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ABSTRACT 

The long-range forecasts (LRF) based on statistical methods for southwest monsoon rainfall over India (ISMR) has 
been issued by the India Meteorological Department (IMD) for more than 100 years. Many statistical and dynamical 
models including the operational models of IMD failed to predict the operational models of IMD failed to predict the 
deficient monsoon years 2002 and 2004 on the earlier occasions and so had happened for monsoon 2009. In this paper a 
brief of the recent methods being followed for LRF that is 8-parameter and 10-parameter power regression models used 
from 2003 to 2006 and new statistical ensemble forecasting system are explained. Then the new three stage procedure is 
explained. In this the most pertinent predictors are selected from the set of all the potential predictors for April, June 
and July models. The model equations are developed by using the linear regression and neural network techniques 
based upon training set of the 43 years of data from 1958 to 2000. The skill of the models is evaluated based upon the 
validation set of 11 years of data from 2001 to 2011, which has shown the high skill on the validation data set. It can be 
inferred that these models have the potential to provide a prediction of ISMR, which would significantly improve the 
operational forecast. 
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1. Introduction 

The success of agriculture in India depends primarily on 
the proper amount and distribution of rain during the 
southwest monsoon season (June-September). The mean 
monsoon seasonal rainfall averaged over the country as a 
whole is 89 cm with a coefficient of variation of about 10%. 
The fluctuation of this order, however not very large, can 
have large impacts on water levels and agriculture sector. 
Even though, the contribution from agriculture sector to 
the national income has decreased over the years (less 
than 30% now), the performance of the agricultural sec-
tor is still very critical to India’s economy. During the 2 
years, 2002 and 2004, deficient rainfall during the 
south-west monsoon season has had an adverse impact 
on India’s economy. An accurate long range forecast of 
monsoon rainfall over the country as a whole is also very 
useful for better macro level planning of water, power 
and financial resources. Therefore long-range forecasting 
(LRF) of southwest monsoon rainfall is a high priority in 

India. 
During the period 1924 to 1987, long-range forecasts 

(LRFs) for southwest monsoon rainfall were issued for 
NW India and peninsular India using different multiple 
regression models. Initially only the surface parameters 
were used and it was found by 1950 that performance of 
these models was not good. Later the upper air parame-
ters were also used for improving the models [1,2]. Veri-
fication of these forecasts (1924-1987) revealed that 
about 64% of these forecasts were found to be correct. 
During the decade of 1981-1990, concerted efforts made 
to develop new LRF techniques resulted in the develop-
ment of new types of LRF models, namely dynamical 
stochastic transfer model [3], parametric and power re-
gression models [4,5]. During the period of 1988-2002, 
IMD’s operational long range forecasts were based on 
the 16-parameter power regression and parametric mod-
els. The parametric model is purely qualitative and it 
indicates whether monsoon would be normal, excess or 
deficient. In this model, equal weights are given to each 
of the 16 parameters. The power regression model is a *Corresponding author. 
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quantitative model, which acknowledges the nonlinear 
interactions of different important climatic forcings with 
the Indian monsoon. 

Statistical monsoon prediction models are based upon 
the strong correlations of the southwest monsoon rainfall 
over India (ISMR) with certain antecedent atmospheric, 
oceanic and land parameters. A common weakness of all 
statistical models is that while the correlations are as- 
sumed to remain constant in future, they may, and in fact 
do, change with time and slowly lose their significance. 
In 2003, a critical re-evaluation of the 16-parameter 
power regression and parametric models was made and it 
revealed that correlations of 10 parameters had rapidly 
declined in recent years. An extensive search for new 
parameters which are physically well-related and statis-
tically stable leads to the identification of 4 new predic-
tors of monsoon rainfall. This resulted in building a set of 
10 stable parameters (Table 1) consisting of 6 out of the 
earlier 16 parameters and 4 new parameters. 

Out of the above 10 parameters, 8 needed data only up 
to March and 2 needed data up to June. Using these 10 
parameters, IMD developed two power regression (PR) 
models, one using 8 parameters needing data up to 
March and another using the full set of 10 parameters. In 
addition to these PR models, probabilistic models using 
the same 8-parameters and 10-parameters respectively 
were developed to issue qualitative forecast. Based on 
these models, a two stage forecasting system was 
adopted in 2003, for issuing operational forecast for press 
and public. The first stage LRF for the summer monsoon 
seasonal rainfall for the country as a whole was issued in 
the middle of April every year using 8-parameter PR & 
probabilistic models. In the next stage, LRF update for 
the first stage forecast was issued in the beginning of 
July using the 10-parameter PR & probabilistic models 

for the country as a whole. 
In the present study a three stage procedure is followed. 

The non-overlapping set of 16 parameters for July fore-
cast, 14 parameters for June forecast and 11 parameters 
for April forecast are considered as the set of potential 
predictors from these 10 + 8 parameters. Step wise re-
gression with selection of predictors is applied for se-
lecting the most pertinent predictors which explains most 
of the variance for each stage forecast. Then the models 
are developed based upon the selected predictors using 
linear regression and neural network as explained in the 
following sections. 

2. Brief Introduction to Recent Methods 
Being Followed 

2.1. The 8-Parameter and 10-Parameter Power 
Regression Models 

2.1.1. Models for Seasonal Rainfall 
The 8 and 10 parameter PR models were used for issuing 
quantitative operational forecast of seasonal rainfall over 
the country as a whole during the period 2003 to 2006. 
Table 1 shows the predictors used for the development 
of the PR models. The mathematical form of the power 
regression model is given below. 
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where R is the rainfall, Xs are standardized predictors, 
and Cs and Ps are constants. n is either 8 or 10. The 
model is non-linear and the power term, P, in the above 
equation varies between ±2. 

The models were developed using data of 38 years 
(1958-1995) and independently tested using data of 7 
years (1996-2002). A comparison of the new 8 and 10 
parameter models with the earlier used 16-parameters 

 
Table 1. List of 10 parameters used for developing new LRF models. 

S. No Parameter Period of Data C.C. with ISMR 

1 Arabian Sea Surface Temperature January + February 0.55 

2 Eurasian Snow Cover December –0.46 

3 NW Europe Temperature January 0.45 

4 Nino 3 SST Anomaly (Previous Year) July to September 0.42 

5 South Indian Ocean SST Index March 0.47 

6 East Asian Pressure February + March 0.61 

7 50 hPa Wind Pattern January + February –0.50 

8 Europe Pressure Gradient January 0.42 

9 South Indian Ocean Zonal Wind at 850 hPa June –0.45 

10 Nino 3.4 SST Tendency AMJ - JFM –0.46 
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power regression model indicated that the forecasts from 
the 8 and 10 parameter models were closer to the actual 
rainfall than the forecasts from the 16 parameter model. 
More details of these models can be seen in [6]. However, 
it may be mentioned that though these models showed 
better performance in general they failed to correctly 
indicate the large rainfall deficiency during 2002 in the 
hindcast mode and that during 2004 in real time forecast 
mode. 

2.1.2. Models for Probabilistic Forecast 
The Probabilistic models were based on the statistical 
linear discriminant analysis (LDA) technique[7] and [8] 
and used the same sets of 8 and 10 parameters being used 
for the power regression models discussed above. The 
LDA is a useful technique to find out which predictor 
variables discriminate between two or more naturally 
occurring (or a priori defined) predictand groups. The 
LDA also estimate the posterior probabilities for a pre-
dictand to fall into each of these groups. The primary 
assumption for this model is that prior probabilities of all 
the predictand groups (or quints) are equal. The data for 
40 years (1958-1997) were used for the model develop- 
ment and data for 5 years (1998-2002) were used for the 
model verification. The seasonal rainfall (predictand) 
was grouped into 5 broad categories of equal probability 
(20% each) i.e. each group consisted of 8 years. These 
categories are deficient (<90% of LPA), below normal 
(90% - 97% of LPA), near normal (98% - 102% of LPA), 
above normal (103% - 110% of LPA) and excess 
(>100% of LPA). 

In hindcast mode, the 8 parameter LDA model showed 
68% correct classifications, whereas the 10 parameter 
LDA model showed 78% correct classifications. More-
over, both the LDA models correctly gave the highest 
probability of drought in 8 out of 9 actual drought years 
except in 2002 and no false alarms of drought were gen-
erated in any other years. 

2.2. The Present Operational Forecasting System 

The two stage forecasting system introduced in 2003 (see 
Section 6) is still used to issue the operational forecasts 
for the summer monsoon rainfall. However, from 2007, a 
new statistical forecasting system based on the ensemble 
method is being used for preparing the long range fore-
cast for the southwest monsoon season rainfall over the 
country as a whole. 

New Statistical Ensemble Forecasting System for the 
Seasonal Rainfall over the Country as a Whole 
There are three major changes in the new statistical fore-
cast system used at present [9], from that used during 
2003 to 2006 which was based on the 8/10 Parameter 
power regression models. These were: a) Use of a new 
smaller predictor data set; b) Use of a new non-linear 
statistical technique along with conventional multiple 
regression technique; c) Application of the concept of 
ensemble averaging. The new ensemble forecasting sys-
tem introduced in 2007 used a set of 8 predictors (given 
in the Table 2) which are having a stable and strong 
physical linkage with the Indian south-west monsoon 
rainfall. For the April forecast, first 5 predictors listed in 
the Table 2 are used. For the update forecast issued in 
June, the last 6 predictors were used that include 3 pre-
dictors used for April forecast. 

In the ensemble forecasting system, the forecast for the 
seasonal rainfall over the country as a whole was com-
puted as the mean of the two ensemble forecasts prepared 
from two separate set of models. Multiple linear regres-
sion (MR) and projection pursuit regression (PPR) tech-
niques were used to construct two separate sets of models. 
PPR is a nonlinear regression technique. In each case, 
models were construed using all possible combination of 
predictors. Using “n” predictors, it is possible to create 
(2n – 1) combination of the predictors and therefore that 
many number of models. Thus with 5 (6) predictors it is 

 
Table 2. Details of the 8 predictors used for the new ensemble forecast system. 

S. No Predictor Used for forecasts in Correlation coefficient (1971-2000) 

1 NW Europe Land Surface Air Temperature (P1) April –0.51 

2 Equatorial Pacific Warm Water Volume (P2) April 0.43 

3 North Atlantic Sea Surface Temperature (P3) April and June 0.36 

4 Equatorial SE Indian Ocean Sea Surface Temperature (P4) April and June 0.59 

5 East Asia Mean Sea Level Pressure (P5) April and June –0.31 

6 Central Pacific (Nino 3.4) Sea Surface Temp.Tendency (P6) June –0.49 

7 North Atlantic Mean Sea Level Pressure (P7) June –0.46 

8 North Central Pacific Wind at 1.5 Km above Sea Level (P8) June –0.44 
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possible to construct 31 (63) models. Using sliding fixed 
training window (of optimum period of 23 years, 1958- 
1980) period, independent forecasts were prepared by all 
possible models for the period 1981-2008. For preparing 
ensemble average, a set of few best models from all pos-
sible MR models and another set of few best models 
from all possible PPR models are selected. The best 
models are selected in two steps. In the first step, all 
models (MR and PPR models separately) are ranked 
based on the objective criteria of likelihood function or 
generalized cross-validation (GCV) function computed 
for the period 1981-2007. In the second step, ensemble 
average of forecasts from the models ranked based on 
GCV values were computed by using first one model, 
first 2 models, and first 3 models and so on up to all the 
possible models in the rank list as the ensemble members. 
The ensemble average for each year of the independent 
period 1981-2007 was computed as the weighted average 
of the forecasts from the individual ensemble members. 
The weights used for this purpose was the C.C between 
the actual and model estimated ISMR values during the 
training period (of 23 years just prior to the year to be 
forecasted) adjusted for the model size. Mean of the two 
ensemble average forecasts (one from MR models and 
another from PPR models) was computed as the final 
forecast. Performance of the April and June forecast for 

the independent test period of 1981-2008 computed using 
the new ensemble method. The RMSE of the independ-
ent April & June forecasts for the period 1981-2008 was 
5.9% of LPA and 5.6% of LPA respectively. 

3. The New Three Stage Method Suggested 

3.1. Parameters Considered as Potential 
Predictors 

In the present study a three stage procedure is used. A set 
of 16 non-overlapping parameters (Table 3) from the set 
of 10 parameters (Table 1) used for the earlier 8 and 10 
parameter model, which was used from 2003 to 2006 and 
also from the set of 8 parameters (Table 2) used for the 
new ensemble forecasting system introduced in 2007, is 
considered as the set of potential predictors for the model. 
The first 11 parameters (with data up to March) from 
these 16 parameters are used as the set of potential pre-
dictors for the models to be used for the first stage fore-
cast of ISMR issued in April. The first 14 parameters 
(with data up to May) from these non-overlapping pa-
rameters are used as the set of potential predictors for the 
models to be used for the second stage forecast of ISMR 
issued in June. All the 16 parameters (with data up to 
June) are used for the final (third) stage forecast of ISMR 
issued in July. 

 
Table 3. List of 16 parameters used for developing new three stage forecast method. 

S. No Parameter Short Name Period of Data C.C. with ISMR 

1 Arabian Sea Surface Temperature ARBSST January + February 0.11 

2 Eurasian Snow Cover EURSNC December –0.55 

3 NW Europe Temperature NWET January 0.31 

4 Nino 3 SST Anomaly ( Previous Year) NI3PY July to September 0.33 

5 South Indian Ocean SST Index SIDI March 0.41 

6 East Asian Pressure EASIAP February + March 0.43 

7 Europe Pressure Gradient EUPRGR January 0.33 

8 50 hPa Wind Pattern WPR50 January + February –0.61 

9 North Atlantic Sea Surface Temperature  NATSST December + January 0.38 

10 Equatorial SE Indian Ocean SST EQSEINDO February + March 0.46 

11 Equatorial Pacific Warm Water Volume WWV February + March –0.31 

12 Central Pacific SST Tend. (Nino 3.4) NI3.4M MAM - DJF –0.47 

13 
North Central Pacific  
Wind 1.5 km ab. SL 

NCPU850 May –0.54 

14 
North Atlantic Mean  
Sea Level Pressure 

NATMSLP May –0.43 

15 
South Indian Ocean 

Zonal Wind at 850 hPa 
SIOU850 June –0.35 

16 Nino 3.4 SST Tendency NI3.4J AMJ - JFM –0.49 
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3.2. Selecting the Most Pertinent Predictors 

The most pertinent predictors that explain most of the 
variance are selected from the set of all potential predic-
tors by using a stepwise selection procedure. In this pro-
cedure, selection of predictors is terminated if the new 
candidate predictor contributes less than a critical value, 
to the percentage of variance explained by the predictors 
already selected [10]. In order to have a significant per-
centage of variance explained by the predictors selected 
and to have less noise in the predictions, this critical 
value is taken as 0.5% [11,12]. If the variable recently 
selected is rejected in the selected variables while testing 
the significance then also the procedure is terminated. 

Nine parameters (Table 4) including the June parame-
ters are selected as the most pertinent predictors for the 
final(third) stage forecast of ISMR which is issued in 
July. These 9-parameters explain 83% of variance. 
8-parameters (Table 5) including the May parameters are 
selected as the most pertinent predictors for the second 
stage forecast of ISMR which is issued in June. These 8 
parameters explains 80% of variance. 6 parameters (Ta-
ble 6) which are up to March are selected as the most 

pertinent predictors for the first stage forecast of ISMR 
which is issued in April. These 6 parameters explains 
70% of variance. 

8th parameter that is 50 hPa Wind Pattern (WPR50) in 
Table 3 is the fist parameter in the April and June mod-
els, but it is getting removed in the July models. Experi-
ment is conducted for selecting the most pertinent pre-
dictors after removing it from the set of all potential pre-
dictors i.e. from Table 3. But the results gets deteriorated 
and the percentage of variance explained reduces to 79% 
and 67% for June and April models respectively and skill 
gets reduced for the validation data set as well. Hence it 
is the most important parameter for April and June mod-
els and models are developed and validated after includ-
ing this parameter as explained in the above para. 

3.3. Developing the Model Equations 

The model equations are developed by using the most 
pertinent selected predictors for the first stage, second 
stage and third stage forecasts. These equations are de-
veloped using the linear regression and neural networks. 

 
Table 4. List of parameters selected as predictors for third stage forecast in July. 

S.No Parameter Short Ame Period of Data C.C. with ISMR 

1 North Central Pacific Wind 1.5 km ab. SL NCPU850 May –0.54 

2 East Asian Pressure EASIAP February + March 0.43 

3 Europe Pressure Gradient EUPRGR January 0.33 

4 Central Pacific SST Tend (Nino 3.4) NI3.4M MAM - DJF –0.47 

5 Eurasian Snow Cover EURSNC December –0.55 

6 South Indian Ocean Zonal Wind at 850 hPa SIOU850 June –0.35 

7 North Atlantic Mean Sea Level Pressure NATMSLP May –0.43 

8 North Atlantic Sea Surface Temperature NATSST December + January 0.38 

9 Equatorial Pacific Warm Water Volume(ANO) WWVANO February + March –0.31 

 
Table 5. List of parameters selected as predictors for second stage forecast in June. 

S.No Parameter Short Name Period of Data C.C. with ISMR 

1 50 hPa Wind Pattern WPR50 January + February –0.61 

2 North Central Pacific Wind 1.5 km ab. SL NCPU850 May –0.54 

3 East Asian Pressure EASIAP February + March 0.43 

4 Europe Pressure Gradient EUPRGR January 0.33 

5 Central Pacific SST Tend (Nino 3.4) NI3.4M MAM - DJF –0.47 

6 Eurasian Snow Cover EURSNC December –0.55 

7 North Atlantic Mean Sea Level Pressure NATMSLP May –0.43 

8 North Atlantic Sea Surface Temperature NATSST December + January 0.38 
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Table 6. List of parameters selected as predictors for first stage forecast in April. 

S.No Parameter Short Name Period of Data C.C. with ISMR 

1 50 hPa Wind Pattern WPR50 January + February –0.61 

2 Europe Pressure Gradient EUPRGR January 0.33 

3 East Asian Pressure EASIAP February + March 0.43 

4 Eurasian Snow Cover EURSNC December –0.55 

5 Equatorial SE Indian Ocean SST EQSEINDO February + March 0.46 

6 North Atlantic Sea Surface Temperature NATSST December + January 0.38 

 
43 years of data from 1958 to 2000 for the predictors and 
predictands is used as the training set and next 11 years 
of data from 2001 to 2011 for the predictors and predic-
tands is used as the validation set. Five types of equations 
using the five different predictands are developed for all 
the three stages of the forecast. These five different pre-
dictands are the following; 
 Observed value of % anomaly of ISMR;  
 Probability of more than normal ISMR that is per-

centage anomaly is greater than +4%;  
 Probability of less than normal ISMR that is percent-

age anomaly is less than –4%; 
 Probability of deficient ISMR that is percentage 

anomaly is less than –10%; 
 Probability of excess ISMR that is percentage anom-

aly is more than 10%. 
The probabilities for usual non-overlapping five cate-

gories can also be obtained from the above four prob-
abilities as follows: 
 

% ANO. Limits Non-overlapping Overlapping 

 probabilities of probabilities of 

<–10 deficient deficient 

–10 to –4 below normal less than normal – deficient

–4 to 4 normal 
1.0– less than normal –  

more than normal 

4 to 10 above normal more than normal – excess

>10 excess excess 

 
Here if the bigger class (e.g. less than normal) is hav-

ing the less probability than the smaller class (e.g. defi-
cient) then the smaller class is also given the same prob-
ability as the bigger class. 

As the data available for developing the models is less, 
hence these over lapping probabilities are taken as pre-
dictands, so as to have good number of cases represent-
ing a particular class for the % anomaly of ISMR. 

3.3.1. Linear Regression Equations 
Simple linear regression equations of the Form (1) are 

obtained relating one predictand to the set of most perti-
nent selected predictors. 

0 1 1 2 2 n nY a a X a X a X          (1)    

a swhere i  are the multiple regression coefficients and 

iX s  are the values of the most pertinent selected pre-
dictors at the station. Here Y provides the predicted value 
of the predictand for a given set of predictors. These 
equations are developed by using the training data set of 
43 years from 1958 to 2000 for all the four predictands as 
mentioned above and for all the three stages. The fore-
casts for predictands are obtained by putting the values of 
predictors by using the validation data set of 11 years 
from 2001 to 2011.  

3.3.2. Neural Networks 
Neural networks can have a massively parallel, layered 
structure with each layer consisting of several nodes 
called neurons. They provide a mapping from input vec-
tor xi, i = 1,2, ··· ,n, to the output vector yj, j = 1, 2, ··· ,m. 
Besides the input and output layers the network may also 
contain one or more hidden layers. Each neuron produces 
an output O = f(Z), where i iZ z w b 

 

, zi (i = 
1,2, ··· ,n) are the inputs to the given neuron, f(Z) is 
called the activation function and is usually taken to be 
the sigmoidal function 1 1 Zexp    , wi are the 
weights associated with the network and b is the bias of 
the neuron. The weights wi and the bias b represent the 
parameters of the network which are to be determined by 
using the training data set of the pattern to be learned. 
Neural networks have the remarkable ability for pattern 
recognition [13]. It has been found that a two hidden 
layer network can learn most functions with compact 
domain. More details on neural networks and their ap-
plications can be found in the text books on neural net-
works such as [14,15]. 

The training algorithm used in the neural network for 
minimization of error is the conjugate gradients proce-
dure complemented by simulated annealing to evade lo-
cal minima. The conjugate gradients method is expected 
to be more efficient than the more commonly used back 
propogation algorithm and hence the network is expected 
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to learn faster [14]. The simulated annealing method is 
necessary to escape from local minima which are usually 
present abundantly in the error function. The error meas-
ure was taken as the usual mean squared sum of errors. 

In the present study one hidden layer with three neu-
rons is used for developing the neural network equations 
for the predictands related to % anomaly of ISMR in 
order to match with the amount of data available. These 
equations are developed by using the training data set of 
43 years from 1958 to 2000. The forecasts for predic-
tands are obtained by putting the values of predictors by 
using the validation data set of 11 years from 2001 to 
2011 as it was done in case of linear regression. 

4. Evaluation of Forecast Skill 

4.1. Skill Scores Used for Verification 

Contingency tables are prepared for all the four type of 
predictands related to % anomaly of ISMR and all the 
three stages as mentioned in Section 3.3 and for both 
linear regression and neural networks. 

The root mean square error, ratio score and Hanssen 
and Kuiper’s (HK) score are calculated for the forecasts 
for % anomaly of ISMR. The Brier score, ratio score and 
HK score are used for the forecasts for probability of 
more than normal, less than normal, deficient and excess 
conditions as mentioned in Section 3.3. 

Brier score is defined as follows: 

 1BS N  2

i i
i

f x   

where {(fi ,xi), i = 1,2, ··· ,N} is data sample and i

Ratio score and HK score are calculated for YES/NO 
forecasts for all the stations. For a given 2 × 2 contin-
gency table between forecast and observed rain situations, 
the HK score is defined as follows: 
 

 Observed 

Forecasted Rain No Rain 

Rain YY NY 

No Rain YN NN 

 
 

   

f s  
and ix s  are the forecasted and observed probability 
values. The Brier score ranges from “0” to “1”. 

YY*NN YN*NY
HK score

YY YN * NY NN




 
 

     Ration score YY+NN YY YN NY NN   

The value of HK score varies from “–1” to “+1”. If all 
forecasts are incorrect, that is YY = NN = 0 then HK 
score equals –1. If forecasts are prefect, that is YN = NY 
= 0, then the HK score equals +1. 

4.2. Verification Results 

The Results for contingency tables for all the four type of 
predictands related to % anomaly of ISMR and all the 
three stages as mentioned in Section 3.3 and for both 
linear regression and neural networks, are given in the 
Tables 7-11. All the contingency tables for June and July 
models show at the most 1 to 3 non-matching cases out 
of 11 cases. July models show the high skill for all the 
five predictands. Although for the April models the 
non-matching cases are 4 out of 11 by using linear re-
gression for probability of more than normal and defi-
cient ISMR. This indicates the very high percentage of 
matching cases. 

 
Table 7. 2 × 2 contingency table for % ANO for ISMR (YEARS: 2001 to 2009). (a) Linear Regression; (b) Neural Network. 

(a) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

(>0.0) 
NO 

(<0.0) 

Observed YES 
(>0.0) 

NO 
(<0.0) 

Observed YES 
(>0.0) 

NO 
(<0.0) 

YES 
(>0.0) 

3 1 
YES 

(>0.0) 
2 2 

YES 
(>0.0) 

4  

NO 
(<0.0) 

1 6 
NO 

(<0.0) 
1 6 

NO 
(<0.0) 

2 5 

(b) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

(>0.0) 
NO 

(<0.0) 

Observed YES 
(>0.0) 

NO 
(<0.0) 

Observed YES 
(>0.0) 

NO 
(<0.0) 

YES 
(>0.0) 

2 1 
YES 

(>0.0) 
3 1 

YES 
(>0.0) 

3 2 

NO 
(<0.0) 

2 6 
NO 

(<0.0) 
1 6 

NO 
(<0.0) 

1 5 
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Table 8. 2 × 2 contingency table for probability of more than normal (> 4% ANO) ISMR (YEARS: 2001 to 2009). (a) Linear 
regression; (b) Neural network. 

(a) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

(>4.0) 
NO 

(<4.0) 

Observed YES 
(>4.0) 

NO 
(<4.0) 

Observed YES 
(>4.0) 

NO 
(<4.0) 

YES 
(>4.0) 

0 1 
YES 

(>4.0) 
1 0 

YES 
(>4.0) 

1 0 

NO 
(<4.0) 

3 7 
NO 

(<4.0) 
3 7 

NO 
(<4.0) 

3 7 

(b) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

(>4.0) 
NO 

(<4.0) 

Observed YES 
(>4.0) 

NO 
(<4.0) 

Observed YES 
(>4.0) 

NO 
(<4.0) 

YES 
(>4.0) 

0 1 
YES 

(>4.0) 
1 0 

YES 
(>4.0) 

1 0 

NO 
(<4.0) 

0 10 
NO 

(<4.0) 
2 8 

NO 
(<4.0) 

2 8 

 
Table 9. 2× 2 contingency table for probability of less than normal (<–4% ANO) ISMR (YEARS: 2001 to 2009). (a) Linear 
regression; (b) Neural network. 

(a) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

(<–4.0) 
NO 

(>–4.0) 

Observed YES 
(<–4.0) 

NO 
(>–4.0) 

Observed YES 
(<–4.0) 

NO 
(>–4.0) 

YES 
(<–4.0) 

2 2 
YES 

(<–4.0) 
2 2 

YES 
(<–4.0) 

3 1 

NO 
(>–4.0) 

0 7 
NO 

(>–4.0) 
0 7 

NO 
(>–4.0) 

1 6 

(b) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

(<–4.0) 
NO 

(>–4.0) 

Observed YES 
(<–4.0) 

NO 
(>–4.0) 

Observed YES 
(<–4.0) 

NO 
(>–4.0) 

YES 
(<–4.0) 

2 2 
YES 

(<–4.0) 
4 0 

YES 
(<–4.0) 

3 1 

NO 
(>–4.0) 

0 7 
NO 

(>–4.0) 
1 6 

NO 
(>–4.0) 

1 6 

 
The observed and forecasted values for all the five 

type of predictands related to % anomaly of ISMR and 
all the three stages as mentioned in section 3.3 and for 
both linear regression and neural networks, are plotted as 
from Figures 1(a) and (b) to Figures 3(c)-(e). 

For the first stage that is April models, the predictions 
by using the neural network method had always been 
better than that by using the linear regression and the 
sign of predicted % anomaly of ISMR is same as that of 
observed for all 11 cases except for 1 case using linear 
egression and 2 by using neural networks, Figure 1(a). 
For probability of more than normal (>4% ANO) ISMR, 

the probability is not matching only for the year 2003, 
which is a positive ANO (+2%) case and for the year 
2007 by using neural networks, Figure 1(b). For prob-
ability of less than normal (<–4% ANO) ISMR, the prob-
ability is not matching for two cases out of 11 cases by 
using neural networks, Figure 1(c). For probability of 
deficient conditions (<–10% ANO of ISMR), the prob-
ability is not matching for 3 cases out of 11 cases by us-
ing neural networks, Figure 1(d). For probability of ex-
cess conditions (>10% ANO of ISMR), the probability is 
matching for all the cases both for linear regression and 
eural networks, Figure 1(e). n 
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Table 10. 2 × 2 contingency table for probability of deficient (<–10% ANO) ISMR, (YEARS: 2001 to 2009). (a) Linear regres-
sion; (b) Neural network. 

(a) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

<–10.0 
NO 

>–10.0 

Observed YES 
<–10.0 

NO 
>–10.0 

Observed YES 
<–10.0 

NO 
>–10.0 

YES 
<–10.0 

0 1 
YES 

<–10.0 
1 0 

YES 
<–10.0 

0 0 

NO 
>–10.0 

3 7 
NO 

>–10.0 
2 8 

NO 
>–10.0 

3 8 

(b) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

<–10.0 
NO 

>–10.0 

Observed YES 
<–10.0 

NO 
>–10.0 

Observed YES 
<–10.0 

NO 
>–10.0 

YES 
<–10.0 

1 2 
YES 

<–10.0 
2 1 

YES 
<–10.0 

3 0 

NO 
>–10.0 

1 7 
NO 

>–10.0 
0 8 

NO 
>–10.0 

2 6 

 
Table 11. 2 × 2 contingency table for probability of excess (> 10% ANO) ISMR (YEARS: 2001 to 2009). (a) Linear regression; 
(b) Neural network. 

(a) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

>10.0 
NO 

<10.0 

Observed YES 
>10.0 

NO 
<10.0 

Observed YES 
>10.0 

NO 
<10.0 

YES 
>10.0 

0 0 
YES 
>10.0 

0 0 
YES 

>10.01 
0 0 

NO 
<10.0 

0 11 
NO 

<10.0 
0 11 

NO 
<10.0 

0 11 

(b) 

April Models June Models July Models 

Forecasted Forecasted Forecasted 
Observed YES 

>10.0 
NO 

<10.0 

Observed YES 
>10.0 

NO 
<10.0 

Observed YES 
>10.0 

NO 
<10.0 

YES 
>10.0 

0 0 
YES 
>10.0 

0 0 
YES 
>10.0 

0 0 

NO 
<10.0 

0 11 
NO 

<10.0 
1 10 

NO 
<10.0 

0 11 

 
For the second stage that is June models, the predic-

tions by using the neural network method had always 
been better than that by using the linear regression and 
the sign of predicted % anomaly of ISMR is same as that 
of observed for all 11 cases except for the years 2005 
where the difference is very small that is from –1.00 to 
3.74 and for the year 2011 where difference is very small 
that is from –0.24 to 1.73 by using neural networks, Fig-
ure 2(a). For probability of more than normal (>4% 
ANO) ISMR, the probability is not matching only for the 
year 2003, which is a positive ANO (+2%) case and for 
the year 2010 by using neural networks, Figure 2(b). For 

probability of less than normal (<–4% ANO) ISMR, the 
probability is not matching only for one case i.e. year 
2006 by using neural networks and linear regression both, 
Figure 2(c). For probability of deficient conditions 
(<–10% ANO of ISMR), the probability is not matching 
for one case out of 11 cases by using neural networks, 
Figure 2(d). For probability of excess conditions (>10% 
ANO of ISMR), the probability is matching for all cases 
for linear regression and it is not matching for one case 
out of 11 cases by using neural networks, Figure 2(e). 

For the third stage that is July models, the predictions 
by using the neural network method had always been  
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 1. (a) & (b) observed and predicted (a) % anomaly of ISMR (b) probability of more than normal ISMR, as predicted 
by linear regression and neural network for the first stage forecast. (c)-(e) observed and predicted (c) probability of less than 
normal ISMR (d) probability of deficient ISMR (e) probability of excess ISMR, as predicted by linear regression and neural 
network for the first stage forecast. 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 2. (a) & (b) observed and predicted (a) % anomaly of ISMR (b) probability of more than normal ISMR, as predicted 
by linear regression and neural network for the second stage forecast. (c)-(e) observed and predicted (c) probability of less 
than normal ISMR (d) probability of deficient ISMR (e) probability of excess ISMR, as predicted by linear regression and 
neural network for the second stage forecast. 
 
better than that by using the linear regression and the 
sign of predicted % anomaly of ISMR is same as that of 
observed for all cases except for the year 2010 where the 
difference is very small that is from –0.31 to 0.82 by us-
ing neural networks, Figure 3(a). For probability of 
more than normal (>4% ANO) ISMR, the probability is 
not matching only for the year 2003, which is a positive 
ANO (+2%) case and for the year 2005 by using neural 
networks, Figure 3(b). For probability of less than nor-
mal (<–4% ANO) ISMR, the probability is not matching 
only for the year 2006, which is a zero anomaly case by 
using neural networks, Figure 3(c). For probability of 
deficient conditions (<–10% ANO of ISMR), the prob-
ability is not matching only for the year 2001, which is a 
highly negative ANO (–9%) case and the year 2006 by 
using neural networks, Figure 3(d). For probability of 
excess conditions (>10% ANO of ISMR), the probability 
is matching for all the cases for linear regression and it is 
not matching for two cases out of 11 by using neural 
networks, Figure 3(e). 

The root mean square error, ratio score and HK score 
for % anomaly of ISMR and Brier score, Ratio score and 
HK score for all the types of probability forecasts are 
given in Table 12. 

For the first stage that is April models, rmse is 9.00, 
ratio score is 0.73 and HK score is 0.36 for the predic-
tions of % anomaly of ISMR using neural networks and 

for probability predictions using neural networks brier 
score varies from 0.09 to 0.27, ratio score varies from 
0.73 to 0.91 and HK score is up to 0.5, which is a moder-
ate to high skill. For excess case brier score is 0.0 and 
ratio score is 1.00. 

For the second stage that is June models, rmse is 5.69, 
ratio score is 0.82 and HK score is 0.61 for the predic-
tions of % anomaly of ISMR using neural networks and 
for probability predictions using neural networks brier 
score varies from 0.09 to 0.16, ratio score varies 0.82 to 
0.91 and HK score varies from 0.61 to 0.86, which is 
very high. For excess case brier score is 0.07 and ratio 
score is 0.91. 

For the third stage that is July models, rmse is 6.19, ra-
tio score is 0.73 and HK score is 0.46 for the predictions 
of % anomaly of ISMR using neural networks and for 
probability predictions using neural networks brier score 
varies from 0.11 to 0.18, ratio score is 0.82 and HK score 
varies from 0.61 to 0.80, which is also very high. For 
excess case brier score is 0.02 and ratio score is 1.00. 

5. Conclusions 

The contingency tables shows the high level matching 
cases in the validation set of 11 years (2001 to 2011) for 
all the three stages models except for April models in case 
f probability of more than al ISMR and deficient o  norm 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 3. (a) & (b) observed and predicted (a) % anomaly of ISMR (b) probability of more than normal ISMR, as predicted 
by linear regression and neural network for the third stage forecast. (c)-(e) observed and predicted (c) probability of less than 
normal ISMR (d) probability of deficient ISMR (e) probability of excess ISMR, as predicted by linear regression and neural 
network for the third stage forecast. 
 

Table 12. Skill scores of the forecasts for the % ANO for ISMR and related probabilities. 

(a) % ANO of ISMR: - 

April Models June Models July Models Method 
Used rmse rs hk rmse rs hk rmse rs hk 

Lin. Reg. 8.97 0.82 0.61 6.35 0.73 0.36 6.11 0.82 0.71 

Neural Net. 9.00 0.73 0.36 5.69 0.82 0.61 6.19 0.73 0.46 

(b) Probability of more than normal (>4% ANO) ISMR (mtprob): -  

April Models June Models July Models Method 
Used bs rs hk bs rs hk bs rs hk 

Lin. Reg. 0.21 0.64 0.30 0.13 0.73 0.70 0.15 0.73 0.70 

Neural Net. 0.09 0.91 0.00 0.16 0.82 0.80 0.18 0.82 0.80 

(c) Probability of less than normal (<–4% ANO) ISMR (ltprob): - 

April Models June Models July Models Method 
Used bs rs hk bs rs hk bs rs hk 

Lin. Reg. 0.21 0.82 0.50 0.15 0.82 0.50 0.10 0.82 0.61 

Neural Net. 0.15 0.82 0.50 0.09 0.91 0.86 0.11 0.82 0.61 

(d) Probability of deficient (<–10% ANO) ISMR (dfprob): - 

April Models June Models July Models Method 
Used bs rs hk bs rs hk bs rs hk 

Lin. Reg. 0.20 0.64 0.12 0.12 0.82 0.33 0.12 0.73 0.00 

Neural Net. 0.27 0.73 0.21 0.12 0.91 0.67 0.16 0.82 0.75 

(e) Probability of excess (>10% ANO) ISMR (exprob): - 

April Models June Models July Models Method 
Used bs rs hk bs rs hk bs rs hk 

Lin. Reg. 0.00 1.00 - 0.02 1.00 - 0.02 1.00 - 

Neural Net. 0.00 1.00 - 0.07 0.91 - 0.02 1.00 - 

Rk: rmse: Root mean square error; bs: Brier score; rs: Ratio score; hk: HK Score. 
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conditions. The neural networks are better as compared 
to linear regression in general although in some cases the 
linear regression is equally good. 

As far as for the prediction for % anomaly of ISMR it 
is better for June models as compared to April models 
and July models are better for June models. The predic-
tions by using neural networks are better as compared to 
that using by linear regression in general. 

The predictions for the related probability predictands 
by using neural networks are also better as compared to 
those by using linear regression. The predictions for 
more than normal ISMR by using neural networks is 
having same skill for the models for all the three stages. 
The predictions for less than normal ISMR by using 
neural networks is highly improved for June and July 
models as compared to April models. Although the pre-
dictions for deficient conditions by using neural networks 
is also highly improved for June and July models as 
compared to April models, but July models are still better 
that June models. 

The three stages (April, June and July) prediction sys-
tem explained above is able to show high skill by using 
the robust technique like neural networks which was 
never attempted before. Moreover the skill of the forecast 
attained is found to be generally better as compared to 
the skill of the forecast obtained from the models at-
tempted by other authors in the past [9]. The low value of 
rmse for the predicted % anomaly of ISMR and nearly 
prefect forecasts for the related probability predictands 
indicates that the procedure has the high potential to pro-
vide a prediction for ISMR, which would definitely im-
prove the operational forecast of ISMR for the country.  
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