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ABSTRACT  
 
An idealized two dimensional continuum region of GRP composite was used to develop an 
efficient method for solving continuum problems formulated for space domains. The continuum 
problem is solved by minimization of a functional formulated through a finite element procedure 
employing triangular elements and assumption of linear approximation polynomial. The 
assemblage of elements functional derivatives system of equations through FEM assembly 
procedure made possible the definition of a unique and parametrically defined model from which 
the solution of continuum configuration with an arbitrary number of scales is solved. The finite 
element method(FEM )developed is recommended to be applied in the evaluation of the function 
of functions in irregular shaped continuum whose boundary conditions are specified such as in 
the evaluation of displacement in structures and solid mechanics problems, evaluation of 
temperature distribution in heat conduction problems, evaluation of displacement potential in 
acoustic fluids evaluation of pressure in potential flows, evaluation of velocity in general flows, 
evaluation of electric potential in electrostatics, evaluation of magnetic potential in 
magnetostatics and in the solution of time dependent field problems. A unified computational 
model with standard error of 0.15 and correlation coefficient of 0.72 was developed to aid 
analysis and easy prediction of regional function with which the continuum function was 
successfully modeled and optimized through gradient search and Lagrange multipliers 
approach. Above all the optimization schemes of gradient search and Lagrangian multiplier 
confirmed local minimum of function as 0.006-0.00847 to confirm the predictions of FEM and 
constraint conditions. 
 
Keywords: finite element, continuum, functional of function, extremum, boundary value 
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1. INTRODUCTION  
 
In calculus of variations, instead of attempting to locate points that extremize function of one or 
more variables that extremize quantities called functional, functions of functions that extremize 
the functional are found [1]. Also in the finite element process an approximate solution is sought 
to the problem of minimizing a functional. The concept of the finite element approach to 
elasticity as a process in which the total potential energy is minimized with respect to nodal 
displacements can obviously be extended to a variety of physical problems in which an 
extremum principle exists. The two concepts are combined in this study. Zienkiewicz and 
Cheung [2] applied similar approach to solve continuum problem expressed in derivative format 
employing the concept of functional minimization with FEM.  
 
Above all, there are many problems encountered in engineering and physics where the 
minimization of the integrated quantity usually referred as functional and subject to some 
boundary conditions results in the exact solution.This functional may represent a physical 
recognizable variable in some instances, for many purposes it is simply a mathematically defined 
entity. 
 
The geometry of field quantities or continuum may be a problem to close form solution of field 
functions encountered in engineering and science that appropriate algorithm becomes necessary 
to obtain optimum solution, it is then necessary to employ calculus of variation principles and 
FEM to obtain optimum continuum field functions whose boundary conditions are specified. 
The engineering field continuum problems can be basically in form of wave phenomenon, 
diffusion phenomenon and potential phenomenon usually represented by hyperbolic, parabolic 
and elliptic differential equations respectively [3].  
The objective of this study is therefore to present a methodical approach to solve multiple 
dimensional field problems using integrated variational and FEM approach to establish relations 
for all elements functional of continuum where the minimization of the elements functionals 
system and solution are expected to give the stationary values of the function which extremize 
the functional. 
  
2. THEORETICAL BACKGROUND 
 
A finite element model of a two dimensional quadratic function is expected to present a 
methodical approach to employ for solution of multidimensional field functions that may have 
regular or irregular field regions. Zienkiewicz and Cheung [2] presented Euler theorem to 
approximate field functions if the integral or functional of the form  
. 

I (u) = ∫∫∫ f( x,y,z,u, 
∂u
 ∂x , 

∂u
 ∂y , 

∂u
 ∂z ) dxdydz    (1) 
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is to be minimized. The necessary and sufficient condition for this minimum to be reached is that 
the unknown function u (x, y, z) should satisfy the following differential equation 
 

∂
 ∂x  [

∂f
 ∂(∂u/∂x) ] + 

∂
 ∂y  [

∂f
 ∂(∂u/∂y) ] + 

∂
 ∂z  [

∂f
 ∂(∂u/∂z) ] - 

∂f
 ∂u = 0           (2) 

 
 
within the same region, provided u satisfies the same boundary conditions in both cases,while the 
equation governing the behaviour of unknown physical quantity u can generally be expressed as 
 

∂
∂x (kx

∂u
∂x ) + 

∂
∂y  (ky

∂u
∂y ) + 

∂
∂z   ( kz 

∂u
∂z ) + Q = 0                  (3) 

 
where 
 u                      =   unknown function assumed to be single valued within the region  
kx, ky, kz , Q     = specified functions of x, y, z                           
x, y, z               =    space variables                        
 
The equivalent formulation to that of equation (3) is the requirement that the volume integral 
given below and taken over the whole region, should be 
 

χ    =∫∫∫ {1
2  [kx (

∂u
∂x ) 2 + ky(

∂u
∂y )2 + kz(

∂u
∂z )2] - Q u}dxdydz                  (4) 

 
subject to u obeying the same boundary conditions. 
 
For two dimensional differential equation representing some physical quantities then 
 

χ    =∫∫ {1
2  [kx (

∂u
∂x ) 2 + ky(

∂u
∂y )2] - Q u}dxdy                             (5) 

 
For the case of our interest, the equivalent functional to be minimized for 2-D Laplace model 
reduces to 
 

χ   =∫∫ {1
2  [kx (

∂u
∂x ) 2 + ky(

∂u
∂y )2] }dxdy                                              (6) 

 
The finite element version of an integrated functional is obtained and minimized with respect to 
degrees of freedoms of the associated elements. The element functional equations are assembled 
and boundary conditions applied, resulting in a system of equations equal to the number of 
unconstrained degrees of freedoms of the continuum. 
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3. FINITE  ELEMENT METHOD (FEM)  
 
Euler variational minimum integral theorem was applied with the procedure of [4] on the  
general equation governing the behavior of field functions presented by [2] to develop a finite 
element version of elements functions functionals. The elements function functionals are 
minimized with respect to degrees of freedoms in the finite element method of assembly are 
applied to obtain the system model that is solved for the field of function . Basic approaches to 
achieve finite element  solouttion of continuum are also available in [5-8}. 
 
3.1 Formulation of Finite Elements Equations 
 
The elements functional of the study are derived for each element and minimized using equation 
(6). Minimization of element functional entails finding the partial derivatives of the element 
functional at its nodes. The contributions of each element nodes are established and added for all 
continuum nodes to obtain the finite element model of the system. The formulation of finite 
element model starts by choosing the element type and then choosing the approximation 
polynomial coefficients are determined for establishing the element equations from where the 
interpolation functions for u are established for all elements. This function u is used then 
employed in finding the finite element model of the elements functionals from where the sought 
functions are found. 
 
3.1.1 Discritization and element topology description 
The region is discretized into 16 triangular elements with 26 degrees of freedom and assuming 
displacement in the global system of coordinate (horizontal direction only) only as in Figure 1 
elements topologies are described in Table 1 for the establishment of element interpolation 
functions for the functional equations for the finite element minimization scheme. 
 
 
 
                
 
 
 
 
 
 
 
 
 
Figure 1: Idealized Finite element Model of two Dimensional Composite Body. 
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Table 1: Element Topology Description. 
 
Element 
Number 

Active degrees of freedom
of elements 

Element coordinates Element  
nodes 

1 u5, u4, u14, v5, v4, v14 (0,0), (0,21), (16,16) 14, 5, 4 
2 u1, u4, u14, v1, v4, v14 (0,0), (16,16), (21, 0) 14, 4,  1 
3 u1, u4, u3, v1, v4, v3 (21, 0), (16, 16), (25, 10) 1, 4, 3 
4 u1, u3, u15, v1, v3, v15 (21, 0), (21, 0), (25, 10) 1, 3, 15 
5 u5, u10, u9, v5, v10, v9 (0, 21), (0, 37), (10, 25) 5, 10, 9 
6 u5, u9, u4, v5, v9, v4 (0, 21), (0, 25), (16, 16) 5, 9, 4 
7 u9, u4, u8, v9, v4, v8 (16, 16), (10, 25), (22, 13) 4, 9, 8 
8 u8, u4, u3, v8, v4, v3 (16, 16), (22, 23), (25, 10) 4, 8, 3 
9 u15, u3, u2, v15, v3, v2 (25, 10), (35, 10), (35, 0) 15, 3, 2 
10 u9, u10, u11, v9, v10, v11 (0, 37), (10, 37), (10, 25) 9, 10, 11 
11 u9, u11, u13, v9, v11, v13 (10, 25), (10, 37), (18, 37) 9, 11, 13 
12 u9, u13, u12, v9, v13, v12 (10, 25), (18, 37), (19, 29) 9, 13, 12 
13 u9, u12, u8, v9, v12, v8 (10, 25), (19, 29), (22, 23) 9, 12, 8 
14 u3, u8, u7, v3, v8, v7 (25, 10), (22, 23), (29, 19) 3, 8, 7 
15 u3, u7, u6, v3, v7, v6 (25, 11), (29, 19), (35, 18) 3, 7, 6 
16 u3, u6, u12, v3, v6, v12 (25, 10), (35, 18), (35, 10) 3, 6, 2 
 
 
3.2 Determination of FEM Characteristics 
 
3.2.1 Element 1 interpolation and functional equation formulation 
 
 
 
 
 
 
 
 
 
 
By assuming a linear approximation polynomial of the form  

yaxaayxu 210),(       (1) 

 
and following the method of Ihueze etal (2009) and Asterly (1992) 

5[0, 21] 

4[16, 16] 

14[0, 0] 

1

u

v

u4 

v5 

1

5

v14 

u14 

v4 

u5 

4 

14 
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Where a0, a1, a2 are called polynomial coefficients or shape constants so that by passing (1) 
through the nodes of element1the system of unknown function of the element becomes: 
 

142141014 yaxaau    

424104 yaxaau 

525105 yaxaau 

  
Putting the above polynomial function in matrix form then 
  


















































5

4

14

2

1

0

55

44

1414

1

1

1

u

u

u

a

a

a

yx

yx

yx

 

 
By applying Crammers rule 
 

      144414551414544554142
1

0 yxyxuyxyxuyxyxua A 

               

(2)

 

      4145145454142
1

1 yyuyyuyyua A   

 
     1445514445142

1
2 xxuxxuxxua A   

    

 
Substituting (2) in (1) then  
 

yaxaau 2101    

           

      

     

     yxxuxxuxxu

xyyuyyuyyu

yxyxuyxyxuyxyxuu

A

A

A

1445514445142
1

4145145454142
1

144414551414544554142
1

1







                 (3)

 

 
Recall that the approximation function is given as 
 

55441414 uNuNuNu                                  (4) 

 
Comparing (5) and (6) we evaluate shape and interpolation function thus 
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        yxxxyyyxyxyxN A 455445542
1

14 ,                                                          (5)         

       yxxxyyyxyxyxN A 5141455141452
1

4 , 

                      yxxxyyyxyxyxN A 1444141444142
1

5 , 

  

But A =       14441451414545542
1 yxyxyxyxyxyx  = 168mm2      (6) 

 
where A= area of triangular element so that 
 

 yxN 165336336
1

14 

     
 xN 21336

1
4 

   
 yxN 1616336

1
5 

 
 
Substituting (7) in (4) 
 

      5336
1

4336
1

14336
1 161621165336 uyxuxuyxu 

 

 

336

16

336

21

336

5 5414 uuu

x

u








 
336

16

336

16 514 uu

y

u






  

 
By assuming a two dimensional Laplace function for the continuum function of the form  
 
∂2u
∂x2 + ∂

2u
∂y2 = 0                                                       (10) 

                              
The minimum function integral called functional to be minimized becomes in which case  
 
kx = ky = kz = 1 and Q = 0                                           (11) 

 
So that (4 ) reduces to  
 

     



  



 dxdyx y

u
x
u 22

2

1
 

 

(9) 

(8) 

(12) 

(7) 
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By substitutingg the first partial derivatives of the element 4 interpolation functions in ( 12) with 
dxdy = A = 168 

2
5

2
454145144

2
14 762.0656.0_524.0313.0418.0 uuuuuuuuux 

            (13)

 

 
By differentiating w.r.t.u14,u4,and u5 

  

  5.0*524.0313.0836.0
 5414

14

uuu
u

x





 

  5.0*313.0312.1 5144
4

uuu
u

x





 

  5.0*524.0524.1 4145
5

uuu
u

x





 
 
3.2.2 Element 2 interpolation and functional equation formulation 
 
 
 
 
 
 
 
 
 
By assuming a linear approximation polynomial of the form  
 

yaxaayxu 210, )(                    (15) 

 
Passing (15) through the nodes then 

142141014 yaxaau    

121101 yaxaau   

424104 yaxaau 

  
Putting the system in matrix form then  


















































4

1

14

2

1

0

44

11

1414

1

1

1

u

u

u

a

a

a

yx

yx

yx

 

(14) 

u

u1 

v4 v

[16, 16] 

[21, 0] 
[0, 0] 

2

4

14

2

4

  u14 

v14 

v1 
u4 

1 

14 
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By applying Crammers rule,

 
 

      141441141441142
1

0 xxuyyuyxyxua A   

      4141144141414412
1

1 xxuyyuyxyxua A 

      141414414111442
1

2 xxuyyuyxyxua A                                                            (16) 

 
Substituting (16) in (15)  
 

        141441141441142
1 xxuyyuyxyxuu A

      

 

      414114414141441 xxuyyuyxyxu

     (17)

 

      141411441411144 xxuyyuyxyxu   

 
Recalling that the approximation function is 
 

44111414 uNuNuNu                       (18) 

 
Comparing (18) and (17) then 
 

      yxxxyyyxyxN A 144114412
1

14    

     yxxxyyyxyxN A 4141444141442
1

1 

      yxxxyyyxyxN A 1411141411142
1

4       (19) 
 

But A =       14111441414414412
1 yxyxyxyxyxyx  =168mm2                        (20) 

 
so that 
 

      yxxN 5163362116160336 336
1

336
1

14 

        yxyxN 16161600160 336
1

336
1

1 

        yyN 2102100 336
1

336
1

4        (21)

 
 
Substituting (22) into (18) 
 

      4336
1

1336
1

14336
1 211616516336 uyuyuyxu      (22)
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2121336

16

336

16 114114 uuuu

x

u











 
1621336

5

336

21

336

16

336

5 411414114 uuuuuu

y

u











     (23)

 

 
By substitutingg the first partial derivatives of the element 4 interpolarion functions in ( 12) with  
dxdy = A = 168mm2 
 

 2
441144

2
1141

2
14 328.05.0156.038.03611.0190.0 uuuuuuuuux    (24) 

 
By differentiating w.r.t.u14,u1,and u4  
 

4114
14

156.0261.0418.0 uuu
u

x





 
5141

1

5.0261.076.0 uuu
u

x





 
1144

4

5.0156.0656.1 uuu
u

x





        (25) 
 
3.2.3 Element 3 interpolation and functional equation formulation 
 
 
 
 
 
 
 
 
 
 
 
By assuming a linear approximation polynomial of the form  

  yaxaayxu 210,           (26) 

 
and passing (26) through the nodes then

 121101 yaxaau    

323103 yaxaau 

 424104 yaxaau 

 

v

[16, 16] 
4

3   [25, 10] 

[21, 0] 

3

u

 v1 

u1 

u3 

v3 

v4 

u4 

3
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Putting the above equations in matrix form then,  
 


















































4

3

1

2

1

0

44

33

11

1

1

1

u

u

u

a

a

a

yx

yx

yx

      (27) 

 
By applying Crammers rule, 
 

      341431344312
1

0 xxuyyuyxyxua A   

     413143411432
1

1 xxuyyuyxyxua A 

      134314133142
1

2 xxuyyuyxyxua A       (28)
 Substituting (28) into (26)  

 

        341431344312
1 xxuyyuyxyxuu A

       41314341143 xxuyyuyxyxu

      13431113314 xxuyyuyxyxu 

                 
(29)

 Recall that the approximation function or interpolation function is expressed as: 
 

443311 uNuNuNu                     (30) 

Comparing (29) and (30) then, 
 

      yxxxyyyxyxN A 344334432
1

1    

     yxxxyyyxyxN A 411441142
1

3 

      yxxxyyyxyxN A 133113312
1

4 

     
(31)

  

But A =       1331411434412
1 yxyxyxyxyxyx  = 57mm2    (32)

 

then 
 

       yxyxN 9624025161610160400 114
1

114
1

1   

       yxyxN 51633616210163360 114
1

114
1

3 

        yxyxN 41052521251000525 114
1

114
1

4      (33)
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Substituting (30) into (31) 
 

      4114
1

3114
1

1114
1 41052551633696240 uyxuyxuyxu   

114

10

114

16

114

6 1431 uuu

x

u 








 114

4

114

5

114

9 431 uuu

y

u








         (34)

 

 
By substitutingg the first partial derivatives of the element 4 interpolarion functions in ( 12) with  
dxdy = A = 57 
 

2
443

2
34131

2
1 254.0789.0616.0105.0224.0257.0 uuuuuuuuux     (35) 

 
By differentiating w.r.t.u1,u3, and u4  
 

431
1

105.0224.0514.0 uuu
u

x





 

413
3

789.0224.0232.0 uuu
u

x





 
314

4

789.0105.0508.1 uuu
u

x





       (36)

 

 
3.2.4 Element 4 interpolation and functional equation formulation 
 
By substitutingg the first partial derivatives of the element 4 interpolarion function in (12)  
 

2
315331

2
15151

2
1 35.02.05.0207.0214.0357.0 uuuuuuuuux       (37)

 

By differentiating w.r.t.u1,u15, and u3  
 

3151
1

5.02144.0714.0 uuu
du

dx
  

3115
15

2.0214.0414.0 uuu
du

dx


 
1513

3

2.05.07.0 uuu
du

dx


        (38)
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3.2.5 Element 5 interpolation and functional equation formulation 
 
By substitutingg the first partial derivatives of the element 4 interpolarion functions in (12) with 
dxdy = A =57mm2 
 

2
10109

2
910595

2
5 181.02.04.0163.06.035.0 uuuuuuuuux                (39) 

 
By differentiating w.r.t.u5,u9,and u10  
 

1095
5

163.06.070.0 uuu
u

x





 
1059

9

2.06.080.0 uuu
u

x





 
9510

10

2.0163.0362.0 uuu
u

x





        (40)

 

 
3.2.6 Element 6 interpolation and functional equation formulation 
 
By similar procedures as above, 

2
595

2
99454

2
4 257.0618.0616.0614.0105.0254.0 uuuuuuuuux     (41)

 

By differentiating w.r.t.u4,u9,and u5  
 

1095
4

508.0 uuu
u

x





 
559

9

618.0614.0232.1 uuu
u

x





 
945

5

618.0105.0514.0 uuu
u

x





       (42)

 

 
3.2.7 Element 7 interpolation and functional equation formulation 
 
By similar procedures as above, 
 

2
998

2
89484

2
4 221.0141.0305.0302.0469.0385.0 uuuuuuuuux     (43)

 

By differentiating w.r.t.u4, u8, and u9  
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984
4

302.0469.077.0 uuu
u

x





 

948
8

141.0469.061.1 uuu
u

x





 
949

9

141.0302.0442.0 uuu
u

x





       (44)

 

 
3.2.8 Element 8 interpolation and functional equation formulation 
 
By similar procedures as above, 
 

2
484

2
84383

2
3 450.0530.0295.0369.061.0215.0 uuuuuuuuux     (45)

 

 By differentiating w.r.t.u3,u8,and u4  

483
3

369.0061.0430.0 uuu
u

x





 

438
8

530.0061.0590.0 uuu
u

x





 
934

4

530.0369.090.0 uuu
u

x





        (46)

 

 
3.2.9 Element 9 interpolation and functional equation formulation 
 
By similar procedures as above, 
 

152
2
15

2
332

2
2 5.025.025.05.05.0 uuuuuuux        (47)

 

By differentiating w.r.t.u2,u3,and u15  

1532
2

5.05.0 uuu
u

x





 

23
3

5.05.0 uu
u

x





 
215

15

5.05.0 uu
u

x





         (48)

 

 
3.2.10 Element 10 interpolation and functional equation formulation 
 
By similar procedures as above, 
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119
2
9

2
101110

2
11 417.0208.03.061.0508.0 uuuuuuux       (49)

 

By differentiating w.r.t.u11,u10, and u9  

91011
11

417.06.0016.1 uuu
u

x





 

1110
10

6.06.0 uu
u

x





 
119

9

417.0416.0 uu
u

x





         (50)

 

 
3.2.11 Element 11 interpolation and functional equation formulation 
 
By similar procedures as above, 
 

119
2
9

2
111311

2
13 333.0167.0542.075.0375.0 uuuuuuux       (51)

 

 By differentiating w.r.t.u9,u13, and u1 

 

119
9

333.0334.0 uu
u

x





 

1113
13

75.075.0 uu
u

x





 
91311

11

333.075.0084.1 uuu
u

x





       (52)

 

 
3.2.12 Element 12 interpolation and functional equation formulation 
 
By similar procedures as above, 

2
131312

2
12139129

2
9 319.0158.068.0151.068.0214.0 uuuuuuuuux   

 
By differentiating w.r.t.u9,u12, and u13  

13129
9

151.0684.0428.0 uuu
u

x





 

3912
12

158.0684.0368.1 uuu
u

x





 
12913

13

158.0151.0638.0 uuu
u

x





       (53)
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3.2.13 Element 13 interpolation and functional equation formulation                                                                   
 
By similar procedures as above, 
 

2
9129

2
1298128

2
8 170.0182.0561.0386.0758.0367.0 uuuuuuuuux     (54)

 

By differentiating w.r.t.u8, u12, and u9  
 

9128
8

386.0758.0734.0 uuu
u

x





 

9812
12

182.0758.0122.1 uuu
u

x





 
1289

9

182.0386.034.0 uuu
u

x





       (55)

 

 
3.2.14 Element 14 interpolation and functional equation formulation                                                                   
 
By similar procedures as above, 
 

2
887

2
78373

2
3 307.0665.0563.0051.0462.0206.0 uuuuuuuuux     (56) 

 By differentiating w.r.t.u3,u7, and u8 

 

873
3

051.0462.0412.0 uuu
u

x





 

837
7

665.0462.0126.1 uuu
u

x





 
738

8

665.051.0614.0 uuu
u

x





       (57)

 

 
3.2.15 Element 15 interpolation and functional equation formulation

 

 
By similar procedures as above, 
 

2
776

2
67363

2
3 716.0923.0385.051.0154.0178.0 uuuuuuuuux   

 
By differentiating w.r.t.u3, u6, and u7 
 



Vol.9, No.10                              Finite Elements Approaches in the Solution of Field Functions                              945 

 

763
3

51.0154.0356.0 uuu
u

x





 
763

3

51.0154.0356.0 uuu
u

x





 
637

7

923.051.0432.1 uuu
u

x





       (58)

 

 
3.2.16 Element 16 interpolation and functional equation formulation                                                                   
 
By similar procedures as above, 
 

2
662

2
232

2
3 313.0625.0513.04.02.0 uuuuuuux   

 
By differentiating w.r.t.u3, u2 and u6 

 

23
3

4.04.0 uu
u

x





 

632
2

625.04.0026.0 uuu
u

x





 
26

6

625.0626.0 uu
u

x





         (59)

 

 
4. SYSTEM ELEMENTS ASSEMBLY ALGORITHMS  
 
The algorithms for element assembly involves the addition of all elements contributing to 

minimization 
dXe

du  , this leads to system of equations that equals the degrees of freedoms in the 

continuum, the derivatives are then added in a special format called assembly. There are 15 
effective degrees of freedoms for the assembly of 16 elements  
 


dXe

ui
  = 0, i = 1, 2, 3,……, 16 

 For 

i = 1, 
Xe

u1
  = 0          (60) 

i = 2, 
Xe

u2
  = 0          (61) 
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i = 3, 
Xe

u3
  = 0          (62) 

i = 4, 
Xe

u4
  = 0          (63) 

i = 5, 
Xe

u5
  = 0          (64) 

i = 6, 
Xe

u6
  = 0          (65) 

i = 7, 
Xe

u7
  = 0          (66) 

i = 8, 
Xe

u8
  = 0          (67) 

i = 9, 
Xe

u9
  = 0          (68) 

i = 10, 
Xe

u10
  = 0          (69) 

i = 11, 
Xe

u11
  = 0          (70) 

i = 12, 
Xe

u12
  = 0          (71) 

i = 13, 
Xe

u13
  = 0          (72) 

i = 14, 
Xe

u14
  = 0          (73) 

i = 15, 
Xe

u15
  = 0          (74) 

 
 
5. ELEMENTS EQUATIONS ASSEMBLY 
 
All the partial derivatives resulting from the minimization scheme with respect to the fifteen (15) 
active degrees of freedom (DOF) are added as follows the superscripts on these equations denote 
element sources: 
 

X
 u1

  = 
Xe

 u1
  = 0 = 

X2

 u1
  + 

X3

 u1
  +  

X4

 u1
  

  = 1.988u1 – 0.724u3 - 0.105u4 – 0.5u5 – 0.261u14 – 0.214u15    (75) 

X
 u2

  = 
Xe

 u2
  = 0 = 

X9

 u2
  + 

X16

 u2
   

  = 1.026u2 – 0.9u3 – 0.625u6 - 0.5u15       (76) 
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X
 u3

  = 
Xe

 u3
  = 0 = 

X16

 u3
  + 

X15

 u3
  +  

X14

 u3
  +  

X9

 u3
  +  

X4

 u3
  +  

X3

 u3
  + 

X8

 u3
  

 = - 0.724u1 – 0.9u2 + 3.03u3 – 1.158u4 + 0.154u6 – 0.972u7 – 0.001u8 - 0.2u15   (77) 
 

X
 u4

  = 
Xe

 u4
  = 0 = 

X1

 u4
  + 

X2

 u4
  +  

X3

 u4
  +  

X6

 u4
  +  

X7

 u4
  + 

X8

 u4
  

 = -1.158u3 + 5.49u4 – 0.395u1 + 0.008u5 – 0.469u8 – 1.832u9 – u10 – 0.001u14    (78) 
 

X
 u5

  = 
Xe

 u5
  = 0 = 

X1

 u5
  + 

X5

 u5
  +  

X6

 u5
  

  = - 0.409u4 + 1.979u5 – 1.218u9 – 0.163u10 – 0.262u14   (79) 
 

X
 u6

  = 
Xe

 u6
  = 0 = 

X15

 u6
  + 

X16

 u6
   

  = 1.396u6 – 0.625u2 + 0.154u3 – 0.923u7     (80) 
 

X
 u7

  = 
Xe

 u7
  = 0 = 

X15

 u7
  + 

X14

 u7
   

  = 2.549u7 – 0.972u3 – 0.923u6 – 0.665u9     (81) 
 

X
 u8

  = 
Xe

 u8
  = 0 = 

X7

 u8
  + 

X8

 u8
  +  

X13

 u8
  +  

X14

 u8
   

  = 0.449u3 – 0.999u4 – 0.665u7 + 3.548u8 + 0.245u9 – 0.758u12  (82) 
 

X
 u9

  = 
Xe

 u9
  = 0 = 

X13

 u9
  + 

X12

 u9
  +  

X11

 u9
  +  

X10

 u9
  +  

X7

 u9
  + 

X6

 u9
  + 

X5

 u9
  

      = - 0.302u4 – 1.832u5 + 0.386u8 + 3.851u9 – 0.20u10 – 0.75u11 + 0.502u12 + 0.151u13  (83) 
 

X
 u10

  = 
Xe

 u10
  = 0 = 

X5

 u10
  + 

X10

 u10
   

    = - 0.163u5 – 0.2u9 + 0.962u10 – 0.6u11     (84) 
 

X
 u11

  = 
Xe

 u11
  = 0 = 

X11

 u11
  + 

X10

 u11
   

    = - 0.75u9 – 0.6u10 + 2.1u11 - 0.75u13      (85) 
 

X
 u12

  = 
Xe

 u12
  = 0 = 

X13

 u12
  + 

X12

 u12
   

    = - 0.158u13 + 0.758u8 + 0.502u9 + 2.49u12     (86) 
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X
 u13

  = 
Xe

 u13
  = 0 = 

X11

 u13
  + 

X12

 u13
   

     = - 0.151u9 – 0.75u11 – 0.158u12 + 1.388u13     (87) 
 

X
 u14

  = 
Xe

 u14
  = 0 = 

X2

 u14
  + 

X1

 u14
   

     = - 0.261u1 – 0.313u4 – 0.262u5 + 0.836u14     (88) 
 

X
 u15

  = 
Xe

 u15
  = 0 = 

X4

 u15
  + 

X9

 u15
   

     = - 0.214u1 – 0.5u2 – 0.2u3 + 0.914u15     (89) 
 
6. APPLICATION OF BOUNDARY CONDITION 
 
In this work a special case where displacements at the boundaries are limited to 0.5mm for an 
irregular continuum is considered to predict continuum displacement, strain and stress functions, 
while the constrained conditions are taken as zero so that by equating u14 = u15 = 0 and u2 = u5= 
u6 = u8 = u10= u13 = 0.50 , (75 - 89) transform to the following: 
 
1.988u1 – 0.724u3 – 0.105u4      = 0.25    (90) 
 
0.900u3        = 0.201   (91) 
 
- 0.724u1 + 3.03u3 – 0.158u4 – 0.972u7    = 0.374   (92) 
 
- 1.158u3 + 5.490u4 – 0.395u1      = 0.731   (93) 
 
- 0.409u4 – 1.218u9       = - 0.907   (94) 
 
0.154u3 – 0.923u7       = - 0.386   (95) 
 
2.549u7 – 0.972u3 – 0.665u9      = 0.462   (96) 
 
0.449u3 – 0.999u4 – 0.665u7 + 0.245u9 – 0.758u12   = - 1.774   (97) 
 
3.851u9 – 0.302u4 – 0.75u11 + 0.502u12    = 0.748   (98) 
 
- 0.200u9 – 0.600u11       = - 0.400   (99) 
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2.100u11 – 0.750u9       = 0.675   (100) 
 
- 0.153u3 + 0.502u9 + 2.490u12     = - 0.379   (101) 
 
- 0.151u9 – 0.750u11 – 0.158u12     = - 0.694    (102) 
 
- 0.261u1 – 0.313u4       = 0.131   (103) 
 
- 0.214u1 – 0.200u3       = 0.250   (104) 
 
7. SOLUTION AND POST PROCESSING FOR CONTINUUM FUNCTION 
 
The following nodal displacements in mm are further evaluated by first evaluating u3  = 0.222 
from (91) so that other nodal values of the displacement function is as presented in Table 2. The 
first partial derivatives of the interpolation function evaluated with active degree of freedom in of 
element with respect to the x axis gives the slope of the function and also gives the value of the 
strain as presented in Table 2. The computations are achieved with sixteen elements interpolation 
functions associated with the elements global coordinate axis. The strains so computed may be 
used with Hooke’s law of elasticity to predict the stress distribution function at the respective 
nodes when the elastic modulus is known from literature. 
 

Table 2: FEM Results. 
 

n(nodes) u(displacement) 
డ௨

డ௫
ൌ  (strain) 

1 0.210 0.02 

2 0.500 0.01 

3 0.222 0.02 

4 0.059 0.015 

5 0.500 0.023 

6 0.500 0.015 

7 0.455 0.082 

8 0.500 0.054 

9 0.725 0.028 

10 0.500 0.01 

11 0.424 0.116 

12 0.500 0 

13 0.500 0.167 

14 0.000 0.026 

15 0.000 0.011 
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The stress prediction model of a material within the elastic limit is expressed as 
 

σ  = Е        (105) 
 
where Е = modulus of elasticity 
 
The excel graphics of FEM result using Table 2 of Figure 2 shows a serious indication that the 
minimum value of the function is between node 14 and 15 hence another extremization method 
is needed to point at which point of the region is this extremum. 
 

 
Figure 2: Distribution of Function within the Region. 

 
 
8. DISCUSSION AND VALIDATION OF RESULTS 
 
Regression analysis was carried out on FEM results to obtain a unified model for elements 
function interpolation. The regression model so obtained is further used to transform the element 
functional equation to aid extremization of FEM results.  
 
8.1 Regression Analysis 
 
Multiple linear regression analysis was carried out on finite element results to obtain the 
following model for the region. By employing the classical multiple linear regression equation of 
the form 
 
u(x, y) = ao + a1 x+ a2y                                           (106) 
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a regression model for the FEM is obtained with Table 3 and expressed as (107). 
 
u(x,y) = 0.065 + 0.0036x + 0.0130y                                             (107) 
 
The goodness of fit of regression was evaluated to obtain: Coefficient of determination, r2 = 0.52, 
correlation coefficient, r = 0.72, standard error, se =   0.1 
where u  = field  function evaluated through FEM 
            u1   = average of FEM function 
          up = field function predicted with regression model 
 
Table 2 and Figure 2 show the variation of the function within the region. Continuum fluid 
elements in heat and mass transfer operations associated with pipeline transportation can 
elegantly be analyzed following the procedure of this work. The  FEM developed can be applied 
in the evaluation of the stress distribution in irregular shaped continuum whose boundary 
conditions are specified such as in the evaluation of displacement in structures and solid 
mechanics problems, evaluation of temperature distribution in heat conduction problems, 
evaluation of displacement potential in acoustic fluids ,evaluation of pressure in potential flows 
,evaluation of velocity in general flows, evaluation of electric potential in electrostatics and in 
evaluation of magnetic potential in magnetostatics. 
 
8.2 Extremization of Functional: Extremization by Lagrange Multipliers Approach 
 
In order to further analyse the FEM results, the functional,  of any element is transformed to a 
function of (x, y) using the regression model of (107) to obtain: 
 

χ ൌ fሺx, yሻ ൌ 0.000042x ൅ 0.0017y ൅ 0.000059xଶ ൅ 0.00034yଶ ൅ 0.00015xy ൅ 0.00847 
ൌ ሺ108ሻ 

 
Figure 4a,b and c show versions of 3D plots of function using Matlab for (108) 
The objective function 
 
fሺx, yሻ ൌ 0.000042x ൅ 0.0017y ൅ 0.000059xଶ ൅ 0.00034yଶ ൅ 0.00015xy ൅ 0.00847                 
 
subject to the constraint relations 
 
uሺx, yሻ ൌ 0.5 ൅ 0.0225x        ൌ 0.5                                                                                                    ሺ109ሻ  
 
uሺx, yሻ ൌ  െ0.0201x ൅ 0.0238y ൌ 0                                                                                                ሺ110ሻ 
derived for nodes 14 and 10 of elements 1 and 5 at the boundaries. 
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Table 3 Computations For Regression and Error Analysis of FEM Results. 

 

 
 
 

N x y u x2 y2 xy xu yu up (u-u1)2 (u-up)2 

1 21 0.0 0.2100 441 0.0000 0.0000 4.4100 0.0000 0.1406 0.0266 0.004816 

2 35 10 0.5000 1225 100 350 17.5000 5.0000 0.321 0.0161 0.032041 

3 25 10 0.2220 625 100 250 5.5500 2.2200 0.285 0.0228 0.003969 

4 16 16 0.0590 256 256 256 0.944 0.9440 0.3306 0.0986 0.073767 

5 0.0 21 0.5000 0.0000 441 0.0000 0.0000 10.5000 0.338 0.0161 0.026244 

6 35 18 0.5000 1225 324 630 17.5000 9.0000 0.425 0.0161 0.005625 

7 29 19 0.4550 841 361 551 13.195 8.6450 0.4164 0.0067 0.00149 

8 22 23 0.5000 484 529 506 11.000 11.5000 0.4432 0.0161 0.003226 

9 10 25 0.7250 100 625 250 7.2500 18.1250 0.426 0.1239 0.089401 

10 0.0 37 0.5000 0.0000 1369 0.0000 0.0000 18.5000 0.546 0.0161 0.002116 

11 10 37 0.424 100 1369 370 4.2400 15.6880 0.582 0.0026 0.024964 

12 19 29 0.5000 361 841 551 9.5000 14.5000 0.5104 0.0161 0.000108 

13 18 37 0.5000 324 1369 666 9.0000 18.5000 0.6108 0.0161 0.012277 

14 0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.065 0.1391 0.004225 

15 35 0.0 0.0000 1225 0.0000 0.0000 0.0000 0.0000 0.191 0.1391 0.036481 

sum 275 282 5.595 7207 7684 4380 100.089 133.122 5.631 0.6721 0.32075 

N x y u x2 y2 xy xu yu up (u-u1)2 (u-up)2 

1 21 0.0 0.2100 441 0.0000 0.0000 4.4100 0.0000 0.1406 0.0266 0.004816 

2 35 10 0.5000 1225 100 350 17.5000 5.0000 0.321 0.0161 0.032041 

3 25 10 0.2220 625 100 250 5.5500 2.2200 0.285 0.0228 0.003969 

4 16 16 0.0590 256 256 256 0.944 0.9440 0.3306 0.0986 0.073767 

5 0.0 21 0.5000 0.0000 441 0.0000 0.0000 10.5000 0.338 0.0161 0.026244 

6 35 18 0.5000 1225 324 630 17.5000 9.0000 0.425 0.0161 0.005625 

7 29 19 0.4550 841 361 551 13.195 8.6450 0.4164 0.0067 0.00149 

8 22 23 0.5000 484 529 506 11.000 11.5000 0.4432 0.0161 0.003226 

9 10 25 0.7250 100 625 250 7.2500 18.1250 0.426 0.1239 0.089401 

10 0.0 37 0.5000 0.0000 1369 0.0000 0.0000 18.5000 0.546 0.0161 0.002116 

11 10 37 0.424 100 1369 370 4.2400 15.6880 0.582 0.0026 0.024964 

12 19 29 0.5000 361 841 551 9.5000 14.5000 0.5104 0.0161 0.000108 

13 18 37 0.5000 324 1369 666 9.0000 18.5000 0.6108 0.0161 0.012277 

14 0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.065 0.1391 0.004225 

15 35 0.0 0.0000 1225 0.0000 0.0000 0.0000 0.0000 0.191 0.1391 0.036481 

sum 275 282 5.595 7207 7684 4380 100.089 133.122 5.631 0.6721 0.32075 
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By taking partial derivatives of Lagrange expression  
 

L൫x, y, λଵ,λଶ൯ ൌ fሺx, yሻ ൅ λଵgଵሺx, yሻ ൅ λଶgଶሺx, yሻ                                                                             ሺ111ሻ  

 
                 ൌ 0.000042x ൅ 0.0017y ൅ 0.000059xଶ ൅ 0.00034yଶ ൅ 0.00015xy ൅ 0.00847 

൅λଵሺ0.0225x  ሻ ൅ λଶሺെ0.0201x ൅ 0.0238yሻ 
 
to obtain the following relations 
 
∂L
∂x

ൌ 0.000042 ൅ 0.0001x ൅ 0.00015y ൅ 0.0225λଵ െ 0.0201λଶ ൌ 0                ሺ112ሻ 

 
∂L
∂y

ൌ 0.0017 ൅ 0.0068y ൅ 0.00015x ൅ 0.0225λଵ ൅ 0.0238λଶ ൌ 0                       ሺ113ሻ 

 
∂L
∂λଵ

ൌ 0.0225x                               ൌ 0                                                                                ሺ114ሻ 

 
∂L
∂λଶ

ൌ 0.0201x ൅ 0.0238y         ൌ 0                                                                                   ሺ115ሻ 

 
By solving (107)-  (110) from(109) 
 
ݔ ൌ ݕ ൌ 0, λଵ ൌ െ0.0356, λଶ ൌ  െ0.0378     
 
By substituting the variables in (108) the optimum value of the function is obtained as 
 
u(x,y) = f(x,y) = 0.00847 
 

χ ൌ fሺx, yሻ ൌ 0.000042x ൅ 0.0017y ൅ 0.000059xଶ ൅ 0.00034yଶ ൅ 0.00015xy
൅ 0.00847             ሺ108ሻ 

 
The prediction of functional, χ with (108) are presented in Table 4 using excel package to draw 
conclusion with the FEM and multiple linear regression results of Table 3. 
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                 Table 4: Prediction of Functional with Equation (108). 
 

N x Y Χ

1 21 0 0.035371

2 35 10 0.185715

3 25 10 0.134895

4 16 16 0.176886

5 0 21 0.19411

6 35 18 0.317475

7 29 19 0.296997

8 22 23 0.33281

9 10 25 0.30729

10 0 37 0.53683

11 10 37 0.59865

12 19 29 0.448457

13 18 37 0.656602

14 0 0 0.00847

15 35 0 0.082215

 
Tables 3 and 4 are compared for  u , up and their functional, χ are found approximate. 
 
 
8.2.1 Extremization by Lagrange gradient search approach 
 
The extremum conditions for continuous and differentiable functions are defined [1] 
as follows: 
 

f୶  ୀ ଴.଴଴଴଴ସଶା଴.଴଴଴ଵ୶ା଴.଴଴଴ଵହ୷   ୀ  ଴                                                                    ሺଵଵ଺ሻ 

f୷ ୀ ଴.଴଴ଵ଻ା଴.଴଴଴଴଺଼୷ା଴.଴଴଴ଵହ୶ ୀ  ଴                                                                         ሺଵଵ଻ሻ 

f୶୶  ୀ଴.଴଴଴ଵ                                                                                                                             ሺଵଵ଼ሻ 

f୷୷ ୀ ଴.଴଴଴଺଼                                                                                                                            ሺଵଵଽሻ 

 

Since fxx and fyy > 0  minimum extremum or local extremum exists. 
The extremum at the interior points (x0, y0) is evaluated by solving simultaneous equation 
formed by (100) and (101) to obtain x = 4.9767, y = -3.5978. By substituting this value in 
equation (108) the function is obtained as 0.006, representing the extrema (minimum) value of 
the function u(x, y) within the region. 
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8.2.2 Extremization by Lagrange multipliers approach 
 
By expressing (108) in the form 
fሺx, yሻ ൌ 0.000042x ൅ 0.0017y ൅ 0.000059xଶ ൅ 0.00034yଶ ൅ 0.00015xy ൅ 0.00847                 
Subject to the constraint relations 
 
uሺx, yሻ ൌ 0.5 ൅ 0.0225x        ൌ 0.5                                                                                                    ሺ120ሻ  
uሺx, yሻ ൌ  െ0.0201x ൅ 0.0238y ൌ 0                                                                                                ሺ121ሻ 
derived for nodes 14 and 10 of elements 1 and 5 at the boundaries. 
 
By taking partial derivatives of Lagrange expression 
  

L൫x, y, λଵ,λଶ൯ ൌ ሺx, yሻ ൅ λଵgଵሺx, yሻ ൅ λଶgଶሺx, yሻ                                                                              ሺ122ሻ  

     ൌ 0.000042x ൅ 0.0017y ൅ 0.000059xଶ ൅ 0.00034yଶ ൅ 0.00015xy ൅ 0.00847 
                         ൅λଵሺ0.0225x  ሻ ൅ λଶሺെ0.0201x ൅ 0.0238yሻ 
 
to obtain the following relations 
 
∂L
∂x

ൌ 0.000042 ൅ 0.0001x ൅ 0.00015y ൅ 0.0225λଵ െ 0.0201λଶ ൌ 0                                   ሺ123ሻ 

 
∂L
∂y

ൌ 0.0017 ൅ 0.0068y ൅ 0.00015x ൅ 0.0225λଵ ൅ 0.0238λଶ ൌ 0                                       ሺ124ሻ 

 
∂L
∂λଵ

ൌ 0.0225x                               ൌ 0                                                                                               ሺ125ሻ 

 
∂L
∂λଶ

ൌ 0.0201x ൅ 0.0238y         ൌ 0                                                                                               ሺ126ሻ 

 
By solving (123)-  (126) starting from(125) 
ݔ ൌ ݕ ൌ 0, λଵ ൌ െ0.0356, λଶ ൌ  െ0.0378     
 
By substituting the variables in (108) the optimum value of the function is obtained as 
u(x,y) = f(x,y) = 0.00847.This value compares favourably with the prediction of 0.006 of 
gradient search method showing  agreement with the graphics of Figure 2 and Figure 3.  
 

 
 
 



956                                                              C.C. Ihueze, O.E. Christian, E.S. Onyemaechi                                    Vol.9, No.10 

 

 
 
 

 
 
Figure 3a, b Distribution of function within the Region. 
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Figure 4a, b and c Versions of 3D Surface Plots of Function. 
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9. CONCLUSSIONS 
 
The methods of this article apply to: 
 

1. Solution of boundary value engineering phenomena whose function can be expressed as 
partial differential equation. 

2. Solution of of displacement in structures and solid mechanics problems, temperature 
distribution in heat conduction problems, displacement potential in acoustic fluids , 
pressure in potential flows , velocity in general flows, electric potential in electrostatics 
magnetic potential in magnetostatics , torsion of non – homogenous shaft, flow through 
an anisotropic porous foundation, axi – symmetric heat flow, hydrodynamic pressures on 
moving surfaces  

3. Solution of time dependent field problems such as creep, fracture and fatigue. 
4. Equations (97) and (98) are recommended for the prediction of possible values of the 

displacement function of GRP composites region from where other properties of the 
region could be evaluated. 

5. A unified computational model with standard error of 0.15 and correlation coefficient of 
0.72 was developed to aid analysis and easy prediction of regional function with which 
the continuum function was successfully modeled and optimized through gradient search 
and Lagrange multipliers approach. 

6. The MatLab 3-D graphics of Figure 4 show potential trend of function within the 
regionwith minimum and maximum at the boundaries. 
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