
Vol.2, No.3, 122-131 (2012)                                                               Stem Cell Discovery 
http://dx.doi.org/10.4236/scd.2012.23017  

Glioblastoma cancer stem cells: Basis for a  
functional hypothesis 

Davide Schiffer1*, Marta Mellai1, Laura Annovazzi1, Angela Piazzi1,2, Oriana Monzeglio1, 
Valentina Caldera1 

 

1Neuro-Bio-Oncology Center, Policlinico di Monza Foundation (Vercelli)/Consorzio di Neuroscienze, University of Pavia, Pavia Italy;  
*Corresponding Author: davide.schiffer@unito.it 
2Department of Medical Sciences, University of Piemonte Orientale, Novara, Italy 
 
Received 9 April 2012; revised 10 May 2012; accepted 10 June 2012 

ABSTRACT 

GBM Cancer stem cells (CSCs) are responsible 
for growth, recurrence and resistance to chemo- 
and radio-therapy. They are supposed to origin- 
nate from the transformation of Neural stem 
cells (NSC) of the Sub-ventricular zone (SVZ) or 
Sub-granular zone (SGZ) of hippocampus. Al- 
ternatively, they can be the expression of a 
functional status of competence or dedifferenti- 
ated cells of the tumor re-acquiring stemness 
properties. The origin of gliomas has been put in 
relation with the primitive neuroepithelial cells of 
the SVZ or NSC or progenitors, as showed by 
the development of experimental tumors in rats 
by transplacental ethylnitrosourea administra- 
tion. The demonstration of CSCs in GBM is 
based on Neurosphere (NS) and Adherent cell 
(AC) development in culture. NS share the same 
genetic alterations with primary tumors and ex- 
press stemness antigens, whereas AC show 
differentiation antigens. NS are generated by the 
most malignant areas of GBM. CSCs are con- 
sidered at the top of a hierarchy of tumor cells of 
which the most immature are Nestin+/CD133– 
cells or established on the basis of EGFR ampli- 
fication or delta-EGFR. NS in serum conditions 
differentiate and give origin to AC, the real na- 
ture of which is still a matter of discussion. Cells 
in culture could be simply in vitro entities de-
pending on culture methodology. CSCs in GBM 
could be tumor cells at the end of a dedifferen- 
tiation process re-acquiring stemness proper- 
ties, in an opposite way to what is realized in 
normal cytogenesis, where stemness is lost 
progressively with cell differentiation. This in- 
terpretation could fit with the origin of the two 
GBM types, primary and secondary. In primary 
GBM the tumor originates directly from stem 

cells or progenitors from SVZ with an acceler- 
ated transformation, whereas secondary GBM 
originates by transformation from astrocytomas 
arisen through a slow transformation from mi- 
grating stem cells and progenitors. 
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1. INTRODUCTION 

In the last decade a tremendous amount of contributions 
has been dedicated to the problem of Cancer stem cells 
(CSCs). In Glioblastoma (GBM) they have been repeat- 
edly demonstrated, interpreted and discussed in relation 
with the methodology of culture and the starting concept- 
tual viewpoint of the authors. Depending on their attitude 
as specialists of the field, pathologists/neuro-patholo- 
gists, neurobiologists or researchers simply using in vitro 
culture CSCs for resolving neuro-oncological problems, 
different opinions have been put forward going from 
CSCs as a special cell type to CSCs as a functional state 
or a sheer product of the culture. We wanted in this study 
to discuss the nature of CSCs on the basis of our experi- 
ence of neuropathologists/neuro-oncologists based on the 
daily practice with CSCs in the context of diagnosis, 
genesis and prognosis of gliomas. 

2. NERVOUS CYTOGENESIS AND  
CANCER STEM CELLS 

As in other malignancies, in gliomas, Cancer stem 
cells (CSCs) represent a subset of rare tumor cells capa- 
ble of self-renewal, tumorigenicity, differentiation and 
tumor regeneration [1-3] and at the top of a hierarchy of 
tumor cells [4]. They are supposed to originate from the 
transformation of Neural stem cells (NSCs), but also 
from restricted progenitors or more differentiated cells, 
capable of restoring self-renewal [5-7]. Their source has 
been identified in the germinal matrices, Sub-ventricular  
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zone (SVZ) or Sub-granular zone (SGZ) of the hippo- 
campus. At variance, they may represent a functional 
status [8] or dedifferentiated tumor cells which re-ac- 
quire stem cell-like properties [2,9,10]. As a matter of 
fact, gliomas have been produced from dedifferentiated 
astrocytes [11,12]. Even thought different from the Tu- 
mor initiating cells (TICs), identified in the early stages 
of the tumor, with less mutations and not yet showing the 
full characteristics of CSCs [13], the two terms are often 
used inter-changeably [14] also for Glioblastoma multi- 
forme (GBM) [15,16]. 

CSCs are generally considered as the real target of 
tumor therapies and from the neuropathologic view point, 
they are considered in the context of brain function and 
pathology and under the influence of microenvironments 
[17].  

In the Central nervous system (CNS), NSCs and pro- 
genitors occur from the embryo to the adult. Primitive 
neuroepithelial cells reside in the germinative matrix and 
give origin to basal progenitors and radial glia, which are 
found in the telencephalon and generate neurons. In the 
adult, NSCs are found in the SVZ of the hemispheres, in 
niches with specific microenvironments [18], composed 
of A, B and C cells (neuroblasts, quiescent NSCs and 
transit-amplifying cells, respectively), surrounded by 
ependymal cells. They are in contact with vessels and 
send an apical process toward the ventricle, for the 
stemness maintenance [19]. One of the function of the 
niche is exactly that to preserve stemness of NSCs [20]. 
In the mouse, ependymal cells may exist expressing 
CD133/CD24 and capable of generating neurons, astro- 
cytes and oligodendrocytes [21]. 

Some cells of GBM show markers of neural progeny- 
tors/stem cells, so that its CSCs are considered as derive- 
ing from multipotent NSCs and responsible for growth, 
recurrence and resistance to therapies, as in other malign- 
nancies. To the first evidence that NSCs of the SVZ are 
involved in gliomagenesis [22,23], many studies pointed 
out the glioma origin from aberrant NSCs [2,24-28] and 
this was confirmed by experiments on animal models 
[29]. 

The origin of gliomas from the primitive neuroepithe- 
lial cells was demonstrated years ago by the experiment- 
tal production of brain tumors in the rat with nitrosourea 
derivatives [30]. Ethylnitrosourea (ENU) was adminis- 
tered to the mother rat at the 17th day of gestation and 
Methylnitrosourea (MNU) to the adult rat [31]. In the 
first case tumors developed in the offspring migrating 
from the germinative matrices, proliferating and differ- 
entiating. The tumors appeared in the future hemispheres 
after some cell generations [22,23]. The latency period 
between the first hit, at the 17th day of gestation, and the 
first tumor development, was roughly two months and it 
corresponded in man to the period from i.u. life to the  

fourth or fifth decade of e.u. life when astrocytomas ap- 
pear. Tumors by MNU developed from the SVZ or from 
the SGZ of the hippocampus. 

3. THE NATURE OF CSCS AND THE 
NICHES 

GBMs are heterogeneous tumors with undifferentiated 
and differentiated glia cells and a genetic resemblance 
with NSCs, beside genetic alterations of the tumor trans- 
formation. The demonstration of CSCs in GBM is given 
by the formation of Neurospheres (NS) in culture media 
containing growth factors, sharing genetic properties 
with the primary tumor and antigenic properties with 
NSCs [32,33]. Adherent cells (AC) develop in serum- 
containing media which do not show the genetic proper- 
ties of the tumor and express differentiation antigens 
[33-35].  

The expression by CSCs of the surface glycoprotein 
CD133, is discussed as representative of stemness and 
conditioning tumorigenesis [28,36]. The differentiation 
between + and − cells, based on cell sorting, which is not 
exempt from impurity problems, is a problem [16]. How- 
ever, it could be of marginal interest in comparison with 
other aspects, for example, the Phosphatase and tensin 
homolog (PTEN) status which correlates with NS growth. 
CD133+ and CD133− cells form distinct self-renewing 
populations, hierarchically organized with CD133−/ 
Nestin+ as the most immature cells. Cells expressing a 
range of markers could contribute to the aggressive 
growth of individual tumors [16]. A CSC hierarchy has 
been recognized also on the basis of amplified Epidermal 
growth factor receptor (EGFR) or delta-EGFR [37]. 

In the SVZ of the mouse, CD133+/CD24+ ependymal 
cells [21] form a second NSC population composed of 
and there is a high degree of plasticity in the of exchange 
between ependymal cells and astrocytes [38]. However, 
the stage-specific embryonic antigen-1 (SSEA1/CD15) 
[39] is not expressed in ependymal cells, but it can be 
positive in ependymoma-derived NS and ependymomas 
[38]. Among the many regulatory factors of CSCs and 
NSCs, B lymphoma Mo-MLV insertion region 1 hom- 
olog (BMI1) regulates p16 and p19 [40] and is largely 
expressed in gliomas [41] where it supports invasiveness.  

Niches represent a crucial point in the relationship 
between GBM and its CSCs. To the SVZ [42] and SGZ 
of hippocampus [43] as niches for NSCs, the white mat- 
ter could be added as well [44]. Stem cells and quiescent 
cells are regulated through a balance between prolifera- 
tion and anti-proliferation signals [45] from which ge- 
netic events free cells for tumorigenesis [46]. There is a 
co-regulation between NSCs and vessels [19,20] and the 
same happens between microvasculature, cell prolifera- 
tion and aggressiveness in GBM tumoral niches where 
stem cells through Vascular endothelial growth factor  
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(VEGF) support angiogenesis which in turn maintains 
stem cell survival [47,48], and hypoxia is crucial for both 
phenomena [49,50]. Proliferating tumor cells are sup- 
ported by the activation of Hypoxia-inducible factor 1 
(HIF-1) which regulates VEGF and platelet-derived growth 
factor B (PDGF-B) [51,52]. Subsets of Vascular endothe- 
lial (VE)-cadherin-positive (CD144+) cells showing CSCs 
features are capable to start de novo vascularisation by 
differentiating into endothelial cells [53,54]. 

Stem cells in the adult can be attracted from gliomas 
[55,56], likely by inflammatory mediators secreted in the 
damaged CNS from tumor cells, for example, C-X-C 
chemokine receptor type 4 (CXCR4) [57,58]. Migrating 
transformed stem cells can be attracted by hypoxia in a 
neo-niche with its specialized microenvironment [59] or 
they may contribute to the tumor mass.  

Resistance to radio- and chemo-therapy is a feature of 
CSCs and it is one of the factors responsible for the fail- 
ure of local control of GBM. Resistance to radio-therapy 
could be ascribed to the activation of the DNA damage 
response machinery that increases survival [46]. Inhibi- 
tion of Checkpoint 1/Checkpoint 2 kinases (Chk1/Chk2) 
and Poly (ADP-ribose) polymerase 1 (PARP1) make the 
cells more vulnerable to radiation [60,61]. After irradia- 
tion, CD133+ cells accumulate in the irradiated areas [62] 
through the role played by BMI1 [63]. 

4. OUR EXPERIENCE ON CSCS AND ON  
THEIR IDENTIFICATION 

In our collection of 21 GBM cell lines, NS developed 
in growth factor containing media and AC in serum con- 
dition in 10 and in 13 cases respectively. NS showed the 
same genetic alterations and stemness antigens, such as 
CD133, Musashi.1, Nestin, SOX2 and REST [33] as 
primary tumors whereas AC expressed differentiation 
antigens, such as GFAP, Galacto-cerebroside (GalC) and 
β-III Tubulin [33] (Figure 1, Tables 1 and 2). With the 
addition of serum to the medium, NS differentiated 
showing the same antigens as AC. In one case both cell 
types developed and in another case NS could be ob- 
tained from AC by the addition of factors. Our results 
corresponded, more or less, to previous ones [34,35]: In 
growth factor containing media NS grew and behaved 
like NSCs, with clonogenicity and tumorigenicity and 
with a gene expression profile similar to that of primary 
tumors; in serum containing media adherent cells devel- 
oped with no resemblance either to NSCs or primary 
tumors. They were clearly differentiated. 

Microarray studies showed a new categorization of 
GBM with three subtypes: A Proneural type (PN) with 
genes of normal brain and neurogenesis and a better 
prognosis; A Proliferation type (Prolif) with genes of cell 
proliferation and of poor prognosis and a mesenchymal 

Table 1. Stemness and differentiation antigens in glioblastomas 
and cell lines. 

Antigens Primary tumors Neurospheres 
Adherent 

cells 

CD133 + ++ − 

Musashi.1 + + − 

Nestin ++ ++ − 

SOX2 ++ ++ − 

GFAP +/− − + 

GalC − − + 

β-III Tubulin − − + 

 
Table 2. Molecular genetics in glioblastomas and cell lines. 

 
EGFR  

amplification 
PTEN  

mutations 
TP53  

mutations 

Primary tumors + + ± 

Neurospheres + + ± 

Adherent cells − ± − 

 
type (Mes) with genes of angiogenesis activation and 
poor prognosis [64]. In culture, cell clusters were identi- 
fied corresponding to the NS and AC showing neurode- 
velopmental genes and extra-cellular matrix related 
genes and high and low tumorigenicity, respectively. 
GBM would be composed by the two phenotypes [34]. 
Serum cells, even if regaining tumorigenicity in later 
passages, underwent significant genomic alterations, 
genetically and biologically different from primary tu- 
mors.  

NS appear to be the true CSCs and the relevant stem 
cell property goes lost when they are put in serum condi- 
tions; it is restored with the addition of growth factors, 
but it is very unlikely that they could have preserved the 
stem cell properties [35]. There are intermediate behave- 
iours between NS and AC [34]. One wonders, therefore, 
whether AC are endowed with a partial stemness and 
what they really are. Monolayer systems of culture, i.e. 
plating NSCs on ornithine, laminin or fibronectin and 
making them grow flat and adherent with all the features 
of NS, give different views on CSCs summarized by the 
sentence “going round or going flat” [65,66]. It would be 
impossible to compare each other the results of both 
procedures also taking into account that it is not ex- 
cluded that NSCs could be nothing else than “physio- 
logical players” or in vitro entities [67], in line with the 
repeatedly emphasized concept that culture methodology 
can influence the expression of CSCs [66,68]. Also in 
our culture conditions, a hierarchy of CSCs can exist, 
based not only on molecular features, but also on growth 
rate, clonogenicity and tumorigenicity, i.e. concerning 
stemness and aggressiveness or differentiation. 
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(e)                                                         (f) 

               
(g)                                                         (h) 

Figure 1. (a) Neurospheres in DMEM/F-12 medium with growth factors (10× magnification); (b) Nestin expression in cyto-
plasms. Nuclei are counterstained with DAPI (40× magnification); (c) Id. CD133 (20× magnification); (d) Id. Musashi.1 
(20× magnification); (e) Adherent cells in DMEM with serum (10× magnification); (f) GFAP expression in cytoplasms. Nu-
clei are counterstained with DAPI (20× magnification); (g) Id. GalC (20× magnification); (h) Id. -III Tubulin (20× magni-
fication). Observations were made on a Zeiss Axioskop fluorescence microscope equipped with an AxioCam5MR5c and 
coupled to an Imaging system (AxioVision Release 4.5, Zeiss). 
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5. CSCS AND THE TUMOR PHENOTYPE 

In our cell line series a correlation was found between 
NS generation in culture and the phenotype of primary 
tumors. This was characterized by the highest degree of 
malignancy with high cell density, high small vessel den- 
sity, the highest proliferation index and the occurrence of 
necroses and of perivascular cuffings of tumor cells, ex- 
pressing much more Nestin than GFAP, and other 
stemness antigens [33]. It could correspond to the in- 
tra-tumoral niches with hypoxic regions where CSCs are 
promoted or maintained [69-71]. The perivascular loca- 
tion of CSCs is in line with the close relationship among 
endothelial cells, Nestin and CD133+ cells, with the en- 
hancement of their self-renewal by endothelial cells and 
the support of CSCs to the vasculature development [46]. 
This inter-relation might be read in an dynamic perspec- 
tive, i.e. in a functional way, as if stemness may be tran- 
sient and reversible and niche-dependent [72].  

In general, quantitative differences in stemness prop- 
erties, clonogenicity, tumorigenicity exist between NS 
and AC and within each category, corresponding to a 
kind of hierarchy of CSCs [16,37]. Stemness could be 
distributed in a spectrum covering all the tumor cells 
with a crescendo from quiescent highly differentiated 
cells, where it is nil, to those in which it reaches the 
highest degree of expression. As a matter of fact, either 
NS or AC grow in culture with different rates [2,33] and 
the capacity to generate NS in culture conditions is not 
uniform for the different areas of GBM [24,33,73]. Areas 
increasingly different from the most malignant pheno- 
type seem to progressively generate less NS or AC until 
to zero. Immature cells expressing Nestin, likely to be 
CSCs, have been found lining central necroses inside 
proliferating areas, where HIF-1 is highly expressed [73]; 
these sites may roughly correspond to those of the tumor 
where usually the highly malignant phenotype occurs. 
Practically, all the cells of a tumor are hierarchically dis- 
tributed with respect to the capacity to produce NS in 
culture conditions or AC in serum condition. Obviously 
this does not resolve the question whether stem cells, at 
the top of the hierarchy represent a cell type or a func- 
tional status [66]. 

6. SIGNIFICANCE OF THE STEM CELL  
STATUS AND THE ORIGIN OF GBM 

Of course, there are genetic determinants of stem cell 
identity and in the first row there is BMI1 which is be- 
lieved to represent an oncogenic addition which distin- 
guishes CSCs from NSCs [74,75]. Other pathways are 
Notch, Hedgehog, Bone morphogenetic protein (BMP), 
SRY (sex determining region Y)-box 2 (SOX2), Signal 
transducer and activator of transcription 3 (STAT3) 
[76-78] and c-MYC [79]. The regulatory factors can be  

activated or disactivated in the different contexts. In the 
conception that CSCs are the product of tumor cell de- 
differentiation which follows mutation accumulation in 
the course of malignant transformation [2,8,9], the re- 
acquisition of stemness properties by the cells could be 
linked to the activation of the before mentioned path- 
ways. At this point, the two GBM subtypes must be dis- 
cussed as for their different origin. 

Secondary GBM (sGBM) develops from a previous 
astrocytoma, whereas primary GBM (pGBM) is a de 
novo tumor. They differ as for the genetic configuration, 
age, and growth speed [80], but not for location and 
phenotype; at the most they can differ for the spreading 
modalities [9]. It is not known how de novo tumors arise, 
whereas it is believed that secondary ones originate 
through anaplasia, i.e. through dedifferentiation of tumor 
cells which follows mutation accumulation [81]. Gener- 
ally, it is known that GBMs originate either from NSCs 
or from astrocytes [11] and this could correspond to the 
distinction between pGBMs and sGBMs. Obviously, it is 
likely that the two GBM subtypes must originate ab ini- 
tio from the same CSCs. The development of GBM in 
the emisphere, far away from the SVZ, could be in con- 
trast with its origin from NSCs of the same region, but 
his can be got over if we refer to the concept of asym- 
metric division and of migration of progenitors [82]. A 
path has been traced from mitotically active precursors to 
the developed tumors [12], which recognizes in tran- 
siently dividing progenitors and in somatic stem cells the 
elements where mutations accumulate; they express also 
EGFR, present in normal progenitors of SVZ [83]. These 
cells are the possible source of pGBMs, whereas for 
sGBMs it is mandatory to refer to a previous astrocy- 
toma.  

The two GBM types differ for the expression of mu- 
tated Isocitrate dehydrogenase 1-2 (IDH1-2), occurring in 
sGBM, anaplastic and diffuse astrocytomas and oli- 
godendrogliomas and not in pGBM [84,85]. The mutual 
exclusion of IDH mutations with EGFR amplification 
and its association with 1p-19q co-deletion, TP53 muta- 
tions and younger age [86-90] are relevant to the timing 
of IDH mutations, which must be placed between pre- 
cursors and progenitors. All this means that sGBM 
originate from tumor cells which have already reached 
the site of tumor development and the stage of precursors, 
whereas pGBM originate from cells which transform by 
mutation accumulation during migration and before 
reaching the stage of progenitors; they reach the site of 
development already possessing the genetic equipment 
of malignancy and keeping or re-acquiring again, at the 
same time, the features of stem cells. This is something 
similar to the concept of “maturation arrest” [91] of cells 
that accumulate mutations and transform before reaching 
the full maturity or differentiation. 
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Figure 2. (a) Stemness in differentiation and dedifferentiation; (b) Origin of pGBM and sGBM. 
 

The stemness properties would be acquired in sGBM 
by dedifferentiation and in pGBM by their preservation 
(Figure 2(a)). The process would be substantially the 
same, but more rapid and accelerated in pGBM, as al- 
ready pointed out [17] (Figure 2(b)). Stemness would be 
a condition which is progressively lost during the normal 
nervous cytogenesis and progressively acquired during 
dedifferentiation in tumors. In sGBM to obtain NS in 
culture conditions would be more difficult, because few 
cells with dedifferentiation reach the stage of stemness, 
whereas in pGBM it is easier, because most cells already 
possess it. Stemness would be in this way more a tran- 
sient status than a fixed feature of a given cell type. The 
microenvironmental influences are very important in 
modifying the stemness status, even conceiving GBM in 
a neo-darwinistic interpretation [17,92]. 
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