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ABSTRACT 

In audio classification applications, features extracted from the frequency domain representation of signals are typically 
focused on the magnitude spectral content, while the phase spectral content is ignored. The conventional Fourier Phase 
Spectrum is a highly discontinuous function; thus, it is not appropriate for feature extraction for classification applica-
tions, where function continuity is required. In this work, the sources of phase spectral discontinuities are detected, 
categorized and compensated, resulting in a phase spectrum with significantly reduced discontinuities. The Hartley 
Phase Spectrum, introduced as an alternative to the conventional Fourier Phase Spectrum, encapsulates the phase con-
tent of the signal more efficiently compared with its Fourier counterpart because, among its other properties, it does not 
suffer from the phase “wrapping ambiguities” introduced due to the inverse tangent function employed in the Fourier 
Phase Spectrum computation. In the proposed feature extraction method, statistical features extracted from the Hartley 
Phase Spectrum are combined with statistical features extracted from the magnitude related spectrum of the signals. The 
experimental results show that the classification score is higher in case the magnitude and the phase related features are 
combined, as compared with the case where only magnitude features are used. 
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1. Introduction 

The spectral magnitude information reveals how the ener- 
gy content of a signal is distributed across the frequency 
spectrum, i.e., the signal energy concentration across fre- 
quencies. The magnitude spectrum ignores the informa- 
tion related to the location of the aforementioned mag- 
nitude spectral components in the time domain. The in-
formation related to the location of the signal magnitude 
characteristics in the time domain as well as to the signal 
dynamics is encapsulated in the phase spectrum [1,2]. 

Not until relatively recently, researchers in music pro- 
cesssing [3], sound source separation [4], biomedical 
engineering [5], speech/word recognition [6] and speech 
processing [7] have emphasized on the usefulness of phase 
and proposed the use of the phase spectrum. Specifically, 
the phase spectrum is used for various speech processing 
applications such as formant extraction, pitch extraction, 
speech intelligibility, speech enhancement, iterative signal 
reconstruction and automatic speech recognition [1,2,6]. 
The conclusions derived from the review in [1] indicate 
that, for the automatic speech recognition application, the 
(processed) phase spectrum encapsulates class discrimin- 
ative information not conveyed by the signal magnitude 
(e.g. the Mel-Frequency Cepstral Coefficients (MFCCs)). 
Moreover, in the same work it is stated that, in case fea-

ture vectors are extracted from both the magnitude and 
the phase spectra of speech signals, the recognition per-
formance and class separability should be improved. The 
experimental results of the present work, for classification 
of audio signals, agree with both the aforementioned claims. 

Hence, the aim of the present work, which is focused 
on the frequency domain feature extraction for audio clas- 
sification, is to show that the combination of the magni- 
tude with the phase spectral information provides higher 
classification scores compared with the case when only 
magnitude information is used. 

The phase spectral function conveys discontinuities 
that are caused either due to artifacts which are not re-
lated to the signal, [8] or due to certain characteristics the 
signal conveys (Subsection 2.1) [9]. In this work, meth-
ods are developed that eliminate the aforementioned dis- 
continuities from the phase spectrum. The experimental 
results indicate that the discontinuities of the phase spec- 
trum affect the recognition performance; indeed, it is 
seen that the classification scores increase with the re-
duction of discontinuity occurrences. 

In [10], the phase and magnitude features combination 
was shown to be advantageous in terms of recognition 
performance; however, phase computation via the Fourier 
Transform could not adequately address the phase dis-
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continuities problem. The Hartley Transform employed 
here leads to a phase spectrum that suffers fewer discon-
tinueties while it encapsulates the phase content of the 
signal in an improved manner; moreover, it yields robust 
features in the presence of noise. 

Briefly, in this work three alternative frequency domain 
feature sets are selected and then used in combination for 
classification; these are extracted from: (a) The Fourier 
Magnitude spectrogram; (b) the Hartley Magnitude spec- 
trogram; and (c) the Hartley Phase spectrogram. 

Their relative merits for classification are tested on a 
set of acoustic signals from a database containing acous-
tically similar sounds (“fine” audio classification appli-
cation). Specifically, in this work the acoustic signals em- 
ployed are gunshots. This audio dataset is chosen inten-
tionally due to the similarities that the gunshot classes 
exhibit in terms of their magnitude spectral content (Fig- 
ures 1(a) and (b)); therefore, features should also be 
extracted from their phase spectrum. The experimental 
results in Section 5 show that the combination of the afore- 
mentioned feature sets (a), (b) and (c) increases the clas-
sification scores significantly, as compared with the in-
dependent feature set case. Details on the database used 
and on the characteristics and similarities of the signals 
are provided in Section 4. 
 

 
(a) 

 
(b) 

Figure 1. (a) Fourier Magnitude spectrogram of a 30 - 30 
rifle shot recording; (b) Fourier Magnitude spectrogram of 
a pistol shot recording. 

Furthermore, an important issue that arises is whether 
parametric features, such as the MFCCs, typically emplo- 
yed in order to compress the magnitude content of speech 
and audio signals [11], reach a higher classification rate 
compared with the aforementioned combinatory scheme, 
given that the MFCCs encapsulate purely magnitude con- 
tent of the signal whereas, the proposed scheme encap-
sulates both magnitude and phase content. The proposed 
combinatory scheme is therefore compared with the 
MFCCs [12], in terms of recognition performance. 

The rest of this paper is structured as follows: In Sec-
tion 2 the characteristics of the Fourier Phase Spectrum 
are introduced and the Hartley Phase Spectrum is defined, 
implemented and compared with its Fourier counterpart. 
In Sections 3 and 4 the feature extraction, the classifica-
tion and the experimental procedures are described. Fi-
nally, in Section 5 the classification results are presented 
and discussed; conclusions are given in Section 6. 

2. The Phase Spectrum 

2.1. Implementation of the Phase Spectrum via 
the Discrete-Time Fourier Transform 

The difficulties in the evaluation of the Fourier Phase 
Spectrum (FPS) are due to the discontinuities appearing 
across it. Let  S   denote the complex Fourier Spec-
trum of a discrete-time signal  s n , obtained via the 
Discrete-Time Fourier Transform (DTFT). The signal 
phase is defined as: 

   
 

arctan I

R

S

S


 




  
 


           (1) 

where arctan denotes the four quadrant inverse tangent 
function and  RS  ,  IS   are the real and imagi-
nary components of  S  , respectively. 

The FPS suffers from two categories of discontinuities. 
The first category, called “extrinsic” discontinuities (wra- 
pping ambiguities), is related to the inverse tangent func- 
tion used in Equation (1); these wrapping ambiguities 
distort the signal phase content since they are artifacts 
not related to the signal. To overcome these extrinsic dis- 
continuities and restore the signal phase spectrum, an 
“unwrapping” algorithm is applied to the FPS [8]. 

The second category of discontinuities is caused by 
“intrinsic” characteristics of the signal originating from 
its nature. These intrinsic discontinuities appear at “criti-
cal” frequency points,  , where both the real part and 
the imaginary part of the Fourier Spectrum  S   cross 
zero simultaneously. Similarly to the extrinsic disconti-
nuities, the intrinsic discontinuities also cause jumps of 
size   in the FPS [9,13]. The compensation of the intrin- 
sic discontinuities in the FPS is a two step process: 1) 
The critical frequency points   of the signal are de-
tected and 2) the FPS is scanned from lower to higher 
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frequencies; when a critical frequency point   is met, 
 is added or subtracted to all FPS values for    . 

Specifically,  is added [subtracted] to the rest of FPS 
values if to the frequency point before the critical one 
corresponds a higher [lower] FPS value. 



The methods used to compensate the extrinsic and the 
intrinsic discontinuities have their drawbacks. Specifi-
cally for the compensation of the extrinsic discontinuities, 
the unwrapping algorithm cannot discriminate between 
wrapping ambiguities, i.e., extrinsic discontinuities and 
rapidly changing phase angles caused by structural fea-
tures of the signal, i.e., intrinsic discontinuities [8]. Con- 
ventional unwrapping algorithms compensate all discon- 
tinuities blindly as to their respective origins (see also 
Subsection 5.1). Furthermore for the intrinsic disconti-
nuities compensation method, erroneous critical frequen- 
cy points   (i.e. intrinsic discontinuities) may be de-
tected due to inaccurate estimation of the zero crossings 
of the real and the imaginary parts of the Fourier Spec-
trum because of precision limitations in digital computa-
tions [14]. 

2.2. Implementation of the Phase Spectrum via 
the z-Transform 

An alternative approach for the removal of the disconti- 
nuities appearing in the phase spectrum is based on the z- 
transform. The phase spectrum of a discrete-time signal 

 0 1, , , Ms s s  s  with 0 , Ms s 0  is constructed in the 
z-domain by computing and adding the phase contribu-
tions of all “zeros” i.e. roots of the polynomial: 

  k
kS z s z
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at each frequency point [13]. In the method proposed 
herein, the roots are evaluated based on the eigenvalues 
method [15]; moreover, each signal is segmented into 
frames of 256 samples (i.e. the order of the associated 
polynomial is M = 255) in order to keep the computa- 
tional error low (Section 4). 

The advantage of this approach is that, unlike the Dis-
crete-Time Fourier Transform (DTFT) approach (Sub-
section 2.1), it does not exhibit extrinsic discontinuities. 
Indeed, although the inverse tangent function is still em-
ployed for the computation of phase, phase is not wrapped 
around zero; consequently, wrapping ambiguities do not 
arise (see Fourier case in Appendix and [7]). 

However, the intrinsic discontinuities are still present 
in this approach and are expressed as “zeros” lying ex-
actly on the circumference of the unit circle in the z-do- 
main. The intrinsic discontinuities should be removed by 
removing all the “zeros” lying on the circumference of 
the unit circle and constructing the phase spectrum from 
the remaining “zeros”. In practice though, due to accu-
racy limitations in digital computations, one should re-

move the “zeros” located not only on but also very close 
to the circumference of the unit circle [9]. For this pur-
pose, a ring is drawn around the circumference of the unit 
circle and all the “zeros” located within the ring (“sharp 
zeros”) are removed and the phase spectrum is con-
structed from the remaining N ≤ M “zeros”: 

  0
1

ˆ ˆ 
N

N
j

j

S z s z z z



              (2) 

The choice of the width of the exclusion ring is a 
trade-off between information loss (due to the possible 
removal of useful “zeros”) and the suppression of the 
intrinsic discontinuities [9] (Subsection 5.1). 

2.3. Hartley Magnitude Spectrum and Hartley 
Phase Spectrum Definitions 

The relation between the Fourier Spectrum  S   and the 
Hartley Spectrum  H   [16], of a signal is given by: 

    R IH S S               (3) 

where  RS   and  IS   denote the real and the 
imaginary parts of the Fourier Spectrum, respectively. 

Since 

         cos sinS M j           , 

where  M   denotes the Fourier Magnitude Spectrum 
and     denotes the FPS (Equation (1)) then, 

     cosRS M       

and 

     sinIS M      . 

Due to the close mathematical relation between the 
Hartley Spectrum and the Fourier Spectrum, the Hartley 
Magnitude Spectrum and the Hartley Phase Spectrum are 
defined following their corresponding Fourier counter-
parts. Specifically, the definition of the Hartley Magni-
tude Spectrum follows the definition of the Fourier Mag-
nitude Spectrum [17] and the definition of the Hartley 
Phase Spectrum or Whitened Hartley Spectrum follows 
the definition of the Whitened Fourier Spectrum [18-21]. 

Specifically, along the line of the Fourier Magnitude 
Spectrum defined as: 

         * 2 2
R IM S S S S           (4) 

where  

         * cos sinS M j           , 

the Hartley Magnitude Spectrum is defined as:  

          * cos 2N H H M          (5) 

where, from Equation (3), 

         cos sinH M           
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and 

         * cos sinH M         , 

both being real quantities; the absolute value is used in 
Equation (5) because the product    *H H 

 M

 may 
obtain negative values. Hence, the Hartley Magnitude 
Spectrum encapsulates magnitude,   and partially 
phase,    , spectral content. 

The definition of the Hartley Phase Spectrum (HPS) or 
Whitened Hartley Spectrum [20], is based on the defini-
tion of the Whitened Fourier Spectrum (WFS) which is 
defined as the ratio of the Fourier Spectrum over the 
Fourier Magnitude Spectrum—a process known as whit-
ening [19,21]. Hence, the WFS is a complex function 
that encapsulates the phase content of the signal. The 
advantage of the WFS over the conventional FPS (Sub-
section 2.1), ( )  , is that the WFS does not suffer 
wrapping ambiguities (extrinsic discontinuities). The equi- 
valent whitening process for the Hartley Transform case, 
called the Whitened Hartley Spectrum, is the ratio of the 
Hartley Spectrum over the Fourier Magnitude Spectrum. 
Note that, the Hartley Magnitude Spectrum in Equation 
(5) is not appropriate for the whitening process, because 
it conveys partially phase information [20]. Consequ- 
ently, using Equation (3), the HPS is defined as: 

   
 

       
 
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    


 

   

   

 

(6) 

The HPS, being a function of the Fourier Phase    , 
sulates the phase content of the signal more effi-

ciently compared with its Fourier counterparts. Specifi-
cally, the advantages of the HPS are: (a) It does not suffer 
from the extrinsic discontinuities that the conventional 
FPS conveys (Subsection 2.1) and (b) Unlike the WFS, 
the HPS is a real function; algorithms have been develop- 
ped in order to compensate its intrinsic discontinuities. In 
contrast, there is no known method to compensate the 
intrinsic discontinuities present in the WFS [21]. 

Fro

encap

m Equation (6) it can be seen that the HPS is a 
function bounded between 2 , a property of practical 
interest in audio and speec ding applications [20]. 
Furthermore, the HPS is less sensitive to noise compared 
with the FPS, due to the form of its probability density 
function [22]. 

h co

2.4. Hartley Phase Spectrum Implementation 

en-

2.4.1. The Hartley Phase Spectrum via the DTHT 
 to 

Two alternative methods are proposed for the implem
tation of the HPS, in analogy to the methods described in 
Subsections 2.1 and 2.2 for the FPS. 

The HPS (Equation (6)), when evaluated in analogy

the method presented in Subsection 2.1 for the FPS, is 
termed hereafter as the HPS via the Discrete-Time Hart-
ley Transform (DTHT) or  DTHTY  . As the inverse 
tangent function is not emplo xtrinsic disconti-
nuities appear in the HPS; yet, it inherits the same intrin-
sic discontinuities as the corresponding FPS. The method 
for the compensation of the intrinsic discontinuities in 
the 

yed, no e

 DTHTY   is similar to the compensation of the 
intri tinuities in the FPS via the DTFT. Spe-
cifically, for the compensation of an intrinsic discontinu-
ity in the 

nsic discon

 DTHTY   appearing in  , using Equation 
(6):  

       
     

* * *
DTHT

* *

Y cos sin

cos sin

    

   

     

    

  (7a) 

or 

 
       

     

* * *
DTHT

* *

Y cos sin

cos sin

    

   

     

    

  (7b) 

Thus, the equivalent of the addition or the subtraction 
of   in the FPS (intrinsic discontinuity compensation) 
is the multiplication by -1 for the HPS case, regardless of 
the HPS value at the frequency point before the critical 
one. Consequently, the compensation of the intrinsic 
discontinuities in the HPS proceeds in two steps: 1) The 
critical points of the signal are detected in the HPS and 2) 
The HPS is scanned from lower to higher frequencies; 
whenever a critical frequency point *  is detected, all 

 DTHTY   values for    are m iplied by −1 (a 
sign). 

Summarizing, 

ult
ch e of ang

the compensated “FPS via the DTFT” 
(S

T” is obtained in 
tw

2.4.2. The Hartley Phase Spectrum via the z-Transform 

ubsection 2.1) is obtained in three steps: (a) Evaluation 
of the FPS using Equation (1); (b) Application of the 
unwrapping algorithm to the FPS [8]; and (c) Compensa-
tion of the intrinsic discontinuities [9]. 

The compensated “HPS via the DTH
o steps, since it does not suffer extrinsic discontinuities: 

(a) Evaluation of the HPS using Equation (6); and (b) 
Compensation of the intrinsic discontinuities. 

The second method for the HPS evaluation (see Hartley 
case in Appendix) is analogous to that of Subsection 2.2 
for the FPS. The  Y   thus obtained is termed hereaf- 
ter as the HPS via ransform or  YZthe z-t  . 

3. Statistical Features and Classification 

trac-In the experimental part of this work, the feature ex
tion stage of the pattern recognition process uses selected 
statistical features, extracted from each spectrogram, to 
form the feature vectors. The feature vectors are formed 
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using simple rather than sophisticated statistical features 
because the aim is to compare and then combine the mag- 
nitude with the phase spectral information via the same 
feature extraction process. These features are selected 
after preliminary experimentation and trials on different 
alternatives. Each spectrogram (Section 4) is thus repre- 
sented by an [1 × 8]-sized feature vector, including: The 
variance, the skewness, the kurtosis, the entropy, the in-
ter-quartile range, the range, the median and the mean 
absolute deviation [23]. Note that the range is not em-
ployed as a feature for the Hartley Phase spectrogram 
(Section 4), as the latter is limited between 2  (Equa- 
tion (6)). 

For the audio classification application in particular, 
th

 classifier is used for 
th

where T denotes transposition and Cr is the covaria

classifier is selected 
th

e information conveyed by each of the aforementioned 
statistical features with respect to the magnitude and 
phase spectrograms is the following: 1) The variance, the 
inter-quartile range, the mean absolute deviation and the 
range encapsulate information related to the dynamic 
range of the spectrum; 2) The skewness and the kurtosis 
encapsulate the information related to the shape of the 
spectrum; 3) The median encapsulates the information 
related to the central level of the spectrum; and 4) The 
entropy encapsulates the information related to the struc- 
tural order of the spectrum [24,25]. 

The Mahalanobis distance metric
e classification stage of the pattern recognition process. 

The Mahalanobis distance  ,t rd x x  between a reference 
feature vector, xr, and a test ector, xt, is given by: 

     1,
T

x          (8) 

 feature v

t r r t r r td x x x x C x

nce 
matrix of all reference vectors [26]. 

The Mahalanobis distance metric 
anks to the normalization capability of the covariance 

matrix. In alternative classifiers considered, such as the 
City Block, the Euclidean distance, etc., the degree of 
variance amongst the values of the feature vectors of the 
reference data, is not taken into account; consequently, 
features that have high absolute values dominate the re-
sult. Even the standardized Euclidean distance metric 
classifier, which preserves the variance of each feature 
vector, does not consider the degree of variance amongst 
the feature vectors. It should be noted, however, that the 
accuracy of the results thus obtained is dependent on the 
accuracy of the Cr estimate available; this in turn de-
pends on the features selected in vector xr and increases 
with the size of the data set available. The Cr matrix is 
estimated off-line, by sample averaging, based on the 
reference set of feature vectors, as: 

   
1

1 n

n × m matrix, m is the number of features in each vector 
(m = 8), Xi is the ith row of the matrix (ith reference vector) 
and X  is the mean row vector across the n columns. 

Su marizing, an [1 × 8]-sized reference feature vem ctor 
is

4. Experimental Procedure 

tal part is created ba- 

 ten 
(1

e the gunshots belong is non- 
st

 constructed from the mean values of the eight statisti-
cal features across each signal in the classifier training 
set, within each audio class. The Mahalanobis distance is 
calculated between an incoming test vector and each ref-
erence vector; the test vector is assigned to that class 
whose reference vector is the closest [27]. 

The database used in the experimen
sed on [28]. It consists of ten different classes of gun-
shots, namely: 1) Firing a revolver; 2) firing a 0.22 cali-
ber handgun; 3) firing an M-1 rifle; 4) firing a World 
War II German rifle; 5) firing a cannon; 6) firing a 30-30 
rifle, 7) firing a 0.38 caliber semi-automatic pistol; 8) 
firing a Winchester rifle; 9) firing a 37 mm anti-tank gun; 
and 10) firing a pistol. These audio recordings are origi-
nally stereo (one channel only used here) with 16 bits 
precision and sampling frequency 44,100 Hz. This data-
base is chosen because all the classes belong acoustically 
to the same family (fine audio classification—Section 1), 
thus making the classification task more demanding. 

Each one of the ten (10) audio classes consists of
0) recordings. Seven of them are used as training data 

and the rest as test data. For each class, the ten aforemen-
tioned recordings (gunshot signals) are manually extrac- 
ted from a single long waveform provided for the given 
audio event (class) in the database [28]. In the waveform, 
the relevant audio event is repeated several times in a 
sequence (e.g. ten pistol shots). In the cases (classes) 
where the waveform consists of less than ten repetitions 
of the signal (gunshots), the additional signals needed to 
complete the ten samples are created by adding random 
noise to the original signals extracted from the waveform. 
Due to the limited number of recordings per class the 
leave-one-out method of cross-validation is used for the 
experiments (Section 5). 

The type of signal wher
ationary transient [29]. Specifically, the gunshot sig- 

nals belong to the “Meixner” type of transients because 
they are characterized by their short burst of energy that 
subsequently decays, [30] Figure 1(a) for class (6) and 
Figure 1(b) for class (10). Due to the non-stationary na-
ture of the gunshot signals, time-frequency signal repre-
sentations are required in order to extract the appropriate 
features for their classification. It is important to mention 
though that time-frequency distributions, such as the 
Wigner-Ville distribution, the Wavelet transform, etc., do 
not utilize the phase content of the signals [31]. There-
fore, in the proposed method, features are extracted from 
distinct magnitude and phase time-frequency distribu-

1

T

r i i
i

C X X X X
n 

    
       (9) 

where n is the number of rows (reference vectors) of an 
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into frames 
of

based on Equation (4); 
 

T—based on 

 on Equation (5); 

ction) 
ar

entioned spectrograms has to 
be

forementioned 
sp

tions in order to encapsulate the non-stationary transient 
nature of these signals and also to utilize their magnitude 
and phase content in separate feature vectors. 

Specifically, each audio signal is segmented 

where log denotes logarithm. The warped magnitude 
spectrum is passed through a bank of triangular-shaped 
filters that are linearly spaced in the 0 Hz to 1000 Hz 
range whereas above this, their central frequencies are 
given by: 1 i1.148if f    where the first central fre-
quency, f1, equals to 1 kHz. Subsequently, for each frame, 
the logarithmic function is used to compress the dynamic 
range of the magnitude spectral values and the Discrete 
Cosine Transform is applied to the logarithm of the mag-
nitude of the filter-bank outputs [12]. A defined number 
of the first MFCCs (excluding the 0th coefficient) are 
retained from each frame and a matrix is formed (e.g., 20 
coefficients × 80 frames). The mean value of each MFCC 
is calculated per frame in order to form the feature vector 
(e.g. for the aforementioned example, the size of the fea-
ture vector is 20 × 1). Finally, via its MFCC feature vect- 
or, each signal is classified to the corresponding class ba- 
sed on the Mahalanobis distance metric classifier. Hence, 
in the following sections, the spectrogram-based feature 
extraction method, proposed here, is compared with the 
MFCC-based method on a fair comparison basis. 

 equal length (256 samples) with zero-padding of the 
last frame if necessary. This corresponds to an effective 
window size of 6 msec, which is adequate given the 
bursty nature of the shots. Each frame is windowed with 
a Hanning window (no window overlap) and transformed 
to the frequency domain. The transformed frames are then 
placed row-wise in a matrix forming a spectrogram. Five 
different such spectrogram matrices are evaluated for 
each audio signal, namely: 
1. The Fourier Magnitude—
2. The Hartley Phase via the z-transform—based on 
Equation (6) and Subsection 2.4; 
3. The Hartley Phase via the DTH
Equation (6) and Subsection 2.4; 
4. The Hartley Magnitude—based
5. The Hartley Transform—based on Equation (3). 

The same parameters (frame length, window fun
e used for the evaluation of all five spectrograms in 

order to compare them—in terms of their recognition per- 
formance—on the same basis. The conservative frame 
length of 256 samples helps to keep the computational 
error of the Hartley Phase via the z-transform spectro-
gram low (Section 2). 

Each of the five aforem

4.1. Spectrogram Selection and Preliminary 
Classification Results 

The first set of classification experiments addresses the 
ten audio classes classification task and uses each of the 
five aforementioned spectrograms as an individual “ex-
pert”. Classification scores are presented in Table 1. Note 
that no discontinuities compensation or removal is em-
ployed for the phase-related spectrograms (see also Sub-
section 5.1). 

 presented to the classifier in a reduced dimensionality 
form. The statistical features described in Section 3 are 
extracted from each spectrogram for each audio signal, in 
order to compress the information of each spectrogram 
into a compact feature vector. 

The recognition performance of the a
As it can be observed from Table 1, the Fourier Mag-

nitude spectrogram yields the highest classification rate 
(66.7%); this indicates that it encapsulates the signal in-
formation content more efficiently than the rest of the spec- 
trograms. A closer examination of the classification re-
sults, however, reveals that there are certain audio classes 
(namely, classes: (2), (4), (5) and (10)) where the Fourier 
Magnitude spectrogram “expert” yields significantly re-
duced scores that draw the Fourier Magnitude spectro-
gram average down to 66.7%. This prompts further in-
vestigation as to the features that would be more appro-
priate for those “hard” classes. 

ectrograms is compared with the recognition perform-
ance of the MFCCs which are features that encapsulate 
the magnitude content of the signal. Briefly, the MFCCs 
of a signal are computed as follows: The signal is passed 
through a pre-emphasis filter (a typical first order filter 

  11H z z    , 0.95  ) in order to become spec- 
li f its spectrum that are criti-

cal to hearing. After windowing, the Fourier Transform is 
applied to each frame of the signal and the absolute mag-
nitude spectrum is evaluated. The linear frequency axis (f) 
of the magnitude spectrum is then warped into the Mel- 
scale frequency axis (mel) defined as: 

 

trally flat and amp fy areas o

In view of the above observation, for the next set of 
experiments, the five spectrograms are grouped in three 
categories based on the information they convey. On the 
basis of this categorization, two alternative experiments 

1127 log 1
700

f
mel f

   
 
 

 

 
Table 1. Correct classification rates (%) for individual spectrograms. 

Features extracted from Hartley Phase via the Hartley Phase via the Hartley Magnitude Fourier Magnitude 
DTHT { DTHTY ( ) } { ( )N  } { ( )M  } z-transform { Y ( )z  }spectrogram: 

Hartley Transform
{ ( )H  } 

Classif. score 
(10 classes) 

66.7 60.0 56.7 63.3 53.3 
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are carried one spectrogram is selected from 
ea  of the gories. These experiments aim to-

 

test and reference feature vectors (Section 3). Hence, 
in this case, if two or thr out of the three “experts” 

5.

- 
), the 
ed by 

 
 

 out, where 
ch  three cate  

compare the classification performance when spectro-
grams of the three aforementioned categories are com-
bined with the case where only magnitude-related features 
are used (Fourier Magnitude spectrogram and MFCCs). 
Specifically, the three categories are: 

Category 1—Spectrograms that encapsulate magni-
tude content: The Fourier Magnitude spectrogram pre-
serves only the magnitude content of the signal. 

Category 2—Spectrograms that encapsulate phase 
content: The Hartley Phase via the z-transform spectro-
gram and the Hartley Phase via the DTHT spectrogram 
belong to this category. The Hartley Phase via the z-trans 
form offers the advantage of the flexible method for the 
removal of the intrinsic discontinuities using the “zeros” 
exclusion ring (Subsections 2.2 and 2.4), while the Hart-
ley Phase via the DTHT relies on the compensation 
rather than the removal of the intrinsic discontinuities 
(Subsection 2.4). The Hartley Phase via the DTHT avoids 
the empirical decision on the exclusion ring width; yet, 
the choice of this very parameter offers to the Hartley 
Phase via the z-transform the flexibility to control the de- 
gree of reduction of the intrinsic discontinuities at the 
risk of increasing information loss (Subsection 5.1). Clearly, 
the two approaches are not equivalent; however, since 
their recognition performance is comparable (60.0% ver- 
sus 56.7% in Table 1) both the Hartley Phase via the 
z-transform and the Hartley Phase via the DTHT spec-
trograms are used for the experiments. 

Category 3—Spectrograms that encapsulate a combi-
nation of magnitude and phase contents: 

The Hartley Magnitude (contains partially phase in-
formation, Subsection 2.3) and the Hartley Transform
spectrograms belong to this category. The Hartley Trans- 
form spectrogram obtains a 10.0% lower classification rate 
compared with the Hartley Magnitude spectrogram (Table 
1); hence, the Hartley Magnitude spectrogram is selected 
for the experiments. 

Thus, Experiment 1 combines: (a) The Fourier Mag-
nitude spectrogram (Category 1); (b) The Hartley Phase 
via the DTHT spectrogram (Category 2); and (c) The 
Hartley Magnitude spectrogram (Category 3) while Ex-
periment 2 combines: (a) The Fourier Magnitude spec-
trogram (Category 1); (b) The Hartley Phase via the z- 
transform spectrogram (Category 2); and (c) the Hartley 
Magnitude spectrogram (Category 3). 

The three independent “experts” (spectrograms), used 
in each experiment, are combined in order to produce the 
final classification decision based on the majority vote 
rule. For each audio signal three feature vectors are formed, 
one for each of the three aforementioned spectrograms. 
In distance metric classification, a signal is classified to a 
certain class based on the minimum distance between the 

agree then, the audio signal is classified to this class. In 
case of a tie, the decision is taken based on the class pro- 
posed by the Fourier Magnitude spectrogram “expert”. 

The classification scores of Experiment 1 and Experi-
ment 2 are compared with the classification score ob-
tained based on the MFCCs. These results aim to com-
pare the proposed feature extraction method that com-
bines magnitude with phase information (Experiments 1 
an

 the 
ee 

d 2) with features that encapsulate efficiently only the 
magnitude content of the signal. 

A series of preliminary experiments is carried out in 
order to specify the parameters of the MFCC algorithm 
with respect to the recognition performance. The highest 
classification rate is obtained when the signal frame size 
is 1024 samples, using a Hanning window, 32 filters in 
the filter bank and a frame increment of 512 samples. For 
these parameters, further experiments are conducted so 
as to determine the number of MFCCs (i.e. size of fea-
ture vector) that provides the highest classification score. 
Specifically, the number of coefficients tested ranges 
from 4 to 32 in steps of 2. The classification rate in-
creases with the number of coefficients reaching the 
highest rate (73.3%) when the number of coefficients 
retained is 20; beyond this order the rate decreases. Rep-
resentative classification rates are provided in Table 2. 

Since the MFCCs encapsulate purely the magnitude 
content of the signal, their recognition performance is 
similar to the Fourier Magnitude spectrogram; therefore, 
as expected, they also yield considerably reduced scores 
for the same four audio Classes (2), (4), (5) and (10).  

However, for the ten classes the classification rate ob-
tained based on the Fourier Magnitude spectrogram (Ta-
ble 1) is lower compared with the MFCCs (Table 2), due 
to the significant compression qualities of the latter. 

The classification results obtained from Experiments 
1and 2 are presented and compared with the classifica-
tion rates of the MFCCs, in Subsection 5.2 and Table 3. 

5. Classification Results and Discussion 

1. Hartley Phase Spectrograms and  
Recognition Performance 

For the two cases of the Hartley Phase spectrograms (com
putation via the DTHT and via the z-transform
spectrogram matrices are replaced by matrices form
evaluating the first order discrete difference along each

Table 2. Correct classification rates (%) for the MFCC fea-
tures. 

Number of 
coefficients 

18 20 24 28 30 

Classif. score 
63.3 73.3 56.7 46.7 43.3 

(10 classes) 
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Table 3. Correct classification rates (%) for Fourier Mag-
nitude spectrogram, MFCC, Experiments 1 & 2. 

Feat
extr

fro

ier  
tude 

m 

ures Magni
acted spectrog
m: { (M

Four

ra
) } 

MFCC 
ef.) 

peri  1

(20 co

Ex ment  
Experts used: 

{ (M ) ,
DTHTY ( ) ,

( )N  } 

Experim 2ent 
Experts :used

{ ( )M ,Y ( )z  ,
( )N  } 

Classif. 
score 67.2 73.3 83.9 

(10 classes) 
85.5 

Classif. 
score 

(4 classes) 
51.7 56.7 93.0 95.8 

 
r e o al ma s. The feature vectors hen 

fro phase differe atrices. E
m  the audio signals database yield a classification 

t of  on a e when u
 discrete difference of the Hartley Phase spec-

ication rate 
ob

 of 56.7% (Table 1) out-

 dis-

1). Finally, 

he “blind” compensation 
be

ow of th rigin
m these 

trice are t
xperi-extracted nce m

ents on
te imra prov

irst order
emen 14.0% verag sing the 

3) When both spectrograms are processed to compen-
sate the intrinsic discontinuities, the Hartley Phase 
spectrogram (intrinsic discontinuities compensated) 
score of 81.6% outperforms the Fourier Phase spec-
trogram (extrinsic and intrinsic discontinuities com-
pensated) score of 71.4%. 

f
trograms (via the DTHT and via the z-transform) over the 
case where the phase difference is not utilized. 

Similarly, a classification rate improvement of 16.7% 
on average is observed when the phase difference is ap-
plied to the Fourier Phase spectrograms (via the DTFT 
and via the z-transform). This recognition performance 
improvement is in agreement with results reported in 
[32], where it is claimed that the phase difference is less 
affected by noise than the phase per se. This observation 
indicates that for signals such as the gunshots, which are 
characterized by their considerable noise content, the 
derivative (first order difference) of the phase spectrum— 
which encapsulates the information related to the veloc-
ity with which each frequency “travels” within the sig-
nal—is a more informative feature for classification 
compared with the phase spectrum. The classification 
rates of the Hartley Phase via the z-transform and the 
Hartley Phase via the DTHT spectrograms presented in 
Tables 1 and 3 (Experiments 1 & 2) as well as all the 
classification rates of the Hartley Phase and the Fourier 
Phase spectrograms presented in this work are obtained 
by evaluating the first order discrete difference. In case 
the classification results are obtained when the disconti-
nuities are compensated or removed from the Hartley 
Phase and the Fourier Phase spectrograms, the first order 
discrete difference is evaluated after the compensation or 
removal of the discontinuities. 

Hartley Phase via the DTHT Spectrogram 
The classification rate, averaged across all ten audio 

classes, obtained using the Hartley Phase via the DTHT 
spectrogram when the intrinsic discontinuities are com-
pensated (no extrinsic discontinuities exist in the HPS, 
Subsection 2.4) is 81.6% whereas, the classif

tained when the discontinuities are not compensated is 
56.7% (Table 1). Similarly, for the Fourier Phase via the 
DTFT spectrogram the highest classification score (71.4%) 
is obtained when both the extrinsic and the intrinsic dis-
continuities are compensated. 

The classification scores obtained using the Hartley 
Phase via the DTHT versus the Fourier Phase via the 
DTFT spectrograms are summarized in three cases: 
1) When both spectrograms are employed without any 

type of compensation, the Hartley Phase spectro-
gram classification score
performs the Fourier Phase spectrogram classifica-
tion score of 43.3%, while, 

2) When both spectrograms contain only intrinsic
continuities, i.e. after extrinsic discontinuities are 
compensated in the Fourier Phase spectrogram then, 
the Fourier Phase spectrogram classification score 
of 66.7% outperforms the Hartley Phase spectro-
gram score of 56.7% (Table 

The counter-intuitive behavior of the Fourier Phase 
spectrogram performance to exceed the Hartley Phase 
spectrogram performance in Case (2) is due to the fact 
that while compensating extrinsic discontinuities from 
the FPS, a number of intrinsic discontinuities is inevita-
bly also compensated, due to t

havior of the unwrapping algorithm. Specifically, the 
unwrapping algorithm adds multiples of 2   in case a 
phase jump equal to or greater than   occurs in the FPS 
and hence in theory, the unwrapping algorithm should 
simultaneously compensate both the extrinsic and the 
intrinsic discontinuities, since the intrinsic discontinuities 
also cause phase jumps of   in the FPS (Subsection 
2.1). However, in many cases due to com ational in-
accuracies the intrinsic discontinuities appearing in the 
FPS cause phase jumps that are marginally less than 

put

 . 
Therefore in practice, the unwrapping algorithm com-
pensates the extrinsic discontinuities and also a certain 
number of the intrinsic disco tinuities, a fact which ex-
plains the higher classification rate of the Fourier Phase 
spectrogram, since the recognition performance is related 
to the existence of discontinuities in the phase spectrum  

However, of practical interest for further processing 
steps is the Case (3) situation, where all discontinuities 
are compensated and the Hartley Phase via the DTHT 
spectrogram shows a clear advantage. 

Moreover, for the classification rates of Case (3) and 
for the classification rates of the Hartley Phase via the

n

.

 
z-

s employed due to 
th

transform spectrogram when discontinuities are re-
moved (i.e. cases of non-zero width exclusion ring) that 
is described in the following paragraph, the leave-one- 
out method of cross-validation, [27], i

e limited number of signals available within each audio 
class (ten signals per class). For the classification results 
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of the Fourier Magnitude spectrogram and Experiments 1 
and 2, which are presented in Subsection 5.2 and Table 3, 
the leave-one-out method is also employed. In contrast, 
the leave-one-out method is not employed in the pre-
liminary experiments of Table 1 (individual “experts”). 
This explains the slightly different scores in the Fourier 
Magnitude spectrogram “expert” between Tables 1 (66.7%) 
and 3 (67.2%). 

Hartley Phase via the z-Transform Spectrogram 
The removal of the “sharp zeros” using the exclusion 

ring reduces the discontinuities in the HPS (Subsections 
2.2 and 2.4). However, as the ring width increases the 
number of “zeros” excluded also increases, thus causing 
information loss. 

 wid- 
th

 “zeros” used for the evaluation of the 
ph

r a ring width equal to 0.00003 (on av-
er

erage over all the ring widths tested) 
co

rier Magnitude spectrogram and the 
 

n-
sequ ovement of recognition performance is 

ined from the combinatory 
sc

 (Table 3). 

ies is se-
ng test case. 
l results show that the classification 

pecifically, the recogni-
tio

Hence, for the classification experiments the ring
 is varied from zero (i.e. no intrinsic discontinuities re- 

moved) to 0.001 (15.0% of the signal “zeros” excluded 
on average), with a step of 0.00001. Further increase of 
the ring width would risk unreliable results, due to the 
limited number of

ase spectrum. 
The experimental results, using the audio database, 

show that the classification rate obtained from the Hart-
ley Phase via the z-transform spectrogram for a zero ring 
width is 60.0% (Table 1). The classification rate in-
creases as the ring width increases reaching its highest 
value (83.7%) fo

age 1.0% of the “zeros” are excluded). However, as the 
ring width further increases from 0.00004 to 0.001, the 
classification rate gradually decreases becoming 65.3% 
for the widest ring width tested (0.001). For the Fourier 
Phase via the z-transform spectrogram the same ring width 
as in its Hartley counterpart has provided the highest 
classification rate. 

The classification rate obtained from the Hartley Phase 
via the DTHT spectrogram when the discontinuities are 
compensated is 10.2% higher compared with its Fourier 
counterpart and similarly, the classification rate obtained 
from the Hartley Phase via the z-transform spectrogram 
is 4.1% higher (av

mpared with its Fourier counterpart. These results in-
dicate that the phase spectral content is presented to the 
classifier in an improved manner using the HPS as com-
pared with the FPS. 

5.2. Classification Results of the Combinatory 
Scheme 

As mentioned in Subsection 4.1, the classification rate 
obtained based on the magnitude feature vectors ex-
tracted from the Fou
MFCCs, drops considerably for certain classes of audio
signals—namely, for Classes (2), (4), (5) and (10). Co

ently, impr
sought through the use of features extracted from the 

phase spectrograms. The classification rates obtained 
from Experiments 1 and 2 (Subsection 4.1) are compared 
with the classification rates obtained from the Fourier 
Magnitude spectrogram and the MFCCs in order to test 
whether the combination of magnitude with phase related 
features is beneficial compared with the use of purely 
magnitude related features. 

In the first [second] row of Table 3 are presented the 
classification rates for the ten classes [four “hard” 
classes]. For the case of the ten classes, the recognition 
rate is increased from 67.2% obtained from the Fourier 
Magnitude spectrogram to 83.9% (Experiment 1) and 
85.5% (Experiment 2) obta

heme, due to the inclusion of the phase related features. 
More importantly, the recognition improvement is much 
more pronounced for the case of the four “hard” classes. 
Indeed, the classification score is increased from 51.7% 
using the Fourier Magnitude spectrogram to 93.0% (Ex-
periment 1) and 95.8% (Experiment 2) using the combi-
natory scheme; for these four classes and for both Ex-
periments 1 and 2, the classification improvement is sig-
nificant at level 0.95 based on the statistical matched- 
pairs t-test performed here, along the line of [33] for 
speech. For Experiment 2 (Table 3), where the Hartley 
Phase via the z-transform spectrogram is used as one out 
of the three spectrograms (Subsection 4.1), the classifica-
tion rates presented are obtained when the ring width is 
set to its experimentally optimal value of 0.00003 (Sub-
section 5.1). However, it is important to report that for 
the four classes case in Experiment 2, the classification 
rate improvement is still significant at level 0.95 even 
when the ring width is set to zero. 

Similarly to the Fourier Magnitude spectrogram, the 
MFCCs yield lower classification rates compared with 
the combinatory scheme (Experiments 1 and 2). Specifi-
cally, for the ten classes case the classification rate ob-
tained via the MFCCs is 73.3% and for the four classes 
case the classification rate is 56.7%

6. Conclusions 

The usefulness of phase as an assistive frequency domain 
feature for audio classification applications is argued in 
this work. An audio database with gunshot signals bear-
ing considerable spectral magnitude similarit
lected as a demandi

The experimenta
rate of the combinatory scheme, which encapsulates both 
the magnitude and the phase spectral content of the sig-
nal, is higher compared with the rate obtained from purely 
magnitude spectral features such as the Fourier Magni-
tude Spectrum or the MFCCs. S

n rate of the combinatory scheme is 41.3% and 44.1% 
higher for the four “hard” classes in Experiments 1 and 2 
in Table 3, respectively, as compared with the use of the 
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Appendix 

he phase contribution of a single “zero”, z, to a given 
equency point ω (point C on the unit circle, in Figure 2) 
quals: 
 For the Fourier case, based on Equation (1), 

T
fr
e


  arctan
BC

AB
     

 
, and  

rtley case, based on Equation (6),  For the Ha

       cos sin
AB BC

Y
AC

          
 

. 

Furthermore, in case there exist L “zeros” on t
z-plane then, their phase contribution to a g

he 
iven fre-

quency point ω, is: 
 For the Fourier case, [13], 

   
L

TOTAL
1

k
k

      and 


 For the Hartley case, 

       TOTAL TOTAL TOTALY cos sin      . 

This process has to be repeated for all the frequency po- 
ints of interest, in order to evaluate the FPS or the HPS. 
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Figure 2. Geometric interpretation of the phase contribu-
tion of a single “zero”, z, on the z-plane to a given fre uency 
point ω (point C on the unit circle). 
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