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ABSTRACT 

In this work some characteristics and applications for quantum information is revealed. The various dynamical equa- 
tions of quantum information density have been investigated, transmission characteristics of the dynamical mutual in- 
formation have been studied, and the decoherence-free controlling procedure has been considered, which exposes that 
quantum information is holographic through the similarity structure of subdynamic kinetic equations for quantum in- 
formation density. 
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1. Introduction 

Since quantum information theory has made great pro- 
gresses, it has expanded to treat the intact transmission 
and processing of quantum states, entanglement of states, 
offers potentially great advantages over classical infor- 
mation processing, both for efficient algorithms [1,2] and 
for secure communication [3,4]. Many different imple- 
mentations for quantum information have been proposed 
based on principles of quantum computation, quantum 
cypotography or quantum teleportation, such as Deutsch’s 
work [5], Shor algorithm for factoring large numbers [6] 
and the Grover algorithm for search in an unstructured 
database [7]. However, until recently it has not been clear 
what is fundamental dynamical equation directly related 
to quantum information, except this one, in this work we 
studied three interesting problems raised: 1) Is the trans- 
mission of the quantum information related to the dyan- 
mical process in the mutual information? 2) Is quantum 
information holographic through the similarity structure 
of subdynamic kinetic equation? 3) How does one control 
quantum decoherence in the canonical ensemble system? 

2. Dynamical Equations for Quantum  
Information Density 

First question answer is: the Liouville equation, the 
Schwinger-Tomonaga equation and the Einstein equation 
still hold for quantum information density (QID). In this 
sense the universe is unified to quantum information, and 
is driven by the Hamiltonian (energy). In fact, as many 

physical researchers well know, from Schrödinger equa- 
tion, through derivative to both side of density operator, 
one can obtain a Liouville equation as 

 , .i H
t

 


2

 

Then, by using the Liouville equation one can find that 
the Liouville equation is true for  , continuing this 
procedure until n , for any integer n, one can see that 
the Liouville equation is still true, finally, one can con- 
cludes that the Liouville equation still holds for any ana- 
lytic functional of  , 

   ,
I

i H I
t


.


   

           (1) 

The physical meaning of the above equation can be 
explained as “a general dynamical relation of information 
and energy”, here, Hamiltonian H corresponding to the 
energy, and  I   corresponding to a general quantum 
information, especially,   lnI     is a quantum 
information density (QID). In this way we define that 
 I   is to correspond upon the quantum information 

means 1)  I   can be expanded as the power series of 
 , which may be defined as a generalized (or advanced) 
quantum information density, 2)   lnI   


 is quan- 

tum information density, 3) I    can be consid- 
ered as a minimum unit of the quantum information den- 
sity. Moreover, in the classical system, the Liouville 
equation for the information density can also be estab- 
lished by 
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where  defined as a Poisson Bracket. Because QID 
is just the negative entropy density, this physical mean- 
ing of QID allow us to consider logically introduce a 
micro-representation of the second law of thermodynam- 
ics by 

 

 

ln
, ln

d ln

lnd
, ln
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which gives naturally a general Liouville equation for a 
non-equilibrium process constructed by 
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where    is assumed to be introduced by the 
difference of QID within the systems or between the 
system and environment. More generally, this difference 
is supposed to be introduced by a potential of informa- 
tion density, which drives the system evolves along the 
direction described by the second law of thermodyan- 
mics. 

The above fundamental Equation (1) can be expanded 
to the general relativity system. Indeed, the Schwinger- 
Tomonaga equation for the density operator presented by 
Schwinger and Tomomaga [8-12] is  

 
     , ,x    

 

i
x

 


             (5) 

where x  denotes the Hamiltonian density,   is 
three-dimensional spacelike hypersurface defined to be a 
three-dimensional manifold in Minkowski space. Each 
point x   defined as  0 ,x x  x  for the space-time 
coordinates. Formally, the functional derivative  x   
is defined as  

 
   

   
 0

lim
x

,
x x

   
  


   


      (6) 

where the volume of the four-dimensional space-time 
region enclosed by   and    is denoted by  x . 

Hence, the solution of the Schwinger-Tomonaga equa- 
tion can be written by  

      †
0 0 0, , ,U U       

   
0

4
0, exp d ,U T i x x




  

     

T

       (7) 

where  

       (8) 

  denotes the chronological time-ordering operator. 
The density operator     then becomes a functional 
on the set of spacelike hypersurfaces  . For deriving 
the Schwinger-Tomonaga equation for functional of 
   , we start from the Schwinger-Tomonaga equation 

and have:  

 
 

, ,
n

ni
x

 



   

0

            (9) 

for any integer n . Considering for any analytic 
functional of  I ,   can be expanded as a power 
series on  , a Schwinger-Tomonaga equation for gen- 
eral functional of   thus can be obtained by  

 
   ,

I
i I

x

  
 


         .        (10) 

The above established Schwinger-Tomonaga equation 
for QID allows one to study QID dynamics in curved 
space-time. In fact again, the above Schwinger-Tomo- 
naga equation can also be extended to the curved space- 
time by introducing the quantum bundles and the co- 
variant derivative to replace the ordinary derivative, thus, 
in the general relativistic domain the state vector or the 
functional of density operator must be regarded as a 
functional of the set of spacelike hypersurfaces in curved 
space-time manifold [10,13]. Then, let the Hamiltonian 
density of gravitation field and matter be described by  

      ,G Mx x x     

 G xwhere   represents the Hamiltonian density of 
gravity field whose Lagrangian density is given by Ein- 
stein-Hilbert action,  G  Mx gR  , and x  repre- 
sents the Hamiltonian density of the matter. Thus, in 
terms of Equation (10) a general functional of density 
operator        lnI t I    (or t t t     ) defined 
as quantum information field density satisfies the 
Schwinger-Tomonaga equation. Taking variation of 

 I      with respect to reverse metric, which gives an 
interesting equation:  

 
 

 0 †

1
,

8π

,

I
i G T I

Gg g

I
U U

g g

 



  
 



  



            

  


    (11) 

Copyright © 2012 SciRes.                                                                                 JMP 



Q. BI  ET  AL. 1072 

where 
1

.
2

RgG R     

We neglect second order variation 
2

g g 


 

    

, which 

results in  

π


0.

x q x

g g 



            (12) 

The established Equation (11) may be a quite interest- 
ing equation which is related to the Einstein equation, 
general functional of density operator (including density 
operator or quantum information density) and the 
Schwinger-Tomonaga equation. In fact, based on the 
theory of quantum gravity, such as the Loop quantum 
gravity [14] or formalism of geometro-stochastic ap- 
proach [13], the Einstein equation can be formally quan- 
tized as the quantum Einstein equation:  

 ˆ ˆ ˆ .g kT g 
1ˆ ˆ ˆ
2

G R R    

This gives  

 , 0.I       
1 ˆ ˆ

8π
G T

G  



 

Hence one has the evolution equation for 
 I

g g 

  



  


  

from Equation (11), which shows an interesting evolu- 
tion symmetric property for (general) QID in the time- 
space: 
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  

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 

   

        (13) 

in which the Schwinger-Tomonaga equation (including 
Liouville equation, Schrödinger equation) and Einstein 
equation (including quantum Einstein equation) are im- 
plied. This shows that the fundamental dynamical proc- 
esses are related to QID. Moreover, since in quantum 
fluctuations, virtual pairs of positive and negative elec- 
trons, in effect, are continually being created and annihi- 
lated, and likewise pairs of mu mesons, pairs of baryons, 
and pairs of other particles, all these fluctuations should 
coexist with the quantum fluctuations in the geometry 
and topology of space. Then it is possible that the quan- 
tum Einstein equation is induced an additional distur- 
bance (as a sort of potential of information density) as  

 1 ˆ ˆ , 0.
8π

G T I
G             

0

     (14) 

One interesting evidence is the vacuum, i.e. if the state 
with respect to which the expectation value is taken is the 
vacuum state g  with respect to 0g  so that  

 1 1

8π 2
G R Rg k T g

G            (15) 

then the right side of the above equation is generally 
non-vanishing because of the vacuum fluctuations. This 
possible large fluctuation of metric operator can not be 
ignored in extreme astrophysical or cosmological situa- 
tions, such as near a black hole or big bang singularity 
[14]. If it is so the Equation (11) can describe the QID 
fluctuation as  

  

 

0 †

1 ˆ ˆ , 0,
8π

II
i U U

g g g g

G T I
G

 

 

    


 

 

       
 

 
     (16) 

      

where   may be an imaginary value, which means 
that the QID fluctuation may cause derivation of the Ein- 
stein equation in quantum levels. 

3. Dynamical Mutual Information 

The second answer is: the transmission of quantum in- 
formation along with the dynamical evolution. The both 
processes can be closely relevant. Indeed, for measuring 
 , it may be important to calculate the mutual infor- 

mation in the system. Generally, starting from the defini- 
tion of the mutual information density we have [15]:  

            0 0 00 ; 0 0 ,l lI A B I A I A B   (17)   

           0 0 ,l l l lI A B I Q I A B       (18) 

 Alwhere   is an input ensemble encoded state at time 
  with special coordinate  which is the channel 
length, 

l
 Bl   is an output ensemble encoded state at 

time   with the coordinate l , l   QI   is accumu- 
lated lost information density in the channel. When the 
transmitting time of QID or symbols through channel is 
long enough with noise in the transmission process, the 
receiver receive the amount of information contained in 
the  Bl   at the time t   and the output terminal 
x l  with respect to the  which transmitted by 
transmitter at the time t

 0 0A
0  and the input terminal 

0x  . This is dynamical mutual information. The moti- 
vation to propose this formalism is to consider that the 
quantum channel has long size and noise in transmission 
process which is different from the usual “point” model 
of the channel (or zero transmitting time model) [15]. 
Thus, the   QlI   is given by  
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     0 0l    †
0 0 .I Q I A  UI A U

 

     (19) 

This allows the dynamical mutual QID is obtained by  

          .l lA B†
0 00 ; 0lI A B UI A U I     (20) 

This shows that the initial quantum signal (QID) also 
transform l coordinate from 0 during time   in the 
quantum channel. We emphasize again that the channel 
possessing dimensional size l and transmission time   
is different from the traditional quantum (or classical) 
channel which only represents certain mathematical 
mapping without physical size and passing time. The 
above formula shows that the evolution of QID influence 
the dynamical mutual QID by     0i t I A 0  
which can be described by the kinetic equation of QID. 
Thus, one gets  

exp 

            0 0 ; l lI A B I B

g g g g 

l lI A B

g g 

  



  lI B

   

 
 

 
 (21) 

where   is output, and 
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S B int
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 








 
 






   


      



 (22) 

For example, considering a harmonic oscillator inter- 
acting with a quantum gravitational radiation field g, the 
relevant Hamiltonian is described by  

1 1S BH H H H 

   , d ,k ij ij jkg g

    

with  

†

0S gH a a H   

  † d ,ij jka g


    

and 

 
0int jk ij jkH ag   

 a a
 

  
†

 

where  is the creation (annihilation) operator for 
the oscillator in a Fock fibre, ijg    ijg   is the creation 
(annihilation) operator of the k continuum field mode (or 
graviton) within a graviton fibres, k  is the Lamour 
frequency of spin k due to the Zeeman interaction, and 

jk  denotes the coupling between the oscillator and jkg  
field mode [13]. Generally, from the Schwinger-To- 
monaga equation for a general functional of ,  I t  

 
, 

one can get the Liouville equation for I t   ; based 

on this, a master equation for the functional of the re- 
duced density operator    S BI t I Tr t     can be ob- 
tained [16], which results in a quantum Fokker-Planck 
equation for  SI t

n

n

n
m

2m
n n m m  

n

 in the coherent representation 
(QFPE). This QFPE may describe transmission of the 
information density signals (encoded in harmonic oscil- 
lator) along a quantum Gaussian channel by extending 
the concept of classical Gaussian channel for information. 
Concretely, let us consider a harmonic oscillator as ebit 
encoded quantum information on their coherent states. 
This oscillator consisting of 1  photons is like the 
Brownian particle transmission in an information channel 
described by QFPE, i.e. the channel can be described by 
evolution operator induced by QFPE acting on initial 
input QID. When the oscillator consisting of 1  photons 
are transmitted from the input system, the oscillators 
consisting of 2  photons from the noise system (envi- 
ronment) add to the signal, then 1  photons are lost to 
the loss system through the channel, and  photons 
are detected in the output system, with 1 2 1 2  
[17]. Furthermore, if the spectral decomposition of the 
density operator for the mixed states of 1  photons is 
given by 

11 1 1nn
p n n    then its QID ln    

transmission in the channel remains the same quantum 
entanglement (parallelism) described by the spectral de-
composition of the functional:  

1 11 1 1n nn
ln lnp p n n     , where 

1 1 1n n n  
defined as a quantum information. This makes the quan- 
tum Gaussian channel to have an (parallelism) advantage 
over classical Gaussian channel. 

lnp p p

The solution of QFPE is given by  
   , , ln , ,f t f t    

   

 [18]. By substituting into the 
Gaussian ansatz, one obtains the solution as  

   
2

2

1 1
, , exp

22π
z

zz

f t f
tt
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

  
   

  
 (23) 

     in nozwith t t t    2 t, where in  and  2 t no  
represent the mean power of input signal and noise, re- 
spectively, they are assumed to correspond to the Gaus- 
sian distributed random variables [19]. Then the solution 
gives a formulation of the Bayesian estimation, which 
derives a condition information, then using Gaussian 
integral properties one finally obtain a quantum dy- 
namical mutual information formula [15,16] for the 
quantum Gaussian channel in the coherent state repre- 
sentation,  

    

   

 

0

2

0

2

0 ;

2π
1

21
ln 1 .

2

l

r
y

no

A B

N e 



 

 


          
 
 
 



    (24) 
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where  and l0 0A   B   have the same definitions as 
previously explanations. Hence Equation (24) can be  

used for measuring the variation of QID, 
  lTrI B

g g 

 


.  

For instance, a condition for the QID fluctuation in the 
Gaussian channel is given by 

 
2

π
.

1g e


 

 
 
 
 

 

0
0

2π

2

r tz
Nr e

g g g

 



 


  (25) 

This gives a condition for the QID fluctuation  

out 0,
t

g g 







             (26) 

when   is a function of metric g , which is coin- 
cidence with the definition of   in the interaction 
Hamiltonian, i.e.   is the coupling between the oscil- 
lator and jkg  field mode. This shows that the fluctua- 
tion of QID with the metric in curved time-space may 
exist and be related to the (quantum) Einstein equation. 
A significant condition for this QID fluctuation is that the 
coupling number of the system with the gravitation is a 
function of the metric on curved space-time manifold. 

4. Quantum Information Holography 
through SKE 

The third question answer is that QID is holographic 
through the similarity of subdynamic kinetic equation 
(SKE). For making this point, we try to introduce a sub- 
dynamic formalism [20-22] and followed by some recent 
works [23,24]. In fact, let a quantum system S be coupled 
to a thermal reservoir B, HS, HB, and intH  denote the 
Hamiltonian of the system S, the Hamiltonian of the 
thermal reservoir B, and the interaction between S and B, 
respectively. The total Hamiltonian H of the system plus 
the reservoir can be expressed as  

intS B S BH I I  H H 

 ,

. Then in terms of the corre- 
sponding quantum Schrödinger equation and Liouville 
equation, one can introduce a basis, kj kj  , where j is 
an index denoting S system and k is an index denoting 
thermal reservoir B. Usually the basis, kj kj ,   is cho- 
sen as complete set of eigenvectors of the free Hamilto- 
nian, S BS BH I I  H , here for generally, the  
 ,kj kj    can be chosen as any suitable complete 
basis in the Hilbert space spanned by the eigenvectors of 

S B S BH I I  H . Hence the orthonormal projector 

kj kj kjP    (or kj

1kjQ  

0 int, ,kj kjP H Q

kj kj

the basis, with , so that  
Q   

kjP
) can be introduced by  

kj kj kj kj kj kjP HP P H P P HQ      (27) 

where 0H  is a diagonal part of the Hamiltonian ex-
panded by the basis  ,kj kj   and intH  is an off- 

diagonal part of the Hamiltonian expanded by the basis 
 ,kj kj  . Then the total Hamiltonian H can be ex-
pressed by a projected matrix, which allows one to in-
troduce a creation (destruction) correlation operator (as a 
type of resolvent) by 

  1
,kj kj kj kj kj kj kj kj kjC Q C P E Q HQ Q HP


        (28) 

  1
.kj kj kj kj kj kj kj kj kjC P C Q E P HP P HQ


         (29) 

 ,kj kjThis shows that the    is an eigenvector of the 

 ,kj kj kjE, and  is an joint eigenvalue of  

 , , Hkj kj  , which permits one to get the eigenvector 
of H as  

 kj kj kj kjf P C   

kjEwith the same eigenvalue . Using above equations, 
by introducing kj kj kjf f   as an eigen-projector of 
H, one can construct a Schrödinger type of SKE for each 
projected state as 

,proj proji
t
 

 


  ,kj kj kj
kj

P H P C  

            (30) 

with  

           (31) 

where proj  and p roj
  are defined as  

, ,proj kj kj proj kj kj
kj kj

P P            (32) 

and   or 

2L

 is a solution of the original Schrödinger 
equation, which may be in the Rigged Hilbert space, 

     ,   
2L 

,  is a dense subspace of 
the Hilbert space , and  is a dual space of  .  

Furthermore, by replacing proj proj proj    , and us- 

ing the above SKE, a Liouvillian type of SKE can also be 
derived by 

, .proj proj proji I I LI
t

                 
    (33) 

The construction of the Schrödinger (Liouvillian) type of 
SKE in subspace can be intertwined to the original 
Schrödinger (Liouville) equation with the same spectral 
structure between   operator and Hamiltonian (Liou-
villian) [20,23]. For instance, using the relation (30) one 
has the spectral representation of H related to   as 

1H  †
kj kjD C, where , and  

 .kj kj
kj

P C               (34) 

The creation operator,  

 †1
,C Q HP D

Z Q HQ   
 

 


      (35) 
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creates the Q -part of   from the P -part. While  1
,q q

kj kjq
kj kj kj

f f
E E
q
kjE

0 1H H C  

11

1 12

21

2 22

1

2

SKE

E SKE

SKE

E SKE

SKE

E SKE
n

n n



































             (36) 

is called intermediate (collision) operator [20]. This may 
be a kind of information holography between the original 
Schrödinger (Liouvillian) equation and SKE, which 
means for every basic dynamical equation one can con-
struct its SKE by projecting procedure, and both equa-
tions intertwine with each other by the similarity trans-
formation. This may be described as following similarity 
structure:  

 

SK

SK

Schrodinger Liouville Equations

SK



















 (37) 

where the first index means 1-order of the SKE, and the 
second index means 2-order of the SKE, until that 
n-order, ···. The higher order of proj  represents the 
“vacuum” part of the “dynamic” part of the lower order 
of density operator  , which describes the essence of 
information contained in the density   in its own sub-
space [25]. This is phyical meaning of holography here. 
Marvelously this holographic formalism can be generally 
used to solve the eigenvalues problem for the Schrödinger 
(Liouville) equation generally as below: indeed, if 

kj kj kjP    is an eigen-projector of 0H , then from 
the SKE one gets the eigenvector of H is given by  

  ,kj kj kjC  kjf P            (38) 

and the eigenvalue of H is given by  

0

int i

0

int

1

1

kj kj kj kj kj

kj kj kj
kj kj kj

kj kj

q q
kj kj kj kjq

kj kj kj

E H

H Q Q H
E Q HQ

H

H Q
E E

   

 

nt

int ,

kj

kj kjQ H

 

  

  







 

kj kj qQ HQ H

(39) 

where defining , and suppose the spectral 

decomposition of 
1

kj qE H
 is  

          (40) 

and the eigenvalue  can be gotten by using the SKE 
again,  

1
.

q
kj kj q kj kj q kj

kj q kj kj q kjq
kj kj q kj

E H

H Q Q H
E Q H Q

        

    
 

' ' ' '
kj q q kjQ H Q 



   (41) 

Continuing this procedure until finally one has  
 only containing 1 projector  

,' '' ' '' ' ''
kj kj kjP                   (42) 

then one gets the eigen-vector as 

1
,

q q ' '
kj kj

' '' ' '
kj q q kj' ' ' '' ' ''

kj kj q q kj

f

P H
E H




 






 

 
  



q q
kjE 

(43) 

and the eigenvalus  as  

2

1

2

=
2

2

.

' '' ' '' ' ' ' '
kj q q kj kj q q kjq q

kj

' '' ' '' ' ' ' '
kj q q kj kj q q kj

' '' ' '' ' ' ' '
kj q q kj kj q q kj

' ' ' '' ' '' ' '
kj q q kj kj q q kj

H H
E

H H

H H

H H

   

   

   

   



    
 








   
 

   
 

   
 

   
 

 (44) 

Replacing back the final result to the previous cur- 
rency formalism, eventually one can obtain the eigen- 
vector (eigenvalue) of H. 

For example, let us consider a Heisenberg model re- 
lated to three spins interaction with each others. Its Ham- 
iltonian is expressed by  




1 2 1 2 1 2 1 3 1 3

1 3 2 3 2 3 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ       .

x x y y z z x x y y

z z x x y y z z

H J S S S S S S S S S S

S S S S S S S S

    

   
   (45) 

Choosing a basis as  
1 2 3 1 2 3

0 1 1 1 7 1 1 1

2 2 2 2 2 2

1 2 3 1 2 3
1 1 1 1 2 1 1 1

2 2 2 2 2 2

1 2 3 1 2 3
3 1 1 1 4 1 1 1

2 2 2 2 2 2

1 2 3 1 2 3
5 1 1 1 6 1 1 1

2 2 2 2 2 2

, ,

, ,

, ,

, ,

       

       

       

       

  

    

  

  

 

 

 

 

       (46) 
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the diagnal matrix elements of H can be given by 
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3
, for

4
1

, f
4

j jH 


 



0 or 7

or 1, ,6,

J j

J j



  
      (47) 

and the off-diagnal matrix elements of H can be given by 

0, for 07;01, ,06;71

12,13,16,24,25,

1
, for 14,15,23, 26,

2

j l

jk

H

J jk

 


 
 

, 76;

34,35, 46,56

36,45,

 

 0    

  

(48) 

where notice the index j or k as ,  
, ,  7         1     2

    
, ,  

, , 
 3    

 4     5     6 . The eigenvalues 
and eigenvectors can be calculated by the above pre- 
sented formalism. Firstly it is obvious that  

0 0 0

3

4
E H J   , and 0 0f . Furthermore, the   

eigenvalues and eigenvectors of the 6-order of projection 
hamiltonian are given, such as  

67 6 6 6 7 7 6
67 7

76 7 7 7 6 6 7
76 6

1 1
,

4

1 3
,

4

E H H H J
E E

E H H H J
E E

     

     

   


  


 

(49) 

and 

67 6 7 7 6 6
67 7

76 7 6 6 7 7
76 6

1
,

1
,

f H
E E

f H
E E

    

    

  


  


    (50) 

···, continuing untill one gets the eigenvalues and eigen-
vectors of the 1-order of projection hamiltonian, such as  

 

 

   

1234567 1 1 1 7 7 4 5 4 5

1234567 1234567

2 6 2 6 2 3 6 2 3 6

1234567 1234567

4 5 4 5 2 3 2 3 1

1234567 1234567

1 1 1
3 1 2
4 4

1 1 1 1
3 32 3
4 4

1 1 1 1
3 32 2
4 4

1 1

E H H
E J E J

E J E J

H
E J E J

        

12
4

J
E

         

        




    
  


         
 




          
 


  

         (51) 

2 3
,

1 2 4
4

J
J

J
 

34567

and 

 1234567 1 4 5 4 5 1 1 4 5 1 4 52

1234567

1 1 2 ,
3 121
4 44 2π

J

f H
h J JE J

                    
    
 

    (52) 

and so on, finally author obtains the eigenvector and eigenvalues of the Hamiltonian expressed by  

 1 2 3 4
2 1 4 2 5 2 6, , , I

3
,

4
f f f f                  E J                (53) 

 1 2 3 4
0 7 4 1 4 5 2 3 6

3
, , , ,

4IIf .f f f E J                               (54) 

 
This example shows that the above procedure to gain 

the eigenvalues and eigenvectors is corret. 
be controlled by using a non-eqilibrium statistical en- 
sembles formalism based on the SKE. Indeed again, the 
physical meaning of 

5. The Decoherence-Free Control proj  is that it represents the “vac- 
uum” part of the “dynamic” part of the original density 
operator  , which describes the essence of (irreversible)  The fourth problem answer is that the decoherence can  
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evolution of the density   in its own subspace [25]. 
The second order approximation of  with respect to 
  corresponds to the Master equation [22] derived by 
using the Zwanzig projection technique, and the Boltz- 
mann, Pauli, and Fokker-Planck equations of kinetic the- 
ory and Brownian motion can also be derived by using 
some approximation of  [25]. Author would like to 
clarify that although using the Zwanzig projection tech- 
nique, the (differential integral) Master equation for the 
relevant part of the density operator in Liouvillian space 
can also be derived [26,27], but the Schrödinger type of 
differential equation as SKE in subspace can not be de- 
rived by the Zwanzig projection technique. Subdynamics 
is more general. 



An implausible remark is that the Liouvillian type of 
SKE seems to have the general property to approach 
various kinetic equations or Master equations, which is 
beyond the original Liouville equation. As previous men- 
tioned, the Brussels-Austin group have developed many 
important works for the Liouvillian type of SKE in last 
two decades and have found that the Liouvillian type of 
SKE can intertwine with the original Liouville equation 
by a similarity operator. If the similarity operator is uni- 
tary, the Liouvillian type of SKE is reversible, as an 
equivalent representation of Liouville equation; if the 
similarity operator is not unitary, the Liouvillian type of 
SKE is irreversible and the corresponding evolution is 
not time symmetric. This means that the Liouvillian type 
of SKE can be as an appropriate kinetic equation to de- 
scribe the irreversible process, in which the evolution 
operator is non-unitary on generalized functional space 
which is beyond the traditional Liouville space. In fact, 
since Gibbs synthesized a general equilibrium statistical 
ensemble theory, many theorists have attempted to gen- 
eralized the Gibbsian theory to non-equilibrium phe- 
nomena domain, however the status of the theory of 
non-equilibrium phenomena can not be said as firm as 
well established as the Gibbian ensemble theory, al- 
though great works have done by numerous authors [28- 
38]. The number of references along this line of research 
is too numerous to cite them all here, we just mention 
three significant progresses: the relevant ensembles the- 
ory presented by Zubarev, Morozov and Röpke [39], the 
Jaynes’ predictive statistical mechanics approach [40], 
and the generalized Gibbsian ensembles theory based on 
the Boltzmann kinetic equation presented by Chan Eu 
[41]. So far the obtained non-equilibrium statistical den- 
sity distribution formulas for the ensembles do not satisfy 
the original Liouville equation. Some researchers for that 
reason believe that the Liouville equation must have an 
extra term which satisfies a set of conditions assuring its 
irreversibility and existence of conservation laws if the 
Gibbs ensemble theory is generalized to the non-equilib- 
rium phenomena domain based on the Liouville equation 

[42]. But how is it possible to find this extra term which 
possesses universal irreversible characteristic to satisfy 
numerous requirements from a large body of models? 
This means the efforts of establishing universal ensemble 
theory for non-equilibrium phenomena which is compa- 
rable to the Gibbian ensemble theory is still necessary. 
Concerning in this background, we believe that a non- 
equilibrium statistical ensemble formalism can be con- 
structed by using the Schrödinger (Liouville) type of 
SKE. The constructing procedure may be quite simple by 
using the “similarity transformation corresponding” be- 
tween Gibbsian ensembles formalism based on the Liou- 
ville equation and the non-equilibrium ensembles for- 
malism based on the Liouvillian type of SKE: if the Ha- 
miltonian corresponding to an expectation value, then the 
corresponding expectation of the  operator should be  

   .prejTr H H Tr             (55) 

In fact, if the density operator   in quantum canoni- 

cal system is given by 
 
 

exp

exp

H

Tr H












, then using 

the similarity transformation  one can obtain a pro- 
jected density operator proj  as 

 
 

 
 

1
expexp

,
exp exp

proj

proj

proj

H

Tr H Tr




 


 
   

  

 

  (56) 

which allows one to present (by extension) a new ca- 
nonical ensemble distribution k 

 kE
 which is “vac- 

uum” of “dynamic part” of the original , as ex- 
pressed by Balescu’s book [25]  

     
 

1

1

exp

exp

k k k

proj k

E Z E

Z

   

 





  

 
       (57) 

with the partition functions as  

   exp exp ,k proj k
k k

Z E Z       

    11
,B proj B projk T k T 

  

   (58) 

where 

 

and k  is an eigenvalue of ,  proj  is extended as 
function of position and time. This gives a precise for- 
mula of the quantum canonical ensemble for a projected 
density operator proj , which can be considered as gen- 
eralizing the equilibrium quantum canonical ensembles 
formula to the non-equilibrium quantum canonical en- 
sembles formula in the sense as 1) if the similarity op- 
erator is unitary, then the new formula is just an effective 
(or holographic) representation of the old equilibrium 
quantum canonical ensembles formula because   or H 
has the same spectral structure, 2) if the similarity opera- 
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sembles formulations for irreversibility. tor is non-unitary, then the new formula is an extension 
of the old formula, which represents kind of non-equi- 
librium quantum canonical ensembles formula and re- 
flects irreversibility of the system. The spectrum of 

As an application of the above formalism let us deduce 
the kinetic equations for the open system with strong 
coupling to the environment. In this case, it is not re-
stricted whether system is Markovian or non-Markovian, 
but may be irreversible. Then we start directly from the 
SKE. Here we consider the case for the coupling is 
strong, since the model beyond the perturbation, which 
can not solved by usually equilibrium statistical method. 
Thus the kinetic equation is 

  
may appear to have complex spectral structure that is 
impossible to get from the original self-adjoint operator 
H in the Hilbert space, and 3) if the similarity operator 
can be deduced by some approximations, such as Mark- 
ovian/non-markovian approximations, then the new for- 
mula can expose some non-equilibrium characteristics, 
which can not be gained from the equilibrium quantum 
ensemble formulas. 

Copyright © 2012 SciRes.    

Thus it is obvious that the preceding constructed quan- 
tum formalism for density operator  k    can be ex- 
tended to the classical statistical canonical, grand ca- 
nonical ensembles. Furthermore, the general canonical 
ensembles distribution can also be derived by using the 
similarity transformation. We want to emphasize again 
that in the book of Balescue [25] the “dynamic part” 
means essence part of (irreversible) evolution of the den- 
sity distribution, and the “vacuum” means without corre- 
lations. His work and Brussels-Austin school late works 
seem to show that the proj  plays an important or in- 
fluential role in the (irreversible) evolution of the system 
by extending it to the Rigged Hilbert space or Rigged 
Liouville space [43,44]. Using this way can one build a 
corresponding relation between equilibrium statistical en- 
semble formalism and non-equilibrium statistical ensem- 
ble formalism? The answer is confirmed because the 
original Hamiltonian of the system has corresponding 
relation to the collision operator by the similarity trans- 
formation. Thus the dynamic variables Y are usually ob- 
tained by calculated over the non-equilibrium statistical 
distribution k    which is given by the proposed non- 
equilibrium statistical ensemble formulas (56) or (57) or 
solution of the SKE,  Y Tr Y k 

 Tr

. If the second 
order approximation of   corresponds to the Master 
equation, the Boltzmann equation, the Pauli equation, or 
the Fokker-Planck equation, then kY   should 
deliver the expectation of corresponding physical value 
in the non-equilibrium ensembles. The Equation (56) can 
be as starting base to get non-equilibrium statistical en-  

2
int int ,n

n s n n Q n

P
i P H P P H G H P

t


   


QG

      (59) 

where  is a resolvent introduced as 
1

QG
QHQ




1

. 

Consider the eigenvalues problem and the Born series of 
expansion, and  

 

, one can get  

int 0
int

1
,n s n n

Q

H P H P
G H




  


       (60) 

which gives the eigenvalues by  

 0 1
int int

1
,

2n n n n s n nE H Q H Q H        (61) 

hence, the density operator for this system can be ob- 
tained. For example, assume that a Hamiltonian for the 
Spin-Boson model is given by  

  ,z x j j j j j
j j

b b n       H      (62) 

where z , x  belong to Pauli matrix, j j j , and n b b
 j j  is a creation (a Boson, such as phonon or photon) 

operator for the Bosons of environment, and 
b b

1  . 
Concerning with the eigenvectors of the free Hamiltonian 
are as 1   , 2   , kn , then the expansion  

 ,of H with respect to the basis k k jn nj    can  

be obtained. By introducing an eigen-projectorts as 

jk j k k jP n n    1 and jk jk , and consid- 
ering Equation (59) and using the subdynamic procedure, 
one finally obtains 

Q P 

jk , for k k , k k1n n  1n n 

 

, 
which allows one easily to get a reduced density operator 
for the canonical system by  

 

    

     
2

1

1 1

2 2exp
2

,
1 1

2 2exp
2

k k k k
k k

j
j k

B

k k k k
k k

j k

n n
n

P

Tr
n n

n

   




   

 


 

 



      
    

 
  

  

      
     

 
  

 

 

                  (63) 
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where , select sign “+”, , select sign “−”. 
From Equation (63) one can easily see that the reduced 
density operator for the canonical system is independent 
upon the interaction part of Hamiltonian after final ap- 
proximation, which means that the environment can not 
influence the system and the system is decoherence-free. 
Hence, the construction of the above system in the SKE 
subspace is quantum decoherence-free, which is useful 
for quantum computing. 

1j  2j 

6. Conclusion 

The basic dyanmical equations are true to the QID; the 
transmission process of QID for the mutual information 
is related to dynamical evolution; the Liouville equations 
of QID intertwine with SKE of QID, which could estab- 
lish a non-equilibrium statistical ensemble formalism and 
apply to control quantum decoherence by strongly cou- 
pling system. This exposes that quantum information is 
holographic through the similarity structure of subdy-
namic kinetic equations. 
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