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ABSTRACT 

In this paper, we introduce a new Control Lyapunov Function (CLF) approach for controlling the behavior of nonlinear 
uncertain HIV-1 models. The uncertainty is in decay parameters and also external control setting. CLF is then applied to 
different strategies. One such strategy considers input into infected cells population stage and the other considers input 
into a virus population stage. Furthermore, by adding noise to the HIV-1 model a realistic comparison between control 
strategies is presented to evaluate the system’s dynamics. It has been demonstrated that nonlinear control has effective-
ness and robustness, in reducing virus loading to an undetectable level. 
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1. Introduction 

Modeling physical or biological phenomena for any dy-
namic system needs to take into account the nature of 
connection between the parameters of the dynamic sys-
tem and the observed solution [1]. The function of these 
parameters is reflecting the characteristics of studied phe- 
nomena such that death rate of productive infected CD4+T 
cells for the HIV model. Therefore, it is valuable to know 
about how perturbations in these parameters present them- 
selves in the solution. There are many papers for HIV 
modeling that consider the importance of parameters into 
a system’s dynamic [2-4]. For example, in [5], a new 
mathematical model is presented to analyze many details 
on HIV-1 viral load data collected from five infected pa- 
tients that were administrated using protease inhibitor. 
Based on data provided in [5], many viral dynamics that 
can not only give the kinetics dynamic of HIV-1 disease 
but also give guidelines to develop new treatment strat-
egy are investigated. Controlling HIV infection disease 
has been an interesting problem for many researchers 
[6-11]. It is well known [12,13] that a control Lyapunov 
function, if available, will be a convenient tool to analyze 
stability, evaluate the system's robustness to perturba-
tions, or even to modify the design to enhance robustness 
or performance [14]. In this paper, a CLF approach for 
nonlinear uncertain HIV-1 model is introduced. The un-
certainty is applied into system’s decay parameters and 
external control. Also, two different strategies based on 
CLF are investigated. It has been shown that the first 

strategy is effective and has an ability to reduce virus 
concentration to an undetectable level even under uncer-
tainty and noise effect.  

2. Theory of Control Lyapunov Function 
(CLF)  

A function  V x  is said to be a Lyapunov function for 
a given system of vector state equations: 

 x F x  with ,  0 0F  nx R       (1) 

If it is class C1 and there exists a neighborhood Q of 
the origin such that [15]: 

 0 0V   and   0V x   for x Q , 0x    (2) 

      0V x V x F x    for x Q , 0x     (3) 

where:          
1 2 3

, , , ..
n

V x V x V x V x
V x

x x x x

    
       

. 

The classical Lyapunov stability theorem states that if 
Equation (1) has a suitable Lyapunov function, then the 
origin is globally asymptotically stable. Conversely, for 
any globally asymptotically stable system (1) with a con-
tinuous right hand side a Lyapunov function class C  
can be constructed. 

If we consider the control system: 

 , x f x u                 (4) 

nx R  is the state vector.  is the control mu R
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vector and is assumed continuously be stabilized. Ac-
cording to the above definition, a positive definite C  
function exists such that: 

   inf , 0V x f x u              (5) 

for each  in some neighborhood  of the origin. 0x  Q
As a result, if the function  of class  V x C  satis-

fies Equations (2) and (5), then it’s called a CLF [15]. 

3. Selection of Suitable CLF 

It was shown in [16] that a first integral for the drift vec-
tor field, plus some controllability conditions can derive 
smooth asymptotically stabilizing control laws. This me- 
thod has been introduced generally in [15,17], and is 
usually called Jurdjevic-Quinn method [14]. The control 
strategy based on this requires selection of CLF such that 
V(x) is semi-positive definite. Stability is guaranteed if 
the derivative of  is semi-negative definite. Con-
sidering the following system (linear in control and non- 
linear in state): 

 V x

   1

m

o ii ix f x u f x


             (6) 

where  of x  is a stable unforced system, i  is the 
designated control, 

u
 

thi

if x  is a smooth vector field in 
.  nR

We say that Equation (6) satisfies a Lyapunov condi-
tion of Jurdjevic-Quinn type if there are a neighborhood 

 of the origin and a  function  such that 
[15]: 
Q C  V x

  0V x   for x Q ,  and 0x   0 0V    (7) 

    0oV x f x   for x Q                (8) 

Now, the derivative of  V x  with respect to the 
closed loop system is given by [15]: 

          2

1
0

m

o ii
V x V x f x V x f x


        (9) 

According to the Lyapunov control, a control function 
is selected as following: 

     i iu x V x f x  ,     (10) 1,2, ,i   m

4. Basic HIV-1 Infection Model 

Parameters of HIV-1 infection models were estimated 
based on data provided by the Veterans Affairs hospital 
in West Haven, Connecticut, for a cohort of 338 people 
monitored for up to 2484 days [18]. This basic HIV-1 
infection model is bilinear and has three states, namely 
uninfected cells  x , infected cells  y , and virus  v : 

1 2 3

3 4

5 6

x k k x k xv

y k xv k y

v k y k v

  

 

 







            (11) 

Let   1 2 3, , , ,
T Tx x x x x y v   and let    d dt  , 

where  T  denotes transpose, Then: 

 
 
 

1 1 1 2 1 3 1

2 2 3 1 3 4 2

3 3 5 2 6 3

x f k k    3x k x

x f k x x k x

x f k x k x



   

   





x

        (12) 

Figure 1 shows the dynamic response of HIV-1 infec-
tion model. 

From Equation (12), 1  is the supply rate of unin-
fected cells by the thymus, 2  is the death rate of unin-
fected cells. 3  is the rate of infection, 4  is the death 
rate of infected cells, 5  is the rate of virus production 
by infected cells, 6  is the clearance rate of the virus. 

1

k
k

k k
k

k
x  and 2x  are measured in (cells/mm3) and 3x  is meas- 
ured in (particles/mm3). Also, from [18] we got Table 1. 

5. Robust CLF Controller Design 

Many control techniques have been applied for HIV 
treatment [19,20], but here we are interested to develop a 
new control design based CLF. A stabilizing state feed-
back law can be found via a suitable semi-definite posi-
tive function  V x  in two assumed cases as: 

     
1 2 1 3 1 3

3 1 3 4 2
1

5 2 6 3

m

o i i i i
i

k k x k x x

x f x u f x k x x k x u f x

k x k x


  
      
  

   

(13) 

 

Figure 1. HIV-1 model without CLF, x1(0) = 350, x2(0) =5, 
x3(0) =25. �

Table 1. Parameter values used in HIV-1 infection model. 

Parameter Value Unit 

k1 10 
13 1cells mm y da

   

k2 0.05 day–1 

k3 5 × 10–4 mm3 cells–1·day–1 

k4 0.4 day–1 

k5 40 day–1 

k6 9 day–1 
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The state feedback law with uncertainty is: 

    1 2 3 1 2 3, , , , ,i iu x x x V x x x f x       (14) 

 V x  from [21] is: 

  * *
* *

*4
* *

*

5

, , ln ln

                   ln

*

x x y
V x y v x y

y

x x y

k v v
v

k v v

       
   

   
 

y



 (15) 

Now, we can express  as:   , ,V x y v

  * *1 1 2 2
1 2 3 1 2* * *

1 1 2 2

* 3 34
3 * *

5 3 3

, , ln ln

                       ln

*

x x x x
V x x x x x

x x x x

x xk
x

k x x

  
     

  
 

  
 







 (16) 

From  we can find :  1 2 3, ,V x x x  1 2 3, ,V x x x

 
** *
31 2 4

1 2 3
1 2 5

, , 1 1 1
xx x k

V x x x
x x k x

     
        

       3

  (17) 

where 1 3 5
0

2 4 6

k k k
R

k k k
 , * 1

1
2 0

k
x

k R
 , 

 * 2 6
2 0

3 5

1
k k

x R
k k

  ,  * 2
3 0

3

1
k

x R
k

   

From Table 1 we can find  and the equilibrium 
states:  

0R

0

10

9
R  , , , *

1 180x  *
2 2.5x  *

3

100

9
x   

5.1. Applying Control Strategy into Infected 
Cells with Uncertainty 

In this section, we can apply the control input to infected 
cells for HIV-1 infection model with uncertainty as: 

   

 
 
 

 

1

1 2 1 3 1 3

3 1 3 4 2 1 6 2

5 2 6 3

, ,

0

  

0

m

o i i
i

x f x u f x

k k x k x x

k x x k x u k x

k x k x



   

      
            
        



 (18) 

In this case,  will be: 1 1 2 3, ,u x x x 
 

 
   

1 1 2 3

** *
4 31 2

6 2
1 2 5 3

   , ,

0

1 1 1

0

u x x x

k xx x
k x

x x k x

                           

 
  

 (19) 

   
*
2

1 1 2 3 6 2
2

, , 1
x

u x x x k x
x

 
    

 

5.2. Applying Control Strategy into Virus with 
Uncertainty 

We can also apply the control input to virus for the HIV- 
1 infection model with uncertainty as: 

   

 
 
 

1

1 2 1 3 1 3

3 1 3 4 2 1

5 2 6 3 3

, ,

0

 0

m

o i i
i

x f x u f x

k k x k x x

k x x k x u

k x k x x



   

      
          
        



    (21) 

In this case,  1 1 2 3, ,u x x x  will be: 

 

 
 

1 1 2 3

** *
4 31 2

1 2 5 3
3

   , ,

0

1 1 1

u x x x

k xx x

x x k x
0

x

 
                               

 (22) 

   
 

*
4 3

1 1 2 3 3
5 3

, , 1
k x

u x x x x
k x

   
  

   
      (23) 

6. Noise Effect on HIV-1 Dynamic System 

In this section, noise effect on HIV-1 dynamic system 
with external control input is investigated into two strate- 
gies as: 

   

 

1 2 1 3 1 3

3 1 3 4 2
1

5 2 6 3

,

     

m

o i i
i

i i

k k x k x x

x f x u f x d k x x k x

k x k x

u f x d



  
      
  

 


 (24) 

where  represents noise effect. d

7. Simulation and Results 

In Figure 2, it is assumed a (±5%) deterministic uncer-
tainty in decay parameters of HIV-1 model are related to 
the first strategy. It’s noted that uncertainty doesn’t affect 
the control role on reducing viral load to an undetectable 
level, however the number of healthy cells with (+5%) 
uncertainty is reduced and with (–5%) uncertainty is in-
creased and this can be referred to detrimental and bene-
ficial perturbation respectively. 

In Figure 3, it is assumed a high deterministic uncer-
tainty (±20%) in decay parameters of HIV-1 model are 
related to the first strategy. It is noted that even for high 
uncertainty, the control is still effective on reducing viral 
load to an undetectable level, however the number of 
healthy cells with (+20%) and (–20%) uncertainty is re- 
duced (detrimental perturbation) and increased (benefi-
cial perturbation) respectively. 

In Figure 4, it is assumed a (±5%) deterministic un-
certainty in decay parameters of HIV-1 model are related  

      (20) 
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Figure 2. Control performance for nonlinear HIV-1 model 
under ±5% deterministic parameters uncertainty for first 
strategy.  

to the second strategy. It's noted that uncertainty affect 
the control role on reducing viral concentration to an 
undetectable level which means that the first strategy is 
more efficient than second strategy. 

 

 

 

Figure 3. Control performance for nonlinear HIV-1 model 
under ±20% deterministic parameters uncertainty for first 
strategy. 

In Figure 5, it is assumed a high (±20%) deterministic 
uncertainty in decay parameters of HIV-1 model are re-
lated to the second strategy. It’s noted at high uncertainty, 
the control effect becomes worse on reducing viral con-  
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Figure 4. Control performance for nonlinear HIV-1 model 
under ±5% deterministic parameters uncertainty for sec-
ond strategy. 

centration. 
In Figure 6, we add a constant noise (+10) in HIV-1 

model related to first and second strategy. It’s shown that 

 

 

 

Figure 5. Control performance for nonlinear HIV-1 mode

and that is also depends on how much noise is added. 

d a new robust CLF control de-  

l 
under ±20% deterministic parameters uncertainty for sec-
ond strategy. 

8. Conclusion 
noise has a little impact on the HIV-1 system dynamic  This paper has presente
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Figure 6. Noise effect on nonlinear HIV-1 model for firs

sign for uncertain and nonlinear HIV-1 infection models.
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