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ABSTRACT 

The work covers a novel approach to the description of the phenomenon of thermal expansion of solids. The reason for 
undertaking the scientific quest is presented to follow with the analysis of existing knowledge on the characteristics of 
phenomenon of thermal expansion of bodies being in the state of aggregation. A critical approach to the existing law of 
the linear thermal expansion is given. The paper presents an adequate approach to this considered phenomenon. The 
description provides parametric and functional characteristics of this phenomenon. The relationships of the coefficients 
of linear expansion on temperature for particular interstate zones, as well as the initial coefficients related to these zones, 
are presented. In the summary a synthesis of all actions and considerations with the directions to the adequate knowl-
edge with advantage on the subjected phenomenon has been performed. It regards also to the latest thermal characteris-
tics of solids, referred to the phase transformations. All they are realized by dilatometric studies together with determi-
nation of curves of thermal expansions of solids. 
 
Keywords: Thermal Expansion; Coefficient of Linear Thermal Expansion; Relative Length Increment; Temperature 

Constant; Temperature Potential Field; Deformation Potential Field; Nominal Potential Field; 
Deformation-Temperature Space 

1. Reason for Undertaking the Subject 

This work is devoted to the linear extension of solids. 
The subject was undertaken due to the lack of a proper 
description or a very superficial approximate knowledge 
on the phenomenon and the characteristics existent in the 
literature. It touches mainly quantitative evaluation of the 
phenomenon, description of its characteristics, i.e. a rela-
tionship of the length relative increment of a heated body 
on temperature. 

Until now there is no analytical description of this 
magnitude which results from a complex picture of the 
thermal expansion curve. Therefore, instead of this, there 
are linear approximate characteristics formed being the 
dependence of the length increment of the heated body 
on temperature. It has been the result of linearization of 
the real course which de facto is non-linear and has the 
character of curve rising by turns progressively and de-
gressively. That curve of the thermal expansion is to be 
presented in this work. 

That exoteric knowledge on the phenomenon has not 
been reconstructed, being still the so called zero or first 
approximation of the described reality. The author of [1] 
also has noticed the stoppage in the creative actions on 
the first approximation referring them generally to the 
phenomenon of oscillation motion. 

Such a simplified approach cannot be tolerated. It can-
not be justified by the immediate needs of practice. Es-
pecially it is important with the scientific approach. The 
adequate description of the course of expansion of solids 
requires a return to the source, which is the primary gen-
eral differential equation. It may allow to obtain further 
detailed characteristics as the relationships of: the rela-
tive length increment on temperature, the growth length 
increment on temperature, which is the coefficient of the 
linear expansion on that independent variable. 

2. Existent, Exoteric Knowledge on 
Characteristics of the Phenomenon of 
Thermal Expansion of Solids 

The accessible exoteric knowledge, covering thermal ex-
pansion of solids, is not adequate. With unsuitable foun-
dations, it does not reflect the reality. At the beginning, 
one may assume that in a broad range of temperature 
 t  the relative increment of the body length l  is a 
linear function of changes of the first magnitude. That 
means, 

0
l

l
t

l
 
                  (1) 

where α is the coefficient of a linear thermal expansion. 
The derived formula on the direct increment of length, 

as presented here: *Corresponding author. 

Copyright © 2012 SciRes.                                                                                 JMP 



Z. PLUTA, T. HRYNIEWICZ 794 

0l l t                      (2) 

forms the existent law of the linear thermal expansion of 
solids. It is known that the direct growth of length ∆l of a 
body at heating is directly proportional to its initial 
length lo, to the temperature growth ∆t and depends on 
the kind of material. This dependence is expressed in a 
number as the coefficient characteristic for each material. 
This is the coefficient of a linear thermal expansion α— 
expressing to what extent a rod of the initial length of 
one meter (1 m) will be longer if the temperature rises of 
1˚C. 

The measure/unit of that coefficient results from the 
describing formula, being the result of a proper transfor-
mation of the dependence (2), that is 

0

l

l t
 




 

                  (3) 

The action on measures of the component magnitudes 
leads to the final result, that is 

m

m C
 



l t t t  

                (4) 

Now, taking into account the definitions of the direct 
variables: 0 , 0 , one may bring the 
Equation (2) to another, more developed form, which is: 

l l  

 0 0 0l t t  

 0 01 t t    

l l               (5) 

Furthermore, after carrying some operations, that de-
pendence may be written as: 

l l               (6) 

where the symbol l means the length of the body after 
heating it up to the temperature t, and t0 refers to the ini-
tial temperature. It is worthy adding that the appearing in 
the formula, and earlier defined, the coefficient α is de-
termined quantitatively for the temperatures of interval 
0˚C up to 100˚C. 

In the next part of the work the literature examples of 
thermal characteristics referred to different materials as 
well as to the differing initial structural states of the de-
termined materials will be given. Those real non-linear 
curves with peculiar points cannot be linearized nor sub-
stituted by a continuous non-linear function. The descrip-
tion should refer to the consecutive fragments of the 
curve, with the fragments being between the neighbour-
ing peculiar points. 

3. Literature on the Dilatometric Curves 

Let us begin with the above mentioned the dilatometric 
curves related to copper [2]. That is the dependence of 
the relative length increment of material on the direct 
temperature increase (Figure 1), i.e.  f t  

l

. A 
small range of the temperature changes, covering 100˚C, 

has been marked. The characteristic zones, where the 
courses of the relative length increment differ signifi-
cantly both quantitatively and qualitatively, are visible in 
Figure 1. In the zero zone (O) the effect of temperature 
has not been marked, in the first zone (I) a progressive 
increase of the relative length increment takes place, 
whereas the second zone is characteristic with a degres-
sive increase of the latter magnitude. Further increase of 
temperature will cause the development of changes of the 
dependent variable and with this the increase of the sec-
ond zone of variability of the relative length increment, 
explained in [3]. In a determined interval of the tempera-
ture changes the degressive course will be substituted 
again by a progressive one. 

These characteristic different courses in the zones: first 
(I), second (II), and then third (III) may be explained by 
different types of the deformations of this material (Fig-
ure 1); resilient/springy, elastic, and plastic, respectively. 
Lack of the reaction of copper on temperature in the zero 
zone (O) comes out from the thermal inertia of the mate-
rial, resulting from the initial proper structural stresses. 

The dilatometric curve for an abrasive material con-
taining 1% TiS2 (Figure 2) is taken from [4,5]. Here also 
the characteristic zones are visible. At 900˚C a transition 
of TiS2 into rutile TiO2 occurs, being one of the reasons 
of the abnormal intensive growth of thermal expansion in 
the temperature interval 780˚C - 900˚C. One may admit 
that to avoid the abnormal expansion, the abrasive grains 
undergo to calcinations/roasting in the process of mono- 
corundum/alumina manufacture. 

In [6] there is the diagram of the increase of linear di-
mensions   presented for a bearing steel LH15 de-
pendent on its temperature t and the initial dimensions 

0l  (Figure 3). It has been excerpted from the work [7]. 
 

 

Figure 1. A dilatometric curve of copper [2]. 
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Figure 2. Dilatometric curve for an abrasive material con-
taining 1% TiS2 [4]. 
 

 

Figure 3. Increase of the linear dimensions Δl of a bearing 
steel LH15 dependent on its temperature t and the initial 
dimensions l0 [6]. 
 

Based on these data, the diagram presenting the de-
pendence of the relative length increment on temperature 
was performed (Figure 4). Here also the particular zones 
of changes of this dependent variable are clearly visible. 
They result from the determined phase transformations, 
described in [6]. 

Another example of the dilatometric curve prepared 
for a tool carbon steel N11E is presented in Figure 5. It 
has been excerpted from [8]. Here also the determined 
phase transformations decided of a specific course of the 
curve. At the beginning there is no change in the sample 
length caused by the temperature increase. First changes 
of this magnitude occur at 95˚C. That indicates the be-
ginning of the tetragonal martensite transition into a 

regular martensite. At 150˚C the martensite is tempered 
in a great extent. Further heating results in the transition 
of the retained austenite also into the regular martensite. 
In the range of 300˚C - 360˚C a troostite structure is 
formed when, due to the eased diffusion, some coagula-
tion of the cementite phase in the ferritic matrix appears. 
In case of further heating of the steel, a progressive co-
agulation of the cementite particles in the ferritic matrix 
occurs and a fine pearlite structure is formed. The transi-
tion of the pearlite into austenite results in the shrinkage 
of the steel. 
 

 

Figure 4. Dilatometric curve for a bearing steel LH15 [6]. 
 

 

Figure 5. Dilatometric curve for a hardened carbon tool 
steel N11E [8]. 
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The presented examples clearly illustrate the specifics 
of the phenomenon of the length increase of heated ma-
terial. There are some peculiar points observed which 
divide the temporary thermal states (thresholds) of the 
material. Between these points the determined types of 
deformation occur. The different interphase structural 
transformations accompany to these phenomena. 

The relative linear deformations do not progress in a 
continuous manner in the entire broad interval of the 
temperature changes. This is a quantified magnitude; that 
means the thermal states of the material are discrete, 
non-continuous in its character. A continuous variability 
of the magnitude takes place only in the zones of inter-
state spaces.  

The following actions are directed onto the description 
of the structure of changes of relative expansion of solids. 
The fundamentals are in the source general differential 
equation related to all this type of changes of the physical 
magnitudes. 

4. On the Adequate Description of the 
Considered Thermal Phenomenon 

At the cognitive source of all phenomena, occurring with a 
variable rate, intensity or velocity, between the neighbour-
ing energetic states, there is a general differential de-
scription, that is the equation 

d d
Z

Z N
N


 


                (7) 

where: dZ—total differential of the magnitudes forming 
dependent variables, dN—total differential of the magni-
tudes forming independent variables, Z N  —partial 
differential of the dependent magnitudes against the in-
dependent ones. The signs    are the algebraic opera-
tors with a determined function. The sign  

 

 confirms 
only the physical meaning of the determined mathemati-
cal description, whereas the sign  ascribes a physi-
cal meaning to the record. 

This general source differential equation has been pre-
sented in [9,10], and it has been referred to the detailed 
technological matters under different initial conditions. 
These initial conditions of a phenomenon or a process are 
connected with the beginning of measurement of the de-
termined physical magnitudes. The measurement of these 
magnitudes is necessary but not a sufficient condition. 
The sufficient condition is limited to measure them at the 
very beginning of the phenomenon. 

The record of the Equation (7), applied to the consid-
ered phenomenon, possesses the following configuration: 

d dt
t

 
 




                  (8) 

where the sign   concerns progressively rising changes 
of a relative material length, whereas the sign    must 

be referred to when describing degressively rising changes 
of this magnitude. In the first case the rate of the length 
change increases with the temperature growth; the sec-
ond record informs that the rate will be decreasing re-
spectively. Further considerations are to closer explain 
the role of the sign   . One should add that the rate of 
changes of the considered magnitude is the coefficient of 
thermal expansion, so 

d

dt

 

 dt t  

                    (9) 

and that means 

               (10) 

 fHaving the analytical form of the function t  , 
one may easily obtain the dependence  f t  , be-
cause this coefficient is, as it results from the definition 
formula (9), the first derivative of the relative increment 
of body length against temperature. 

Now both total differentials should be determined to 
allow for further explanation of the source initial de-
pendence. Thus one should analyze the course of the 
adequate dependence of increment of the material length 
on temperature (Figure 6). 

There are characteristic points 0, 1, 2, 3 on the curve 
which denote four zones (0, I, II, III), being in the limits 
of variability of two magnitudes as the deformation- 
temperature spaces. In the zero space there is no increase 
of the material length; in the first space a progressive 
increase of the relative length takes place; in the second 
space a degressive increase of this magnitude occurs; in 
the third space, again a progressive increase of this mag-
nitude appears. 
 

 

Figure 6. General course of the adequate dependence of the 
relative extension of material on temperature. 
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5. Creating the Real Characteristics of 
Thermal Expansion of Solid 

Now the essence of creation of the real characteristics of 
the expansion phenomenon in particular spaces is to be 
performed. It will be presented for the consecutive spaces; 
the first one where the exponential progressively rising 
the course of relative increment of material length (Fig-
ure 7) occurs. 

The curve is the envelope of rectangular triangles of 
which the temperature leg is constant and equaled to the 
temperature constant 0 1 , whereas the deformation leg 
changes respectively. The initial point of the curve is on 
the intersection of the stable potential fields: deformation 
stable potential field 



 SPF   and temperature stable 
potential field 

t
. The final point of this curve is situ- 

ated on the intersection of the first unstable potential 
fields: the first deformation unstable potential field 

SPF 

 1APF


 and the first temperature unstable potential field  

 1tAPF . The mentioned potential fields are the limits of  

the deformation-temperature space of which the dimen-
sion in the temperature direction is , and in the 
deformation direction 

 0 1
t




1 . 
The deformation leg of this moving right-angled trian-

gle is respectively variable, resulting from the changing 
position of tangent to the relative material extension. For 
    the length of this leg equals 1  . 
Now let us integrate the Equation (8), denoting the 

limits of integrals of the total differentials. That means 

0 1

d d
t

t

t
t

 

 

1 2 






            (11) 

and next 

 0 1t t 1

d
2

dt

              (12) 

and 

1 0 1

d

dt

                  (13) 

or 

1 0 1

d 1
dt


  


 

 

             (14) 

One may note that the partial derivative was substi-
tuted by a quotient of the ordinary differentials. It may be 
done because the total differentials had been clearly de-
termined by introducing limits for the integrals. It is 
worthy adding that the positive algebraic operator, the 
sign , is taken into account because the changes of 
the relative length increase are rising progressively. 

Furthermore, by integrating both sides of the Equation 
(14), one obtains 

  *

0 1

1
t C



  
1ln            (15) 

or 
*

*
0 1 0 1 0 1

1

t t t
C

Ce e e Ce    


      

0t t

   (16) 

  the magnitude with regarding 0 , one obtains 

0 1
1

t

C e 

               (17) 

and after substituting (17) to (16) 

0

0 1
1 1

t t

e  




 
  
 
 

1

            (18) 

One may determine the second coordinate of the point 
1, that is the temperature corresponding with the ending 
of phenomenon of the progressive relative increment of 
the material deformation. That result is obtained by in-
troducing    and the temperature increase 

 0 0 1
t t t


     

to the Equation (18). Thus 

  0 10 1
ln 2t 

  

1 0 0 1 ln 2t t 

            (19) 

or (see Figure 7) 
            (20)   

The second part of characteristics of the thermal ex-
pansion phenomenon is also rising, but degressively 
(Figure 8). This curve is the envelope of the right-angled 
triangles with the temperature leg being constant and 
equaling the so called temperature constant 1 2 , and 
the deformation leg changing respectively. The initial 
point of the curve is a terminal point of the former course, 
the second point is situated on the intersection of the un-
stable potential fields: the second deformation unstable 
potential field  2

APF   and the second temperature un-
stable potential field  2

t
APF . 

 

 

Figure 7. Illustration of description creating the first part of 
the characteristics of thermal extension phenomenon. 
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Figure 8. Illustration of description creating the second part 
of the characteristics of thermal extension phenomenon. 
 

The temperature constant 1 2  is on the nominal po-
tential field , being the asymptote, to which the 
second apparent part of the curve approaches (dotted 
line). Along this field the mentioned triangle with its 
base is moving. The mentioned potential fields are the 
deformation limits of the deformation-temperature spaces: 
real (dotted), and neighbouring of this type apparent 
space. 

NPF 

Now integrating the Equation (8) is performed, denot-
ing the limits of the integrals of total differentials and 
regarding the negative sign of the algebraic operator. 
Thus 

 1 22 









1 2

d d
t

t

t
t

 
 

           (21) 

and next 

   1 2t t 
1 2

d
2

dt

 


        (22) 

that is 

  1 2

d

dt

     
1 2

2


         (23) 

or 

  1 2

d 1
dt

  

 
 

1 2
2




 

      (24) 

By integrating both sides of the Equation (24) one ob-
tains the following solution 

  *

1 2

1
t C



  
1 2

ln 2  


           (25) 

or 

 
*

*
1 2

1 2
2

C
Ce e 

 
 


     1 2 1 2

t t t

e Ce  



1t t

  (26) 

By regarding the initial conditions, meaning that for 
  the increment 0 

 

, one obtains 
1

1 2

1 2
2

t

C e 


 

 

            (27) 

and after substituting (27) to (26) 

1

1 2

1 2
2 1

t t

e  







 
    
 
 

1

        (28) 

Taking into account that       and 

  2 11 2
  


  

 

, 

the Equation (28) may be recorded as follows 

1

1 2
1 2 12 1

t t

e    





 
    
 
 

0

      (29) 

The second coordinate of the point 2, that is the tem-
perature relating to the end of phenomenon of the de-
gressive relative increase of the material extension, is 
obtained after introducing the magnitudes    and 

 2 1 1 2
t t t


    to the Equation (28). Therefore 

  1 21 2
ln 2t 

  

2 1 1 2 ln 2t t 

            (30) 

or 

             (31)   

Scheme of the creating description of the third part of 
characteristics of the thermal expansion phenomenon 
(Figure 9) enables herewith to determine the limits of the 
integrals of total differentials corresponding with these 
characteristics. 
 

 

Figure 9. Illustration of description creating the third part 
of the characteristics of thermal expansion phenomenon. 
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One obtains the following record 

 2 32  




  




2 3

d d
t

t

t
t

 

          (32) 

and next 

  2 3

d

dt

    
2 3

         (33) 

or 

  2 3

d 1
dt

  


 

2 3




 

       (34) 

By integrating both sides of the Equation (34) one ob-
tains 

  *

2 3

1
t C



 
2 3

ln  


           (35) 

or 

 
*

2 3

C

 



    2 3 2 3

t t

e Ce  

2t t 0

     (36) 

After considering the initial conditions, relying on the 
dependence that for  the magnitude  

 

, one 
obtains 

2

2 3

2 3

t

C e 




             (37) 

and after substituting (37) to (36) 

 
2

2 3

2 3
1

t t

e 






 
 
 
 

  3 22 3

            (38) 

Furthermore, regarding   


  
2

, and 
   

 

, 

resulting from Figure 9, the Equation (38) may be re-
corded as follows: 

2

2 3
2 1

t t

e 




 
 
 
 

2 3           (39) 

The second coordinate of the point 3, that is the tem-
perature relating to the end of third phase of the phe-
nomenon of thermal expansion, is obtained after intro-
ducing the magnitude   

 2 3
t

2 3
   and the tempera-

ture increment 3 2t t


  

2 32 3
ln 2

  

3 2 2 3 ln 2  

 to the Equation (39). 
Therefore 

 t            (40) 

or 

t t            (41) 

Thus the characteristics of all possible three phases of 
the phenomenon of thermal expansion in the range of the 
increase of the relative material deformation have been 
provided. They are reflected by the following formulae 

(18), (29), and (39). All three formulae have been placed 
on the background of the indicative course of the curve 
(Figure 10). Moreover, also the formulae on the tem-
perature constants, resulting from the formulae (20), (31), 
and (41), have been presented. 

6. Courses of the Coefficient of Linear 
Thermal Expansion 

The coefficient of the linear thermal expansion is defined 
by the formula (9), and it is simply the first derivative 
(derivative of the first order) of the relative extension 
against temperature. This coefficient relates with the in-
tensity/rate of changes of the relative extension, being 
here the intensity of increment of this magnitude, as this 
direction of changes has been taken into account. 

Having the primary characteristics, being the relation-
ships of the relative extension on temperature, that is 

 f t  , one may easily determine these derivative 
characteristics of the phenomenon of the thermal expan-
sion of solids. These functional derivative characteristics 
have the following analytical configurations: 
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Figure 10. Comparison of analytical descriptions of the char-
acteristics of thermal expansion phenomenon. 
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These analytical functional characteristics have been 
presented on the background of their graphic courses 
(Figure 11). There are clear differences visible in the 
character of the courses of this magnitude in particular 
ranges of the peculiar (terminal) temperatures. 

7. Conclusions 

In the summary, at first all characteristics of the phe-
nomenon of the thermal expansion of solids are com-
bined, separating parametric and functional characteris-
tics (Table 1). It may be noticed that all the parametric 
characteristics are constant magnitudes, whereas the 
functional ones depend on temperature and are in the 
form of the exponential functions. The graphic illustra-
tions provided in Table 1 serve to explain more exactly 
the character of the functions. 

On the background of all these courses it is distinctly 
visible that one cannot linearize them by treating them as 
the approximate, averaged, substitutional characteristics. 
In this light this tabled coefficient of the linear expansion, 
determined in the limits from zero to one hundred degree 
Celsius, should be recognized as requiring an essential 
corrigendum. 

It seems to be reasonable introducing this new ade-
quate knowledge on the phenomenon of the thermal ex-
pansion of solids to the technology/engineering and dif-
ferent its branches. It will allow for better forecasting the 
thermal behaviour of the material elements, and in a 
broader meaning, the forecasting of the thermal phe-
nomena. This knowledge could be better used on the 
ground of the manufacturing new materials resistant to 
 

 

Figure 11. Graphic and analytical presentation of the depend-
ence of the coefficient of the linear thermal expansion on 
temperature. 

Table 1. Parametric and functional characteristics of the 
phenomenon of thermal expansion of solids. 

 
 
high temperatures of the properties enabling the applica-
tion them in the cosmonautics. The references [11-14], 
concerned with the forecasting in technique, confirm the 
necessity for providing the firm foundations in all future 
actions. 

In the creation of these foundations one should return 
to the source, that was stressed in [15] where the non- 
linear vibrations were discussed as the open problem. It 
is worthy admitting that not only the vibrations and the 
considered thermal questions are of importance. For in-
stance, it touches also thermal phenomena during the 
operation of transformers [16], thermo-bimetals [17,18], 
the phenomenon of variability of the proper resistance of 
metals due to the temperature changes, the phenomenon 
of the isothermal compressibility of liquids, the phe-
nomenon of the isothermal expansion of liquids. 

To this number of applications of the presented method 
of the description of non-continuous quantum physical 
phenomena, the uses to the description of curves of the 
tool edge wear [19-22], the tool life under cut [23,24], 
the curves of material strengthening [25,26], and the 
characteristics of stiffness of the design systems, may be 
added [27,28] . 

This presented mathematical method can be also used 
in the area of the classical mechanics [29-31]. The dy-
namics of the material bodies between the static and ki-
nematic states and between these two states in one and 
second direction may be also described (adequate de-
scription). They are just some phenomena mentioned 
herewith which required to be described adequately. All 
they prove the existent knowledge on the characteristics 
of other natural phenomena also needs to be verified.  
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At the end it is worthy noticing that characterizing 
materials referred to the phase transformations through 
the dilatometric studies, by determination of thermal 
curves of extension of solids is still open and developed. 
However, the dilatometric curves, regarding varied phase 
transformations, have no reference to the analytical de-
scriptions. 

Many recent references [32-35] are treating in-depth 
quite complex configurations of dilatometric curves, with- 
out their analytical descriptions. It is worthy disclosing 
the references of these results, with the materials and 
processes characterized there. 

In [32], the authors describe kinetics of phase transfor-
mations under continuous heating (annealing) of newly 
designed hardened tool steels of varying carbon contents, 
assigned to manufacture of metallurgic/steelworks rolls. 
In [33], a high anisotropic structure of thermal extension 
of compounds (vanadium and niobium) under controlled 
external stresses, was revealed. Recently Meingast [34] 
investigated a high-resolution thermal expansion of su-
perconducting rare-earth single crystals. Another work 
[35] is concentrated on thermal expansions in CrMn al-
loys at low temperatures (T < 20 K). 

One can note, the thermal expansion of solids is cur-
rently investigated and referred to a variety of structur-
ally differentiated materials. Therefore, an attempt to the 
analytical development of the problem, as proposed in 
the present work, seems to be fully justified. 
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List of more important symbols 
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 t
SPF

 SPF

—temperature stable potential field 

 —deformation stable potential field 

     1 2 3
; ;

t t t
APF APF APF

     1 2 3
; ;

—temperature unstable po-

tential field, first, second, and third, respectively 

APF APF APF
  

0 1 2 3; ; ;t t t t

0 1 2 3; ; ;    —relative increment of length in peculiar 

terminal points: zero, first, second, and third, respectively 

     0 1 1 2 2 3
; ;t t t

  
   —distances between potential 

fields in the direction of temperature change 

     0 1 1 2 2 3
; ;  

  
  

0 1 2; ;

—distances between potential 

fields in the direction of relative length increment  
  

; ;

—coefficients of linear thermal expansion in 

zero, first, and second point, respectively 
—deformation unstable po-

tential field, first, second, and third, respectively 
NPF—nominal potential field 0 1 1 2 2 3    —temperature constants for the courses 
of relative length increment in particular interstate spaces —temperature in peculiar terminal points: zero, 

first, second, and third, respectively 
 
 
 

http://dx.doi.org/10.1016/S0890-6955(00)00062-6
http://dx.doi.org/10.1080/01411599908209302
http://dx.doi.org/10.1143/JPSJ.58.3485

