. 
The AC and DC quantization blocks are constituted by 
three basic components presented in Figure 14. 
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Figure 13. Quantization architecture. 
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Figure 14. AC or DC quantification. 
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A multiplier deals perform the multiplication opera- 
tion of AC coefficients with the corresponding MF (i, j) 
factor and gives the absolute value. An adder will per- 
form the sum operation of values given by the multiplier 
with the F parameter given by the ROM memory. A 
shifter allows performing the shift operation the result 
from the adder by “qbits” (varies 15 to 23 according to 
the value of QP). 
 
3.4. IQAC & IQDC Architectures 
 
The IQAC or IQDC modules will quantify 16 pixels acc- 
ording to the QP factor. The architecture of these modu- 
les is similar to the QAC or QDC modules respectively 
presented by the Figure 13. The difference between quan- 
tization (AC or DC) and inverse quantization (AC or DC) 
is presented in the quantization block. For having the 
inverse AC quantization values, we use a multiplier to 
perform the multiplication operation between the QAC 
coefficients and the V (i, j) values. We also use a shifter 
for shifting the result from the multiplier floor (QP/6). 
The architecture for this module is presented by the Fig- 
ure 15. 

For the DC coefficients, we use a multiplier to per- 
form the multiplication operation between the QDC co-
efficients and the V (0, 0) value. An adder will perform 
the sum of values given by the multiplier with {0, 1, 2} 
(0 for QP > = 12, 1 for QP < 12, 2 others parts). A shifter 
will perform the shift of result from the adder by floor 
(QP/6) – 2) for QP >= 12 and by (2 – floor (QP/6)) for 
QP < 12. The architecture for this module is presented in 
Figure 16. 
 
3.5. IICT and IHT Architectures 
 
The IICT or IHT architectures are similar to the ICT or 
HT architectures respectively presented by the Figures 
12 and 13. The inverse integer transform matrix con- 
tains only four coefficients: 1, –1, 1/2, and –1/2. Figure 
17 shows the fast implementation for the inverse integer 
transform. The inverse Hadamard transform matrix con- 
tains only two coefficients, 1 and –1. Figure 18 shows 
the fast implementation for the inverse Hadamard trans-
form. 
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Figure 15. AC inverse quantification. 
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Figure 16. DC inverse quantification. 
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Figure 17. Fast implementations of H.264 inverse integer 
transform. 
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Figure 18. Fast implementation of H.264 inverse Hadamard 
transform. 

 
3.6. Intra 16 × 16 Execution Time 
 
The intra 16 × 16 execution time is presented in Figure 
19. This figure is divided into two parts. The first part 
concerns the intra 16 × 16 prediction. This part takes 115 
clock cycles for the best predicted MB [21]. The second 
part concerns the coding chain block that needs 77 clock 
cycles. In this part, we use a pipeline as shown in Figure 
19. To get the reconstructed MB, we need 16 clock cy-
cles. Finally, 208 clock cycles are necessary to achieve 
the intra 16 × 16 operations. Comparing with [7] and [8], 
the proposed architecture takes less clock cycles. Simu-
lation of our proposed RTL design shows major im-
provements by reducing clock cycles for the intra 16 × 
16 operation as shown in Table 4. Thus, our hardware 
implementation is optimized to achieve higher perform-
ances for the H.264 video encoder than the hardware 
architecture presented in [7-8]. 
 
4. Experimental Results 
 
The whole design has been designed by using VHDL 



H. LOUKIL  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                   CS 

26 

(RTL level). The VHDL code of all modules was synth- 
esized for an EP2S60F1020C3 Altera Stratix II FPGA 
circuit by using the Altera Quartus tool. Table 5 shows 
the implementation results of the intra 16 × 16 module 
for the Stratix II EP2S60 FPGA circuit. 

For experimental verification, we have developed a C 
language reference model of H.264 software. We have 
compared the output results of our C reference model 
with the JM 10.1 model [22] and we have confirmed the 
correctness of our model. We have also used the NIOS II 
softcore processor for sending data to the intra frame hard- 
ware coprocessor. The block diagram of the implement- 
ed H.264 intra frame encoder is shown in Figure 20. The 
design is composed by three parts: the NIOS II processor, 
the intra 16 × 16 frame module and the other peripherals 
connected to the Altera Avalon Bus. The Avalon bus has 
control, data and address signals and has its bus arbitra-
tion logic. 

Our embedded system has been tested by using the Al- 
tera NIOS II development board. The heart of the target 
board is the Altera Stratix II EP2S60F1020C3 FPGA 
circuit. For all experiments, CIF test sequences are coded 
at 30 Hz. We have focussed on the following video test 
sequences: “Foreman”, “Paris”, “Mobile”, “Tb420” and 
“Akiyo”. These test sequences have different movement 
and camera particularities. 

We have determined the processing time of intra 16 × 
16 for the SW (software) solution. From the Table 6, we 
can conclude that a 35 time improvement for the proce- 
ssing speed compared to the software solution can be 
obtained by using our HW implementation. 

Table 4. Comparison between different intra 16 × 16 archi- 
tectures. 

architectures [7] [8] 
Proposed 

architecture

Number cycles/MB 3307 269 208 

Frequency (Mhz) 71 54 160 

Execution time/MB(ns) 46.57 4.98 1.3 

 
Table 5. Implementation results for Stratix II FPGA. 

 Used Resources 

ALUTs 22,685/48,352 (47%) 

Memory (KB) 27/2484 (1%) 

Pins 526/719 (73%) 

DSP block 124/288 (43%) 

 
Table 6. Time comparison between SW and HW implemen- 
tations. 

Total time (ms) Sequence SW HW 

Time Foreman 684.74 18.73 

(ms) Paris 688.21 18.88 

 Mobile 689.40 18.72 

 Tb420 685.78 19.08 

 Akiyo 687.95 18.70 
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Figure 19. Intra 16 × 16 execution time. 
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Figure 20. H.264 embedded system video encoder. 

 
Table 7. PSNR comparison between SW and HW impleme- 
ntation. 

PSNR Sequence SW HW/SW 

 Foreman 38.08 38.08 

 Paris 37.15 37.15 

 Mobile 36.37 36.37 

 Tb420 37.04 37.04 

 Akiyo 40.01 40.01 

 
In order to evaluate the image quality given by this ar- 

chitecture, we have used the average peak signal-to-noi- 
se ratio (PSNR) which is here used as a measure of obje- 
ctive quality. The PSNR metric as shown as in Table 7 
has not detected any difference between the SW and HW 
solutions. Thus, the quality comparison confirms the cor- 
rectness of the designed architecture. 

The Figure 21 presents the original and the two recon- 
structed (one from SW, the other from HW) of the 10th 
frame of the test video sequences. 

5. Conclusions 

In this paper, we have described a new flexible and effic- 
ient HW architecture for H.264 video encoder. The hard- 
ware part has been implemented by using VHDL langu- 
age. Comparing with [7] and [8], our proposed RTL imp- 
lementation gives major improvements by reducing clo- 
ck cycles for the intra 16 × 16 operation. The execution 
time is decreased by 26% even when compared with the 
best previous work for intra frame coding [8]. We have 
also designed an embedded system based on an Altera 
Stratix II FPGA platform running at 160 MHz in order to 

       
Foreman sequence                   PSNR – Y = 38.08 dB                PSNR – Y = 38.08 dB 

       
Foreman Mobile                     PSNR – Y = 36.37 dB               PSNR – Y = 36.37 dB 

       
Paris sequence                      PSNR – Y = 37.15 dB                PSNR – Y = 37.15 dB 
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Tb420 sequence                   PSNR – Y = 37.04 dB                  PSNR – Y = 37.04 dB 

       
Akiyo sequence                   PSNR – Y = 40.01 dB                 PSNR – Y = 40.01 dB 

(a)                                (b)                                (c) 

Figure 21. (a) Original, (b) Reconstructed from SW and (c) Reconstructed from HW/SW of the 10th frame of the test video 
sequences. 

 
evaluate the performance of our design in HW/SW code- 
sign context. We have shown that our HW solution impr- 
oves considerably the intra 16 × 16 process (35 times fa- 
ster) compared to an all software solution with the same 
image quality. 
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