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ABSTRACT 

The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or ma-
licious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in 
the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious 
node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelli-
gently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a de-
cision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due 
to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level 
evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence 
levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation 
shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave 
similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving a low false 
alarm rate. 
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1. Introduction 

In a wireless sensor network, operating in a harsh and 
unattended environment, sensor nodes may generate in-
correct sensor readings and wrong reports to their 
neighbors, causing incorrect decisions or energy deple-
tion. The potential sources of incorrect readings and re-
ports include noise, faults, and malicious nodes in the 
network. Unlike noise and faults, malicious nodes can 
arbitrarily modify the sensed data and intentionally gen-
erate wrong reports. To ensure a reliable event detection 
in the presence of such wrong data and reports, it is nec-
essary to detect and isolate malicious nodes, greatly re-
ducing their impact on decision-making. 

Several fault detection schemes for wireless sensor 
networks have been proposed in the literature [1-5]. They 
use centralized, distributed, or hierarchical models. Due 
to the communication overhead most schemes employ a 
distributed model, using either neighbor coordination or 
clustering. As the fault or error models for detection, 
noise and a few types of faults, such as transient and 
permanent faults, are typically used. Malicious nodes, 
however, can generate arbitrary sensor readings which do 
not conform to the typically used fault models. In that 
case, the resulting malicious node detection rate becomes 

much poorer than the estimated one. 
Rajasegarar et al. presented an overview of existing 

outlier detection schemes for wireless sensor networks 
[6]. Sensor readings that appear to be inconsistent with 
the remainder of the data set are the main target of the 
detection. Curiac et al. [7] proposed a detection scheme 
using autoregression technique. Signal strength is used to 
detect malicious nodes in [8], where a message transmis-
sion is considered suspicious if the strength is incompati-
ble with the originator’s geographical position. Xiao et al. 
developed a mechanism for rating sensors in terms of 
correlation by exploring Markov Chain [9]. A network 
voting algorithm is proposed to determine faulty sensor 
readings. 

Atakli et al. [10] presented a malicious node detection 
scheme using weighted trust evaluation for a three-layer 
hierarchical network architecture. Trust values are em-
ployed to identify malicious nodes behaving opposite to 
the sensor readings. They are updated depending on the 
distribution of neighboring nodes. An improved intrusion 
detection scheme based on weighted trust evaluation was 
proposed in [12]. The mistaken ratio of each individual 
sensor node is used in updating the trust values. Trust 
management schemes have been proposed in routing and 
communications [13]. Some efforts are also being made 
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to combine communication and data trusts [14]. However, 
malicious node detection in the presence of various types 
of misleading sensor readings due to the compromised 
nodes have not been deeply investigated. In addition, the 
resulting event detection performance has not sufficiently 
been taken into account in malicious node detection. 

In this paper, we present a neighbor-based malicious 
node detection scheme for wireless sensor networks. Ma- 
licious nodes are modeled as faulty nodes that may inten- 
tionally report false data with some intelligence not to be 
easily detected. The scheme identifies malicious nodes 
unless they behave similar to normal nodes. Confidence 
levels and weighted majority voting are employed to 
detect and isolate malicious nodes without sacrificing 
normal nodes and degrading event detection accuracy. 

2. Network Model and Operating Modes 

In presenting our neighbor-based malicious node detec-
tion scheme we use a flat network where sensor nodes 
are deployed randomly in the sensor field. All the sensor 
nodes are assumed to have the same transmission range r. 
Hence two nodes are neighbors of each other if their dis-
tance is less than or equal to r. Each sensor node detects 
malicious nodes along with faulty nodes based on its own 
sensor readings and those of its neighboring nodes. 

In detecting malicious nodes, two different modes of 
operation are employed: event-driven and periodic, as 
shown in Figure 1, where Tc denotes the period. In the 
figure, ts is the interval between two consecutive sensor 
readings and c s . In the event-driven mode, sensor 
nodes with an unusual reading send an alarm to their 
neighbors. In the periodic mode, on the other hand, each 
sensor node periodically sends a report to its neighbors, 
regardless of the occurrence of an event. 

T t

The reason for employing the periodic mode is to 
maintain high quality fault management without a sig-
nificant increase in power consumption. In event-driven 
mode, no diagnostic checking is performed until an un-
usual sensor reading occurs, resulting in delayed or in-
accurate fault management unless alarms, due to mali-
cious nodes, faults, and events, are generated sufficiently 
often. In the added periodic mode, some communication 
faults and nodes with a stuck-at-0 (normal) fault, to be 
addressed shortly, are to be detected with a manageably 
small delay. Since internode communications are involved 
in periodic mode, the period, Tc, should be long enough 
 

 

Figure 1. Two different modes of operation. 

to reduce the required power consumption. Power con- 
sumption can be made negligibly small if a relatively 
large Tc is good enough to play the diagnostic role, even 
without degrading malicious node or event detection 
performance as compared to more frequent checking. 

3. Modeling Malicious Nodes 

Sensor networks, deployed in an unattended mode, are 
likely to have malicious nodes, caused by an attack. In 
general, an attacker can launch a number of attacks 
against a sensor network as shown in the literature [11]. 
Most research has investigated direct attacks against the 
networks and proposed some techniques for detecting or 
preventing such attacks. In this paper, we focus on indi-
rect attacks where the malicious nodes behave normally 
but report only false sensor readings to neighbors to mis-
lead the network to reach an incorrect decision, causing 
serious consequences, or to waste energy due to unnec-
essary computing and communication. 

Sensor readings can also be unusual due to noise, 
faults, and events. Hence malicious nodes must be de-
tected in the presence of such faults and events. To deal 
with the malicious nodes, we treat them as faulty nodes 
that can arbitrarily modify their readings. Simply report-
ing against their own readings might quickly break down 
the network function unless some fault-tolerance measures 
are taken. Such a trivial malicious behavior, however, 
can be detected even with a simple detection scheme, 
unless they are clustered. 

Prior to modeling malicious nodes, we first define 
models for faults and events. We assume that faults may 
occur in any nodes in the network and all sensor nodes 
are faulty with the same probability. Each sensor node is 
assumed to know the range of normal readings, and it 
thus can determine whether the sensor readings belong to 
the normal range. Here we define “normal” range to be 
the range of correct sensor readings in the case of no- 
events. All other readings outside the normal range are 
named “unusual” for convenience. Hence correct read-
ings at a good sensor node in an event region are also 
called “unusual”. In addition, each sensor reading is as-
sumed to be binary and it thus is either 0 (normal) or 1 
(unusual). Two types of faults, transient and permanent, 
are considered in this paper. Both transient and perma-
nent faults are assumed to occur, randomly and inde-
pendently, at all nodes with the same probabilities of pt 
and pp, respectively. Nodes with transient faults should 
be treated as normal nodes, even though they sometimes 
exhibit incorrect readings. Sensor nodes with a perma-
nent fault may report a 0 or 1, repeatedly. Such faults are 
named stuck-at-0 and stuck-at-1 faults for convenience. 
They are assumed to occur with the same probability (i.e. 

0 1 2
p

p p

p
p p  ). 
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Malicious nodes are also assumed to occur randomly 
and independently with the same probability pm. They 
may report any value, either 0 or 1, regardless of the ac-
tual sensor reading. In modeling malicious nodes, we 
assume that they report against their readings with prob-
ability pma. If pma = 0.7, for example, malicious nodes 
report against their readings with a probability of 0.7. 

Under the simplifying assumption that pt is symmetric, 
i.e. P(1|no-event) = P(0|event), the probability that a ma-
licious node reports differently from the ground truth, 
Pinv, can be written as Pinv = pt(1 – pma) + (1 – pt)pma. For 
a given pt (<0.5) the value of Pinv increases with pma. If pt 
= 0.2 and pma = 0.2, for example, Pinv = 0.32, a little 
higher than pt. If pma increases to 0.8, Pinv = 0.68, signifi-
cantly higher than pt. If pma is reduced to 0.1, Pinv = 0.26, 
very close to pt. In that case, it is not easy to distinguish 
malicious nodes from normal nodes. Although malicious 
nodes behaving like a normal node might remain unde-
tected, they do not significantly affect the system per-
formance. 

Our scheme is focused on detecting malicious node 
behaving differently from normal nodes, while main-
taining high event detection performance even in the face 
of malicious nodes. Event detection in the presence of 
malicious nodes becomes more complicated since added 
incorrect readings due to malicious nodes might lead to 
poor event detection accuracy and increased false alarms. 

4. Neighbor-Based Malicious Node Detection 

In detecting malicious nodes in the presence of faults and 
events, we employ a smoothing filter and confidence 
level evaluation to enhance the malicious node detection 
rate. A filter is used to correct some false readings due to 
transient faults. It thus effectively reduces the transient 
fault probability pt in such a way that malicious nodes 
can be detected for a wider range of pma. Confidence lev-
els are employed to estimate the trustworthiness of sen-
sor nodes, reflect the levels in decision making process, 
and logically isolate malicious nodes and nodes with a 
permanent fault from the network. 

4.1. Data Smoothing and Variation Test 

In the periodic and event-driven detection, the readings, 
affected by transient faults, might cause an incorrect de-
cision, resulting in the waste of resources, in both com-
putation and communication. In addition, the diagnostic 
results influenced by transient faults might lead to the 
isolation of some normal sensor nodes from the network 
and loss of sensing coverage. 

In order to avoid unnecessary event-driven detection 
cycles and incorrect decisions due to transient faults, we 
employ a filter, as shown in Figure 2, to smooth out the 
sensor readings in such a way that most transient over-

shoots can be removed not to cause unwanted alarms. In 
the figure, the sensor reading k

ix  of node vi at time t = k 
is given to the range test block to produce a binary value 

k
iy  (i.e. 0 or 1) and then applied to the smoothing filter 

to generate the output . The range test block checks to 
see if the input belongs to the normal range. The same 
input 

k
ib

k
ix  is also given to the variation test block to see 

if the variation of (filtered if necessary) sensor readings, 

 1k
i cx k N  , during the period of Tc, 

   1 1max min
c

k
k N i k N ic

kx x    , is less than δ for all the  

values of k in the cycle. A flag Si at the sensor node vi is 
set to 1 if the condition is met. The variation test can be 
applied to applications where the readings of a normal 
sensor, in the case of no-event, vary in such a way that 
the variation during the given period Tc is greater than or 
equal to δ. The readings of a temperature sensor, where 
Tc is a day, for example, may change such that the varia-
tion is likely to be greater than or equal to δ (say δ = 3). 
This variation test might detect some nodes with stuck- 
at-0 (normal) faults which affect negatively when they 
are in an event region. 

The filter performs the following smoothing function 
using w most recent readings with a threshold q as fol-
lows: 

k
ib  = 1 for  

1

k j
ij k w

y q
  


Some other filters may be used without modification of 
the rest of the scheme. The smoothing function is per-
formed within the sensor node, requiring no internode 
communications. Internode communications are needed 
once every test cycle of Tc (i.e. periodic) or when  =1 
(i.e. event-driven). In the event-driven mode, only the 
nodes receiving an alarm from their neighbors locally 
perform an event detection process to make a decision on 
the correctness of the alarm. 

k
ib

 

 

Figure 2. Data smoothing and variation test. 
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The reduction of incorrect readings due to transient 
faults improves the malicious node detection perform-
ance. Permanent faults, unless the number of such faults 
is negligibly small, also needs to be removed from the 
network, to enhance the network reliability. Since the 
number of faulty nodes increases with time, it is desir-
able to isolate them upon detection. Confidence levels to 
be addressed in the next subsection help detect nodes 
with a permanent fault and malicious nodes. 

4.2. Confidence Level Evaluation 

To cope with the malicious node problem, we model a 
sensor network as a weighted digraph, where each sensor 
node vi has wij , ranging from 0 to 1, initialized to 1, as 
the confidence level of its neighboring node vj from the 
viewpoint of vi. The level wij is updated at node vi based 
on vj’s report and the decision made at vi on an event. If 
wij = 1, for example, node vi totally trusts node vj. If wij = 
0, however, vi does not trust vj at all. Similarly, each node 
vi has its own confidence level, wii, also ranging from 0 
to 1. Once wii reaches 0, the fault status of vi, Fi, is set to 
1, indicating that vi is faulty. 

The confidence levels defined above represent the 
trustworthiness of the corresponding sensor readings and 
are reflected in the proposed neighbor-based malicious 
node detection scheme to be addressed shortly. At the 
end of each event-driven and periodic detection cycles, 
each sensor node updates its own confidence level and 
those of its neighbors to reflect the levels in the subse-
quent decision making process. Moreover, they are used 
to identify malicious nodes. 

Updating the confidence levels has the following pur-
poses. Each sensor node with a permanent fault quickly 
loses its confidence levels from its normal neighbors, and 
it will then be isolated from the rest of the network. In 
addition, a malicious node reporting against its own 
readings in such a way that its behavior is away from 
normal nodes' behavior also loses its confidence levels 
from its neighbors to be eventually detected. The policies 
of updating confidence levels are described in detail in 
the next subsection. 

4.3. Malicious Node Detection 

In our neighbor-based detection scheme, each sensor node 
detects malicious nodes, along with faulty nodes, locally 
using only the sensor readings of its neighboring nodes. 
A weighted majority voting using the confidence levels 
as weights is used to detect malicious nodes. The pro-
posed detection scheme can be depicted as follows. 

Malicious Node Detection 
1) Given sensor reading k

ix , obtain k
iy  and deter-

mine , and perform variation test for suck-at-0 fault 
detection 

k
ib

2) Receive k
ib and Fj from neighbors (periodic). Send 

an alarm to neighboring nodes (event-driven) 
 

3) Compute and make a decision Di 

 1

0 1
1id k

ij jj
M w b




   and 

1

1 1
id k

ij jj
M w b




   

Di = 1 (i.e. an event) if M1 > M0 
4) Update the confidence levels wij accordingly 

In Step 1, most wrong data due to transient faults are 
locally corrected and hence false alarms can be greatly 
reduced without incurring any internode communications. 
In addition, the variation test is conducted for the sensor 
readings during the cycle Tc. In Step 2, neighbor com-
munications are used to perform periodic checking (in 
the periodic mode). In the event-driven mode, however, 
only the nodes with bi = 1 report an alarm to neighboring 
nodes to initiate an event-driven detection. Step 3 per-
forms a weighted majority voting to make a decision on 
an event, where M1 (M0) is the sum of weights of nodes 
with bij = 1(0) and di is the node degree of vi. The confi-
dence levels are reflected in the decision making process. 
In Step 4, all the weights, wij , are updated. Updating the 
weights in such a way that malicious nodes can be effec-
tively removed from the network is important. 

Our updating policy differs depending on the decision 
made on an event. In the case of no-event, the weight wij 
is updated as shown in Table 1, where Fj denotes the 
fault status of vj. The confidence level of node vj, wij, is 
increased by β only when vj is fault-free (i.e. Fj = 0) and 
it belongs to the majority group. It is decreased by α oth-
erwise. Here α and β have to be properly chosen to opti-
mize the performance. 

In the case of an event, the weight wij is updated as 
shown in Table 2. The only difference is the third row 
where the confidence level remains unchanged since the 
exact boundary of an event region is unknown. 
 

Table 1. Updating wij at node vi in case of no-event. 

Di = bj Fj wij 

yes 0(good) min(wij + β, 1) 

yes 1(faulty) max(wij – α, 0) 

no 0(good) max(wij – α, 0) 

no 1(faulty) max(wij – α, 0) 

 
Table 2. Updating wij at node vi with Di = 1 in case of an event. 

Di = bj Fj wij 

yes 0(good) min(wij + β, 1) 

yes 1(faulty) max(wij – α, 0) 

no 0(good) no change 

no 1(faulty) max(wij – α, 0) 
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Each sensor node vi also updates its own confidence 
level wii in the case of no-event as follows. 

 
 

max 0,  for  1 or 1

min 1,   1

ii i i

ii

ii i i

w b S
w

w for b S





   
  


 

In the above expression, Si = 1 means that the readings 
at node vi do not satisfy the minimum variation require-
ments, indicating a potential stuck-at-0 fault. Fault status 
of node vi, Fi, initially 0 (fault-free), is set to 1(faulty) 
when wii reaches 0. Once it is set to 1, it will stay there if 
no recovery action is taken. 

Malicious nodes behaving like a normal node can 
hardly be detected. However, it does not cause a signifi-
cant problem. Malicious nodes with some intelligence 
might behave differently from normal and faulty nodes to 
remain undetected. The proposed scheme is focused on 
accurately detecting such malicious nodes and isolating 
them from the network. Consequently, it achieves high 
performance for a wider range of pma. 

5. Simulation Results 

Computer simulation is conducted to evaluate the effec-
tiveness of our malicious node detection scheme and the 
resulting event detection accuracy. In the simulation, we 
randomly deployed 1024 sensor nodes in a square area. 
The transmission range r is chosen to set the average 
node degree d to be 12. In addition, an event region is 
assumed to be a circle with radius r (i.e. the same as the 
transmission range). 

Transient faults, permanent faults, and malicious nodes 
are generated randomly and independently. In the case of 
permanent faults, they are generated uniformly during 
the first 10 cycles of operation. In the case of no event, 
malicious nodes are assumed to report against the actual 
readings with probability pma. On the other hand, they are 
assumed to report a 0 when they are in an event region, 
to estimate the event detection performance in the worst 
case. 

Two metrics, malicious node detection rate (MDR) and 
misdetection rate (MR), are defined to evaluate the pro-
posed malicious node detection scheme. MDR is defined 
to be the ratio between the number of detected malicious 
nodes and the total number of malicious nodes. MR is 
defined as the ratio of normal nodes determined to be 
faulty to the total number of normal nodes. The reason 
for not defining MR with respect to malicious nodes is 
that malicious nodes behaving like a normal node (i.e. 
reporting correctly most of the time) do not harm at all 
until they change their behavior. 

Two additional metrics, event detection accuracy 
(EDA) and false alarm rate (FAR), are used to evaluate 
the resulting event detection performance. EDA is de-
fined as the ratio between the number of events correctly 

identified and the total number of events generated. FAR 
is the ratio of the number of nodes reporting a 1 to the 
total number of nodes, in case of no-event 

We first performed simulation to estimate MDR and 
MR for four different values of pm, 0.05, 0.10, 0.15, and 
0.20, when pp = 0.1, pt = 0.1, pma = 0.4. The results, after 
50 cycles of operation, are shown in Table 3(a), where α 
= 0.2 and β = 0.05 are chosen. For comparison purposes, 
we also performed simulation for α = β = 0.1 (Table 
3(b)). MDR in Table 3(a) is high while MR is negligibly 
small. On the other hand, MDR in Table 3(b) is ex-
tremely low due to the fact that confidence levels lost are 
quickly recovered. As can be seen in Table 3, the value 

of 



 has to be assigned properly to achieve high MDR, 

while maintaining low MR. If 



 = 4, for example, a 

malicious node sending an alarm every five cycles in 
case of no-event recovers its confidence levels, and is 
thus unlikely to be detected. Such a high MDR in Table 
3(a) is obtained since pma is set to 0.4 in the simulation. 

The confidence level of a malicious node becomes 
lowered with time to reach the lower bound if 

1 inv

inv

P

P





 . If pma = 0.2, for example, Pinv = 0.26, re-

sulting in 
1

3inv

inv

P

P


  That is, the node is expected to 

report a 1 every four cycles on average in the case of no-  

event. Even in that case, 



 = 4 is sufficient to lower  

the confidence levels of malicious nodes to be eventually 
detected. 

In Figure 3, the resulting EDA is shown for various 
values of pm for the same values of α and β. FAR for the 
two different cases are almost the same and very close to 
0, and are not shown in the figure. The first pair (0.2, 
0.05) maintains more persistent and stable performance 
compared to the other pair (0.1,0.1) as pm increases. 

In order to see the importance of the values of α and β 
in malicious node detection, we conducted the same 
 
Table 3. MDR and MR for various values of pm when pp = pt 
= 0.1. (a) α = 0.2, β = 0.05; (b) α = 0.1, β = 0.1. 

(a) 

 pm = 0.05 0.10 0.15 0.20 

MDR 0.961 0.963 0.961 0.958 
MR 0.009 0.007 0.007 0.008 

(b) 

 pm = 0.05 0.10 0.15 0.20 

MDR 0.036 0.013 0.023 0.013 

MR 0.000 0.000 0.000 0.001 
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simulation for five different values of pma. Two pairs of 
(α, β), (0.2,0.02) and (0.2,0.05) are chosen for compari-
son purposes. For pp = 0.1, pt = 0.1, and pm = 0.2, the 
resulting MDR and EDA are shown in Figure 4. MR and 
FAR are not included since they are close to 0 for the 
cases under consideration. 
 

 

Figure 3. EDA for two different pairs of α and β. 
 

 

 

Figure 4. EDA for two different pairs of α and β. 

As can be seen from Figure 4, MDR for (0.2,0.02) is 
significantly higher than that for (0.2,0.05) for relatively 
small values of pma. These improvements have been made 

by increasing 



 without sacrificing normal nodes. For 

pt = 0.1, if pma is close to 0.1, malicious nodes behave 
like a normal node, and thus they can hardly be detected 
without increasing the detection time or sacrificing some 
normal nodes. Filtering transient faults lowers pt in such 
a way that a considerable amount of malicious nodes can 
still be detected. 

We then conducted simulation to see the performance 
gain we can obtain by removing stuck-at-0 nodes. The 
proposed scheme has provisions to detect such faults as 
long as the resulting sensor readings are confined to a 
relatively small range of normal values over time com-
pared to normal sensor nodes. Since not all stuck-at-0 
faults meet the requirements, the scheme is partially ef-
fective. The simulation results for various values of pp 
when stuck-at-0 faults are isolated are shown in Table 
4(b), where α = 0.2, β = 0.05 and pma = 0.4 are chosen. 
For comparison purposes the results when stuck-at-0 
faults remain in the network are shown in Table 4(a). 

As far as MDR and MR are concerned, there are neg-
ligible differences in performance. A notable difference 
in EDA, however, is observed as pp increases. Removing 
stuck-at-0 faults is desirable when EDA is concerned. 

Finally, we evaluated the proposed scheme in terms of 
EDA and FAR by comparing its performance with those 
of majority voting (MV). Since MV is not for malicious 
node detection, MDR and MR are not included in the 
comparisons. The results for two different values of pp 
when pm = pt = 0.1 are shown in Table 5, where α = 0.2, 
β = 0.05, and pma = 0.4 are chosen for our scheme. The 
proposed scheme outperforms the majority voting with 
respect to EDA and FAR. 
 
Table 4. MDR, MR, EDA, and FAR for various values of pp 
when pm = pt = 0.1. (a) Without removing stuck-at-0 faults; 
(b) After removing stuck-at-0 faults. 

(a) 

 pp = 0.1 0.2 0.3 0.4 

MDR 0.962 0.952 0.953 0.954 

MR 0.007 0.009 0.013 0.021 

EDA 0.969 0.915 0.819 0.664 

FAR 0.000 0.001 0.002 0.004 

(b) 

 pp = 0.1 0.2 0.3 0.4 

MDR 0.963 0.955 0.953 0.941 

MR 0.007 0.009 0.014 0.025 

EDA 0.965 0.957 0.935 0.928 

FAR 0.001 0.002 0.004 0.014 
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Table 5. EDA and FAR for two different values of pp when 
pm = pt = 0.1. 

EDA FAR 
pp 

Proposed MV Proposed MV 

0.2 0.957 0.930 0.002 0.021 

0.4 0.928 0.913 0.014 0.114 

6. Conclusion 

In this paper, we proposed a neighbor-based malicious 
node detection scheme for wireless sensor networks. Ma-
licious nodes are detected in the presence of faults and 
events without sacrificing normal nodes. They are mod-
eled as faulty nodes that can arbitrarily modify sensor 
readings and behave intelligently not to be easily de-
tected. Confidence levels are used to estimate trustwor-
thiness of sensor nodes during normal operation. They 
are reflected in the decision making process at each sen-
sor node. Two parameters for updating the confidence 
levels are employed to distinguish malicious nodes from 
normal modes as long as they behave differently from 
normal nodes. The ratio between them needs to be prop-
erly chosen to eventually isolate malicious nodes even if 
they behave slightly differently from normal nodes. Both 
detection and misdetection rates are maintained high and 
low, respectively, in the face of faults and events. The 
resulting event detection accuracy is kept high while 
maintaining low false alarm rates. 
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