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ABSTRACT 

Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non- 
uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article, a new linear interpola-
tion-based planning and replanning algorithm, Update-Reducing Field D*, is proposed. It employs different approaches 
during initial planning and replanning respectively in order to reduce the number of updates of the rhs-values of vertices. 
Experiments have shown that Update-Reducing Field D* runs faster than Field D* and returns smoother and lower-cost 
paths. 
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1. Introduction 

In mobile robot navigation, path planning leads a robot 
from its initial location to some desired goal location. 
The two most popular techniques for path planning are 
deterministic algorithms and randomized algorithms [1]. 
Among deterministic algorithms, A* provides heuristic 
search in static, known environments [2]. LPA* com-
bines heuristic search and incremental search [3]. D* Lite 
could replan in unknown environments efficiently [4]. 
When provided with a grid-based representation of en-

vironments, these algorithms are limited by the discrete 
set of possible headings between gird cells. For example, 
the eight-connected grids restrict the agent’s heading 
changes by multiples of π 4 . As a result, the paths are 
suboptimal and unrealistic looking. To alleviate this 
problem, several methods for any-angle path planning 
have been investigated. A* PS uses post-smoothing to 
generate any-angle path [5]. But it does not always work 
as is showed in Figure 1 (The path returned by A* PS (in 
black line) is not the optimal path (in dash line) from S to 
G). Basic Theta* algorithm and AP Theta* algorithm 
(Angle-Propagation Theta*) allow the parent of a node to 
be a node other than its local neighbor [6]. AA* (Accel-
erated A*) can plan a shortest any angle paths fast [7]. 
However, these algorithm are only usable for uniform 
cost environments. 

Based on D* Lite and linear interpolation, Field D* 

could fast plan and replan any-angle path in grid envi-
ronments, whatever the environment costs are known or 
partially-known, uniform or non-uniform [8]. Field D* is 
employed as the path replanner in a wide range of fielded 
robotic systems.  

However, Field D* still suffers from two major draw-
backs: 1) It plans and replans much slower than D* Lite. 
2) The path returned by Field D* is not always the opti-
mal solution. Motivated by these observations, a linear 
interpolation-based planning and replanning algorithm, 
Update-Reducing Field D* (URFD*), is proposed in this 
paper. It reduces the number of updates of the rhs-values 
so as to speed up the search. It also employs a method of 
post-smoothing to generate a lower-cost and smoother 
path. Besides, a heuristic with a variable factor according 
to the environments is used. As a result, the novel algo-
rithm could efficiently produce a near-optimal path in 
non-uniform cost grids. 

2. Linear Interpolation-Based Path Planning 

2.1. The Idea of Field D* 

Field D* stores the rhs-value, a one-step look ahead es-
timate of the goal distance (by the goal distance of a ver-
tex we mean the cost of an optimal path from this vertex 
to the goal). For vertex s it satisfies: 

 
      

0, if

min , otherwise
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Figure 1. Sub-Optimality of A* PS. 
 
where sgoal is the goal vertex.  denotes the set 
of all neighboring vertices of s. 

 Nbrs s
 g s  is an estimate of 

goal distance of s.  is the cost of a path be-
tween 

 ,c s s 
s and s. In classical grid-based methods, it is 

assumed that s and s are two corner vertices and the 
path between s and s is a straight line. Field D* relaxes 
this assumption and takes any point along the boundary 
of a cell into consideration. To make it possible, Field D* 
makes an approximation that the path cost of any point sy 
residing on the edge between two consecutive corner 
vertices s1 and s2 is a linear combination of  1g s  and 
 2g s : 

       2 1y 1g s yg s y g s            (2) 

where y is the distance from s1 to sy (assuming unit cells). 
With the form of the optimal path in a unit cell, Field 

D* could compute  and find the point to move 
by making 

 rhs s

    d , dc s s g s v  0 ,          (3) 

where v is the variable on which the path cost depends. 

2.2. Differences and Inefficiency 

A linear interpolation-based replanner performs differ-
ently from a classical path replanner such as D* Lite, 
which leads to its inefficiency. To explain this, we define 

 g s  as the cost of the optimal path from vertex s to the 
goal with respect to the linear interpolation assumption 
(so it is slightly different from the cost of the actual op-
timal path). We call  g s  (or  rhs s ) is inaccurate 
when  g s  (or  rhs s ) is not equal to  g s . Also we 
call  g s  is more accurate than  rhs s  when  g s  is 
more close to  g s  than  rhs . s g s  satisfies: 

 
      

0, if

min , otherwise.

goal

s nbrs s

s s
g s

g s c s s





   
 (4) 

A linear interpolation-based replanner expands verti-
ces in a different way from D* Lite. With a consistent 
heuristic, a locally overconsistent vertex (whose g-value 
is lager than rhs-value) becomes locally consistent (the 
g-value equals rhs-value) after selected for expansion 
and then remains locally consistent until edge cost changes 

are detected in D* Lite. It implies that D* Lite expands 
any locally overconsistent vertex at most once. However, 
a linear interpolation-based replanner tends to expand a 
locally overconsistent vertex for many times. Besides, 
the key values (denoting the priorities of vertices in the 
priority queue) of the vertices selected for expansion are 
monotonically nondecreasing over time in D* Lite, while 
it is not naturally the case in a linear interpolation-based 
replanner. This can be explained as follows: For some 
vertex s, the computation of its rhs-value is based on the 
g-value of one neighboring vertex in D* Lite, but the 
g-values of two neighboring vertices in a linear interpo-
lation-based replanner. During the planning and replan-
ning process, it is common that at least one of the two 
neighboring vertices has an inaccurate rhs-value. Relied 
upon them, s will get an inaccurate rhs-value. And the 
vertices relied upon s will also be affected, and so on. It 
is the reason that a linear interpolation-based replanner 
updates the rhs-values of vertices repeatedly to their final 
results. Such a phenomenon is easily observed particu-
larly in environment consisting mainly of free space 
since the g-value of a vertex is very close to those of its 
neighbors in free space.  

After the cost field created, path extraction for linear 
interpolation-based replanners is also different from that 
for D* Lite. When backpointers are not recorded, D* Lite 
can trace back a lowest-cost path from sstart to sgoal by 
always moving from the current vertex s, starting at sstart, 
to any neighbor s that minimizes    ,c s s g s   until 
sgoal is reached. So the optimality of the result depends on 
the accuracy of  g s . But in a linear interpolation- 
based replanner the g-values are not the goal distances 
exactly, resulting in the sub-optimality of paths. 

From the discussion above, we can see that there exist 
two major drawbacks of Field D*: 1) It plans and replans 
much slower than D* Lite, especially in the environ-
ments consisting mainly of free space. 2) The solution 
path is not the optimal solution. Figure 2 shows the sec-
ond problem. The path returned by Field D* has unnec-
essary heading changes even if no obstacle exists (see 
Figure 2(a)). To extract a smoother path, [9] gives a gra-
dient interpolation method. The result is showed in Fig-
ure 2(b), from which we can see that the unnecessary 
heading changes still exit. Obstacles can also make the 
interpolation assumption break down so that affects the 
quality of extracted paths. To alleviate it, [8] uses a one- 
step look ahead mechanism. But this method checks very 
limited steps so that cannot avoid generating a pathologic 
path between vertices a and b in Figure 2(c).  

3. Update-Reducing Field D* 

3.1. Basic Idea 

Since the runtime of a linear interpolation-based replanner  
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(a)                          (b) 

 
(c) 

Figure 2. Paths returned by interpolation methods. 
 
depends heavily on the number of updates of the rhs- 
values of vertices, the key to high efficiency of our algo-
rithm is reducing the number of updates. We use the 
fringe vertices to refer to the vertices on the fringe of the 
expanded vertices during initial planning. The fringe 
vertices have not been expanded yet so that their g-values 
are not computed (namely infinite), leading the rhs-val- 
ues computed by the g-values of the fringe vertices to 
inaccuracy. Then the inaccurate rhs-values along with 
the infinite g-values affect next vertex expansions. This 
is the main source of the repeated updates of rhs-values. 
Note that most of the fringe vertices are just locally over- 
consistent vertices during initial planning, as is showed in 
Figure 3. (The locally consistent vertices (in light grey), 
which have been expanded at least once, are almost sur-
rounded by the locally overconsistent vertices (in dark 
grey). Vertices in black are obstacles.) The rhs-values of 
locally overconsistent vertices are better informed and thus 
more accurate than the g-values. So when it is a locally 
overconsistent vertex, we can use the rhs-value instead of 
the g-value to make the computation more close to the 
g*-value. When it is a locally consistent vertex, we can 
also use the rhs-value because it equals the g-value and 
thus could get a result at least no poorer than that com-
puted by the g-value. 

During replanning, if we only encounter cell cost de-
creases the approach above is still useful. However, 
when locally underconsistent vertices (whose g-values 
are smaller than rhs-values) appear, this approach tends 
to make the algorithm less efficient and even incomplete. 
It could be explained as follows: When the rhs-value of a 
vertex becomes larger due to edge cost increases, the old 
rhs-value is out of date and thus to be abandoned. How-
ever, the algorithm does not distinguish between the old 
and the new so that it is possible for the old rhs-value to 
be used to compute the rhs-value of another vertex, re-
sulting in “false” relation between these two vertices. For 
example, there exist two vertices a and b. After initial 
planning, g(a), rhs(a) and g(b) are all infinite, rhs(b) is 
50. Then rhs(a) and rhs(b) are updated due to cell cost 
increases. When rhs(a) is recomputed, old rhs(b) (namely  

 

Figure 3. A snapshot during initial planning of Field D*. 
 
50) is used. Then rhs(b) is updated to a new value of 64. 
Thus, the computation of rhs(a) seems to rely on rhs(b) 
but in fact this relation possibly dose not exist. Further-
more the wrong rhs(a) leads to a priority error of a (g(a) 
is infinite so that does not affect the key value), which 
possibly makes a expand while b can never be expanded 
again. Thus the “false” relation has no chance to be cor-
rected, resulting in the incompleteness of the algorithm. 

In order to reduce the updates of the rhs-values during 
replanning, we use a technique similar to which Delayed 
D* used to speed up D* Lite [10], that is, delaying the 
processing of locally underconsistent vertices. 

During path extraction, A* search, which depends on 
the accuracy of heuristic less heavily than greedy search 
does, could avoid errors caused by obstacles (see Figure 
2(c)). However, based on the linear approximation, A* 
search still cannot ensure an optimal path even if no ob-
stacles exist (see Figure 2(b)). And greedy search needs 
to be kept for checking solution paths for any loops. Note 
that the limitation of post-smoothing showed in Figure 1 
can be overcome if it is already an any-angle path before 
smoothing.  

Combined with the methods above, Update-Reducing 
Field D* (URFD*) is a modified version of Field D*. It 
redefines the rhs-values (denoted by rhs’-values to be 
distinguished from the original) as 

 
      

0 i

min , otherwise

f goal

s nbrs s

s s
rhs s

rhs s c s s

     
(5) 

where notation follows from (1). URFD* calculates the 
rhs-values of vertices according to (5) during initial plan-
ning. During replanning it calculates the rhs-values ac-
cording to (1), which is similar to Field D*, and delays 
the propagation of cost increases. It checks the consis-
tency of a path in every path extraction and ends with a 
post-smoothing step. 

3.2. Algorithm Description 

Figure 4 shows the pseudocode of the URFD* algorithm.  
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Figure 4. The update-reducing Field D* algorithm. 
 
During initial planning, URFD* calls ComputeShortest-
Path() to expand vertices. ComputeCost() calculates the 
rhs-value in a way similar to the interpolation-based path 
cost calculation in Field D*, but every vertex uses rhs- 

values, instead of g-values, of its neighbors. ComputeS-
tate() then computes the rhs-values according to (5) (line 
15). During replanning, ComputeState() calls Compute-
Cost() to compute the rhs-values according to (1) (line 
16). The rhs-values of the start vertex and every vertex 
immediately affected by the changed edge costs are up-
dated, but only the locally inconsistent start vertex and 
locally overconsistent vertices are inserted into priority 
queue U for expansion (lines 42 - 45). Then FindRaiseS-
tatesOnPath() (FRSOP) is called. FROSP checks whether 
locally underconsistent vertices are in the vicinity of the 
node. All the unprocessed locally underconsistent verti-
ces that are adjacent to this node will be added into prior-
ity queue U (lines 31 - 33). Here vicinity(s) refers to the 
set of all corner vertices in the vicinity of node s (s is 
included). When the number of nodes exceeds the given 
limit maxsteps, or a loop is found, which indicates a po-
tential failure of path extraction, FRSOP stops the ex-
traction to expand locally underconsistent vertices in 
priority queue U. After path extraction, the solution path 
is post-processed by a smoothing step. (lines 39, 49). 
Given two cell boundary nodes along the path, the post- 
smoothing replaces the solution path between these two 
nodes with a straight line path if the latter is less costly. It 
is done with cell boundary nodes along the solution path 
iteratively. However, some small techniques are used to 
avoid a large amount of computation: 1) It only performs 
a single iteration. 2) It only smoothes the path between 
cell corners because necessary and sharp heading changes 
usually occur on them. 3) Before smoothing a path be-
tween two cell corners, it checks whether the costs of all 
grid cells that the original path is through are all same. If 
they are, the original path is kept. 

4. Experimental Results 

We compared the performance of URFD*, Field D* and 
Delayed D*. 800 different 500 × 500 random grid envi-
ronments were generated: 400 environments with uni-
form cost grids and 400 with non-uniform cost grids. For 
uniform cost grid environments, four different initial 
percentages of obstacle cells were selected: 10%, 20%, 
30% and 40%. For non-uniform cost grid environments, 
we assigned each traversable cell an integer cost between 
1 (free space) and 15, and four different initial percent-
ages of free space cells were selected: 90%, 70%, 50% 
and 30%, while the rest of the cells each got a cost (in-
finity or an integer between 2 and 15) randomly with the 
same probability (namely 1/15). For each environment, 
the initial task was to plan a path from the lower left 
corner to a randomly selected goal on the right edge. Af-
ter that, we altered the costs of cells close to the agent 
with probability 0.1 (1.6% of the cells in the environment 
were changed) and had each approach repair its solution    
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Table 1. Performance comparison among URFD*, Field D* and Delayed D* in three kinds of environments. 

  Path Cost Rhs-values Updates Vertex Expansions Runtime 

  Initial Replan Initial Replan Initial Replan Initial Replan 

Field D* 0.9538 0.9544 6.1560 64.1851 5.2317 32.3386 5.7784 58.7625 
A 

URFD* 0.9510 0.9519 2.5438 28.5094 2.2528 14.7824 2.3987 21.0833 

Field D* 0.9619 0.9618 2.4143 10.7327 1.8484 8.9259 2.1848 13.0324 
B 

URFD* 0.9568 0.9567 1.4702 4.9103 1.4780 4.2553 1.8199 5.1806 

Field D* 0.9639 0.9643 1.3155 1.2895 1.0600 0.9707 1.2174 4.9793 
C 

URFD* 0.9592 0.9596 0.8337 1.4234 0.9218 1.0877 0.7672 2.3122 

 
path. We use the weighted heuristic, which is described 
in the previous section, for URFD* and Field D*. 
We selected the results in three kinds of environments 

(A: uniform cost grids with 10% obstacle cells. B: uni-
form cost grids with 30% obstacle cells. C: non-uniform 
cost grids with 50% free space cells) and showed them in 
Table 1. Four performance measures were used here: the 
path cost, the total number of rhs-value updates (that is, 
updates of the rhs-values), the total number of vertex ex- 
pansions (updates of the g-values) and the runtime. Each 
value is a ratio of a performance measure of URFD* (or 
Field D*) to that of Delayed D* averaged over initial 
planning (or replanning) episodes. Note that in environ-
ments with more free space the runtimes of initial plan-
ning and replanning of Field D* drastically increased 
while those of URFD* increased much more stably. The 
performance in environments C shows the possibility that 
the number of updates of the rhs-values during replan-
ning could be slightly larger than that of Field D* in 
some scenarios. However, since the number of vertices in 
the priority queue is limited by selectively processing 
locally underconsistent vertices, making the priority queue 
operations less expensive, the runtime of URFD* is still 
shorter than that of Field D* in those scenarios. 

5. Conclusion 

We present URFD*, a linear interpolation-based algo-
rithm that plans and replans any-angle paths in dynamic 
environments with uniform and non-uniform cost grids. 
It makes efforts in the reduction of updates of the rhs- 
values, which contributes to the gain in efficiency. The 
solution paths returned by URFD* are smooth and near- 
optimal. As opposed to Field D*, it performs faster plan-
ning and replanning and returns a path with lower cost 
and fewer heading changes. However, URFD* is not 
optimal either due to the linear interpolation assumption. 
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