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ABSTRACT 

Based on the Hertzian granular contact mechanics model, the paper built up a Macroscopic Young’s Elastic Modulus of 
particle/granular packing rock layers, and built up a ties to connecting Young’s Elastic Modulus of sand particle in 
Meso and the Macroscopic Young’s Modulus of granular packing rock layers. The Macroscopic Young’s Modulus of 
granular packing rock layers is far less than the Young’s Modulus of sand particle. The Macroscopic Young’s Modulus 
of granular packing rock layers is proportioned to the powers of 1/3 of the vertical contact force of sand particles. The 
Macroscopic Young’s Modulus is inversely proportional to particle diameter. The paper calculated the vertical contact 
force of five types aligning mode of the particles. When equal stress, the increased of the coordination number lead to 
the decrease of the contact force fn, this lead to the coordination number is an inverse proportion to Macroscopic 
Young’s Modulus. But the larger coordination number change only means very little Macroscopic Young’s Modulus 
change. 
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1. Introduction 

Young’s Modulus of rocks or soil is the important pa-
rameters in calculating seismic velocity, liquefaction of 
sand-soil, seismic exploration and hydrocarbon predic-
tion, earthquake engineering, tunnel excavating, defor-
mation of sand body, dynamic diagenesis of sandstone. 
Scholars always study the macroscopic structure of po-
rous media used the relation of wave velocity and density 
of material experientially. But there was a positive cor-
relation between wave velocity and Young’s Modulus 
theoretically and this logical accords with the principle of 
wave propagation. The difference between experiential 
methods and theoretical methods make the engineering 
application method and entirely pure research model 
each go its own way. Young’s Modulus obtained by ex-
periment mostly. But few studies focused on Young’s 
Modulus of granular mixtures or granular packing rock 
layers. Liu Xu (2002) [1] used multi-phase medium mi-
cromechanical model to educe out some macroscopic 
elastic parameter. But Liu’s method was based on most 
hypothesis on factor of porosity [2]. Zhong Xiao-xiong 

(1992) [3] set up the relationship between fabric tensor 
and contact density distribution functions, and the rela-
tionship between fabric tensor and stress tensor are ana-
lyzed. Those model on stress tensor and arrangements of 
particle is too fussy to used on geologic and macroscopic 
mechanics of rocks and soils. 

The Macroscopic Young’s Modulus of dry particle or 
granular packing rock layers is an important method to 
distinguish elastic deformation and plastic deformation 
of sedimentary rock layer. “From a grain sand can we 
find a world?”. The paper effort to set up a ties model 
between the macroscopic elastic parameter of granular 
packing rock layers and the elastic parameter of those 
sand particles. And effort to make out a series of simple 
theoretical logics and catch hold of those dominant fac-
tors of those logics. Maybe this can help those investiga-
tors and engineers to qualitatively and semi-quantitatively 
grasp the macroscopic elastic parameter of unconsoli-
dated sandstone. 

2. Model of Elastic Contact 

Based on the mechanics of spherical particles contact, 
classical Hertzian contact theory (Johnson, 1985 [4]; Oda, *Corresponding author. 
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1999 [5]; Sun Qi-cheng, 2009) [6] consider that the con-
tact points transformed into interface after the elastic 
deformation. As Figure 1(a) shows. 

The Hertzian contact theory as formula 1 to 7 shows.  
Among Figure 1, a is the round radius of the contact 

interface and its distribution as Figure 1(b) shows. The 
 leads to normal displacements u over the contact 

area. The distribution of normal deformation amounts u 
of different spherical particles after the normal contact 
force fn. So, the deformation amounts of v of different 
points in a contact interface as formula 3 shows. The 

 p r

  
is the relative approach of the centroids of the two sphere 
in contact. 
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Figure 1. Hertzian contact model [5]. (a) Geometry of hert- 
zian contact between two dissimilar, unequal sized elatstic 
spheres subjected to an applied normal force; (b) Normal 
contact force distribution of Hertzian contact. 

1  and 2  is the material’s Young’s Modulus of 
spherical particles.  and  is the radius of particles 
1 and particles 2, 1

E E

1R 2R
  and 2  is the Max normal de-

formation amount of particles 1 and 2. So, the total nor-
mal force is defined as formula 5. 

 
1

3 2
4

3nf E R                  (5) 

The inverse ratios of Normal Contact Stiffness nK  
can express the normal direction deformation amount 
between two particles center by unit normal direction 
force.  

2nK E a                  (6) 

Sun Qi-cheng [6] thought that if the normal deforma-
tion amount   is little, according to as formula 9, the 
force may be calculated by Hooke’s Law. And some 
studies looks the E  in formula 6 as the Shearing 
Young’s Modulus also mean a great errors. 

3. Macroscopic Young’s Modulus 

The Macroscopic Young’s Modulus is the Young’s Mo- 
dulus of particle packing rock layers. It is smaller than 
the material’s Young’s Modulus of spherical particles. 
Because of the different of material’s and rock layer’s, 
the wave velocity of various depth or petrofabric of rock 
layers is different. The percentage of sedimentary rock of 
the rock cover the earth surface was 75% and formed in 
sand particle packing layer. The compaction and dia- 
genesis in particle packing layer is also the process of 
pore evolution and change of Macroscopic Young’s Mo- 
dulus. Liu Yu (2010) [7] and Xia Tang-dai (2011) [2] put 
forward the concept of “effective shear modulus” and 
expression the relation between the material’s Young’s 
Modulus of spherical particles and the Macroscopic 
Young’s Modulus of particle packing layers. The “effec-
tive shear modulus” has expression the macroscopic 
modulus partially but not considered the affect of diame-
ters of the spherical particles in those papers. When we 
study the sand and soil then looks them as granular mix-
tures, the “force chain” often as a important mechanism. 
The affect of the “force chain” is used in the lower stress 
and we should neglects it in the higher tension. We 
should attend to that the E in formula 6 is only a proc-
ess parameters and a constant, not the real Young’s Mo- 
dulus of particle packing rock layers and no some good 
application meaning. In fact the Normal Contact Stiff-
ness Kn is proportional to Macroscopic Young’s Modulus 

gE  when only single contact point. The formula 5 be 
transformed into formula 7. 
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When we know the stress of external force which the 
particle packing rock layers suffered, calculating the de-
rivative of the formula 7, My paper get the formula 8. 
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The Macroscopic Young’s Modulus gE  as formula 9 
shows. 
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The formula 9 is the theoretical Macroscopic Young’s 
Modulus for arbitrary spherical particles contact for 
small deformation respectively. If that is equal diameter, 
equal Young’s Modulus, equal Poisson’s Ratio spherical 
particles, formula 9 can be transformed into formula 10. 
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From those component in formula 10, we can find that 
the theoretical Macroscopic Young’s Modulus of particle 
packing rock layers mainly be effected by following pa-
rameters: 

1) The material’s Young’s Modulus of spherical parti-
cles. The theoretical Macroscopic Young’s Modulus of 
particle packing rock layers is proportional to the mate-
rial’s Young’s Modulus of spherical particles and in-
versely proportional to the material’s Poisson’s Ratio of 
spherical particles. 

2) gE  is proportional to 1/3
nf , so proportional to the 

depth and stress and can not be calculated by Hooke’s 
Law. 

3) The material’s Young’s Modulus of spherical parti-
cles also be affected by temperature and pressure. Such 
as the material’s Young’s Modulus of sand particles 
(quartz) in the sandstone will decrease with higher tem-
perature.  

4. How the Arrangements of Particle  
Affected 

In the unconsolidated sandstone formation, the normal 
contact external force fn of equal diameter spherical par-
ticles is related to the corresponding depth, principal 
stress, diameter of particles. The fn is the forces be de-
composed by f in the Figure 2. Their has five types fa-
miliar arrangements modes of particles [6,8], their names 
and coordination number as Table 1 shows and their 
figures of modes shows as Figure 2. The particle pack-
ing rock layers tend to transform to make the direction of 

the direction of the maximum principal stress 1

Max ability of resistance contact force consistent with 

  (par-
allel to Z-axis in Figure 2). We may begins th the 
example that the v

wi
  is the maximum principal stress 

1  in a rock layer  a fault basin. The iin   is the angle 
force-decomposition. The force-decomp sition of five 

types familiar arrangements modes as Figure 2 shows. 
The relations between corresponding total normal con

of o

- 
tact force fn and 1  (parallel to Z-axis) of the particles 
arrangements modes i as formula 11 shows. 

24πf k R 1m i                   (11) 

i ni mi zk k k k i                  (12) 

That the relations between th
M

e Macroscopic Young’s 
odulus Eg and 1  of the particles arrangements modes 

i as formula 13 shows.  
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The  is the coefficient that can tell the relations 
be

 ik
 tween maximum principal stress 1  and its corre-

sponding normal contact force fni of a single particle un-
der the affect of the particles arrangements modes i. 

The kn is the area coefficient which express a single 
pa

 

rticle undertake the stress/theoretical area. kni is the 
area coefficient kn of the particles arrangements modes 
i . 

 

Figure 2. Five types familiar arrangements modes of parti-
cles (coordinate system B: The Z-axis perpendicular to the 

paper surface,  5 arcsin 3 3  , (1) and (2) accord with 

the coordinate s 3-5) accord with the coor-ystem A and the (
dinate system B, f is the force of σ1).  
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nge s come from reference 

Name of particles  
a

 
Table 1. Coefficients of the five types familiar particles arra ents modes (the data of N, hi, vrh wam
[6]). 

i  
rrangements modes 

N  eN  ih  rhv  i  nik  mik  zik  ik  tik  

1 6 2 2R 0˚ 1 1 1 1 1 Simple Cubic Mode 38R  

2 
(Trap ode 

8 4 
Hexagonal 

ezoid body) M 3R  34 3R  1 3 3  30˚ 1 3 3  2/3 

3 10 4 
Complex Hexagonal 

Mode 3R  36R  30˚ 3 2  3 3  1 1 2  0.5773 

4 
Pyramid tered 

12 8 
 (Face cen

cubic) Mode 2R  34 2R  2 2 4  45˚ 1 2 /2  0.5 

5 
Reg on 

12 6 
ular Tetrahedr

(Rhombic) Mode 
2 2 3R 34 2R  

3
arcsin

3
3 2 1.5  1 2 2 3 4   

3

2 2
 

 

 24ni rhi ik v R h              (14) 

We can find that the f in Figure 2 acc
15

ord with formula 
. 

1nif k                    (15) 

The km is the coefficient whic
be

o the force 
de

h express contact angle 
tween the two layers particles, The kmi is the coeffi-

cient km of the particles arrangements modes i. The kz is a 
coefficient which relate to the coordination numbers N. 
The rhiv  is the undertake volume of a single particle of 
the p cles arrangements modes i. The hi is the layer 
height of the particles arrangements modes i. 

The kmi should be calculated according t

arti

composition angles i  which based on the decompo-
sition principle for the rces. The decomposition angles 

i

fo
  shows as Figure 2. 

Besides the particles arrangements mode 1—the Sim-
ple Cubic Mode, the zik ( 2 3 4 5, , ,z z z zk k k k ) should be 
calculated according to t nation num-
ber eN (

he effective coordi
4eN N ). 

Th e nts os coefficie o articles ar-
ra

f the 5 types familiar p
ngements modes as the Table 1 shows. If we sum and 

average the five types familiar particles arrangements 
modes simply. The sum and average can not representa-
tive the fact on the particle packing rock layers. But in a 
larger scale, the five familiar particles arrangements 
modes must all exist and closer to the average. The sum 
and average not means a bigger error. From the Table 1, 
the coordination number 1N  and vertical 1gE ( 1tk ) of 
the Simple Cubic Mode is smallest and the bi st f the 
Regular Tetrahedron Mode. Not all the coordination 
number undertake the maximum principal stress 1

gge  o

  and 
the change of vertical 1gE ( 1tk ) mild than the ch e of 
the coordination numbe i

The model has not finished

ang

l in above
r N . 

. Because m  
pa

ode
ragraphs focused on the contact force fni which parallel 

to the maximum principal stress 1 . When the normal 
contact force fni not parallel to th maximum principal 
stress 1

e 
 , we need to convert the normal displacements 

  to parallel to the maximum principal stress 1 . So 
the giE transform into the formula 16.  
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, if look the 

  

So cosi ik   in formula 16 as a t
k , then the kti shows as Table 1 m 

five fam

o
. If we su

tal co- 
efficient t

d average the iliar particles arrangements 
modes simply. Then the average kt must be (
an

tk  = 
0.63538).  

The formula 10 and the formula 16 is respectivel the 
Eg that expre

y
 and m

 
ssed by normal contact force f axi-ni

m principal stress 1mu  . The formula 16 tell us that the 
Eg is proportional to 2/3R . 

Because differentiation of those material’s Young’s 
Modulus E of spherical particles is often not bi the 

particle p ing 

g, but 

ack

diffe

lay

rentiation of the radius of particles R is often differ-
ence by several magnitudes. So the R is often the princi-
pal influencing factors of Eg and maybe lead to the Eg of 
sandstone bigger than that of mud rock. 

In populous sedimentary basin and its most sedimen-
tary stage, for example the loose sand 

ers in quaternary, in those layers, the principal stress 
in vertical direction v  is the Max principal stress 1 , 
that is say that v  parallel to Z-axis, the stress field is 
express as v H h    , the H  is the Max horizontal 
principal stress a  the hnd   is the Min horizontal prin-
cipal stress pe stress field, v. In those ty   should be 
provided by the gravity of erlying strata S. 

 v f r wS p gH              (17) 

 ov

fp  is the pore fluid pressure, r  is th
rical particles, 

e bulk density 
of sphe  lk deis the bu nsity of pore w
fluid (often is water). 

In practice, we can use the formula 17 to estimate the 
Max principal stress 1  in depth of H, then we 

lu

 can 
grasp the relations between the depth of H and the Mac-
roscopic Young’s Modu s roughly. 
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5. Discussion 

Young’s Modulus of quartz bulk parent rock is often 40 
In fact the quartz bulk parent rocks is 
d its Young’s Modulus is less than that 

h than several hundred mete
so

nd h

dulus of particle packing rock layers 
an

GPa - 100 GPa. 
also have pore an
of material’s of spherical sand particles. Other material's 
Young´s Modulus of material’s has hardly been reported 
before. Because of the existing of some other mineral 
particles and clay particles, Young’s Modulus of mineral 
particles maybe less than the quartz mineral particles, but 
maybe not less than the quartz bulk parent rock. LiuYu 
(2010) [7] thought that 20 GPa - 80 GPa is a reasonable 
range of Young’s Modulus of mineral particles E. Some 
data from Tian Jia-ning (1988) [9] tell that those Young’s 
Modulus of rocks distributed from 5 GPa - 60 GPa and 
very discrete. Those Young’s Modulus of some rocks of 
clay particles is only 0.17 Ga, this less two magnitudes 
than that of sandstones, and maybe related to the spatial 
structure of those clay particles. Some shear wave veloc-
ity of particles packing rock layers which not deep than 
15 m is often only 60 - 200 m/s (Elnashai, 2008) [10] and 
far less than that of average value of sedimentary rock on 
the upper crust (2800 m/s - 3500 m/s), also less than the 
compressional wave velocity of water (1400 m/s). Some 
data from An-Ou (1992 [11]) also tell that the Young’s 
Modulus of rocks distributed from 0.1 GPa - 20 GPa and 
very discrete. Those bigger differentiation of Young’s Mo- 
dulus and wave velocity verify that the Young’s Modulus 
tend to approaching to zero when close to earth surface 
synchronously.  

The former model on Macroscopic Young’s Modulus 
of particle packing rock layers is only suitable for the 
rock layers not dept rs or 

me loose sandstone with rapid sedimentation. Plastic 
deformation maybe the dominating mode of the change 
of Macroscopic Young’s Modulus of particle packing 
rock layers in a depth or an older stratum of rocks. In this 
paper, Eg is proportional to 2/3R , but some data express 
that is inverse proportion, for example An-Ou (1992: p. 
34) [11], The paper think that because of those data was 
come from rocks in depth a ad undertake long-term 
plastic deformation and dynamic diagenesis. The plastic 
deformation velocity of little diameter particles is greater 
than that of the bigger diameter particles. The plastic 
deformation velocity model of particle packing rock lay-
ers need to be developed. We should also attend to that 
the instantaneous Young’s Modulus will determine the 
plastic deformation velocity in a time future .The elastic 
deformation will runs through modern and the elastic 
deformation model will be the basement to distinguish 
the elastic deformation and plastic deformation. 

6. Conclusions 

1) The paper set up a model to calculate the Macro-

scopic Young’s Mo
d the model includes the model that can tell how the 

arrangements of particle affected. 
2) gE  is proportional to 1/3

nf  and proportional to 
1/3

1 , can not be calculated by Hooke’s Law. The Mac-
ro pic  drysco Young’s Modulus of sand particle packing 

k layers which close to the earth surface is approach-
ing to zero in 0 m depth, and the too little Macroscopic 
Young’s Modulus is the main cause of earthquake site 
effect. 

3) 

 
roc

gE  is proportional to 2/3R , the differentiation of 
the radius of particles R is often difference by several 
ma itgn es. So the R is ofte e principal influencing 
factors of 

ud n th

gE . 
4) When equal stress, the increased of the coordination 

number lead to the decrease of the normal contact force 

nf , this lead to the coordination number is an inverse 
proportion to Macroscopic Young’s Modulus. But the 
larger coordination number change only means very little 
Macroscopic Young’s Modulus change. 
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