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Abstract 

The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically 
demonstrated. Then, exact, analytical solutions to the time-dependent Schrödinger equation in one dimension are 
developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact 
solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with 
appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability 
and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the 
particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential 
decay for all times; the probability decreases at large times as 3t . Other exact solutions found exhibit power law 
behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, 
numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence 
of non-exponential decay at short times. 
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1. Introduction 

The law of exponential decay is typically discussed in 
association with atomic transitions or resonances in 
scattering amplitudes. Even though the approximations 
made in order to arrive at exponential decay of excited 
states or resonances are well understood the mistaken 
impression that this law is universal and exact often 
prevails. This perception is reinforced by experiments 
often done in student laboratories geared towards 
studying the half-lives of radioactive nuclei or unstable 
particles and, very importantly, by numerous research 
publications and data tables in which exponential decay 
is tacitly assumed. The fact that these experiments 
measure counting rates during only finite time intervals 
and are focused on decays of quasi-stationary states is 
usually not discussed, let alone studied in detail. 

The history of this particular problem is quite interes- 
ting. Early on Khalfin [1] used dispersion relations to 

show that even quasi-stationary states with spectral 
functions that have a lower bound in their energy 
spectrum must decay non-exponentially at large times. 
Winter [2] examined the infinite wall plus repulsive delta 
function potential and obtained a single implicit solution 
in the form of an integral for the special case in which 
the initial wavefunction is an eigenfunction of the 
infinite square well of the same width and as a result it is 
a near-resonance (quasi-stationary) state of the actual 
potential. His analytic approximation to the integral in 
the limit of low barrier transmittance (large strength of 
the delta function) proved that the survival probability 
exhibits exponential decay in the (intermediate) time 
interval-when the dominant quasi-stationary resonance 
prevails inside the well-while at very large times it 
decays following the power law 3t . By means of 
numerical studies the same author found oscillations in 
the probability current at times before the power law sets 
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in if the initial state has a relatively wide energy spec- 
trum. 

The purpose of this article is to demonstrate explicitly 
the existence of systems that exhibit non-exponential 
decay at all times by developing exact, analytical, closed 
form solutions to the time-dependent Schrödinger equa- 
tion for a one-dimensional potential and non-quasis- 
tationary initial states as well as to illustrate non- 
exponential decay using numerical solutions to specific 
problems for which analytical solutions are not obtaina- 
ble. The clear advantage of the analytical approach 
without any approximations is that it yields an equation 
for the survival probability of the initial state that can be 
studied for any time interval and that is unequivocally 
non-exponential. The conclusions are easily generalized 
and the long-time behavior of the solutions is predicted 
and shown to follow an asymptotic power law. It is, thus, 
established that for a large class of systems, non-expo- 
nenential decay is the rule rather than the exception. 

This paper also elucidates and generalizes previous 
research work. Recently there has been increasing 
interest in the time dependent Schrödinger equation and, 
in particular, in the decay of physical systems. The 
equivalence of exponential decay of a perturbed energy 
eigenstate with Fermi's golden rule when the final 
density of states is energy-independent and with the 
Breit-Wigner resonance curve has been long known and 
presented in several papers [3] and textbooks [4]. 
Dullemond [5] has verified this behavior for a simple but 
exactly solvable model and found, however, that if 
final-state energy-dependence is introduced into this 
model a non-exponential decay pattern will dominate at 
large times. 

Oleinik and Arepjev [6] have shown that tunneling of 
electrons out of a finite potential well when a long-range 
electric field is suddenly switched on follows a 3t  
probability decay law at large times. Specific systems 
that may exhibit non-exponential decay include systems 
with non-local interactions [7], certain closed many-body 
systems [8], quasi-particles in quantum dots [9], polarons 
[10], and non-extensive systems [11]. Petridis et al., [12] 
have studied numerically a variety of systems in which 
the initial wave function is mostly or entirely set in a 
finite potential well and have observed rich behavior, 
including non-exponential decay into the continuum. 

Non-exponential decay was experimentally observed 
for the first time by Wilkinson et al., [13] in the 
tunneling of ultra-cold sodium atoms initially trapped in 
an accelerating periodic optical potential created by a 
standing wave of light. Kelkar, Nowakowski, and Khem- 
chandani [14] have reported evidence for the non- 
exponential alpha decay of Be8 . Rothe, Hintschich, and 
Monkman [15] have clearly measured non-exponential 
time-dependence in the luminescence decay of dissolved 

organic materials after pulsed laser excitation. 
Time-dependent quantum mechanical problems are 

usually addressed using time-dependent perturbation 
theory, adiabatic or sudden approximations as well as 
several numerical techniques. Exact analytical solutions 
to certain problems are highly desirable, especially in 
cases when the approximate methods may be inadequate 
to describe all aspects of the solutions or when numerical 
treatments do not explicitly reveal their mathematical 
properties. 

Burrows and Cohen [16] have developed exact 
solutions for a double-well quasi-harmonic potential 
model with a time-dependent dipole field. Cavalcanti, 
Giacconi, and Soldati [17] have solved the problem of 
decay from a point-like potential well in the presence of 
a uniform field and have indicated that, due to an 
infinitely large number of resonances, there may be 
deviations from the naively expected exponential time- 
dependence of the survival probability. 

In this article a well established method for solving 
time-dependent quantum mechanics problems is used to 
develop exact, analytical, closed-form solutions to the 
infinite wall plus repulsive delta function potential. The 
large-time non-exponential decay for three solutions to 
this system is established and the asymptotic power law 
behavior is explicitly demonstrated to be 3t  for the 
first two and 4t  for the third. It is also proven that this 
result, (or a higher negative power of t), is valid for all 
square-integrable solutions to this system. Furthermore 
numerical solutions are developed for finite-range po- 
tentials and shown to exhibit a rich, non-exponential 
decay behavior, including oscillations. 

2. The Exponential Decay Approximation 

The time-dependent wavefunction, ),( tx , can be 
expressed as a superposition of fixed energy states, 

)(xE , each evolving in time as iEte  , 

,)()(=),( dEexEtx iEt
E




           (1) 

where )( xE  are fixed-energy (stationary) solu- tions 

to the Schrödinger equation for the given Hamil- tonian 
and )( E  is an energy distribution or “spectral 

function”. It is important that this integral converge and 
the resulting wavefunction is square-integrable for the 
given boundary conditions (i.e., it belongs to the related 
Hilbert space). 

If the energy is non-negative and its distribution in the 
above integral has a dual-pole (resonance) structure in 
the complex plane, that is 
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where  iE00 = , and 
0<<<0 E , then )(E  is 

strongly peaked at 0E  and essentially only )(
0

xE  
contributes, i.e., to a good approximation 
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With the substitution  )/(= 0EEu , the integral 

becomes 
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Defining 0>= t  for forward evolution and 
0>/= 0 E  the above expression can be re-written as,  

 ,),(),()(=),(
0

0
 iSC

e
xtx

tiE

E 





   (5) 
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With uu ='  the first integral is  
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Similarly the second integral is  
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since the integrand in the first term is odd in u  and 
vanishes as || u . The wavefunction, therefore, 

becomes (dropping the primes on u )  
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At this stage the exponential-integral function  
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y
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is useful. Clearly,  
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Upon defining the function  

 ,)()(
2

=),( 11   iuEeiuEe
i

uf     (12) 

its derivative is calculated to be  
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Therefore, 
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Using the well-known expansion,  
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and keeping only the two first terms for large ||  i , 

the wavefunction becomes  
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Thus, the probability density for times large relative to 
1/222

0 )( E  is 
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and it has a term decaying exponentially with constant 
2Γ plus a 2t  term dominating at very large times as 
well as an “intermediate” decaying oscillatory term. In 
this example not only is the rise of exponential decay 
shown to emerge for a spectral function exhibiting a 
resonance (dual-pole) structure but the departure from 
this behavior at large times is clearly elucidated, having a 
power-law dependence. It is noteworthy that the non- 
exponential behavior is related to the cut-off in the 
energy interval. If the energy were to vary over the entire 
real axis then the residue theorem would yield exponen- 
tial decay. The short time behavior is very complicated 
as Equation (9) indicates and it is also not exactly 
exponential. 

3. Infinite Wall and Delta-function Potential 

The method to be employed to address the problem of an 
infinite wall plus a delta-function potential is standard 
and consists of the following steps: a) The time- 
independent solutions to Schrödinger equation are found 
subject to the boundary conditions of the problem. These 
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are stationary solutions (energy eigenfunctions) that span 
the Hilbert space of the given Hamiltonian. b) Since any 
finite or infinite, discrete or continuous linear combina- 
tion of the stationary solutions (basis functions), as long 
as it is square-integrable, is also a solution belonging to 
the given Hilbert space, exact analytical solutions can be 
developed by a superposition of the eigenfunctions with 
energy-dependent spectral functions multiplied by the 
standard oscillatory time-dependence of the stationary 
states. It is, obviously, necessary that the superposition 
integral over the energy converge. Spectral functions for 
which the resulting integrals are tractable are chosen here. 
The convergence as well as the square-integrability 
(normalizability) of the resulting wave functions are 
verified. c) The survival probability, i.e., the probability 
for finding the particle inside the potential well is 
calculated and its properties are studied analytically. 

The problem is defined by the one-dimensional 
repulsive potential,  
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with 0>L  and 0>0V . The steps outlined above are 

followed. 
a) The solutions to the time-independent Schrödinger 

equation,  
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(with particle mass 1=m , 1= , and 0E  for this 
potential) are,  
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where Ep 2=  and 
1,2,3C  are constants in x. These 

functions obey the boundary conditions  
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while the boundary conditions at 0=x  are automa- 
tically satisfied. The energy eigenfunctions, 

E , are not 

required to vanish at infinity since time-dependent func- 
tions, ),( tx , produced by Equation (1) for large x are 

acceptable solutions. Selecting C1 as the overall norma- 
lization constant, the boundary conditions at Lx =  
yield  
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rendering 2C  and 
3C  functions of the energy. The 

choice of 2C  or 
3C  as the normalization constant 

would introduce an energy-dependence in 
1C  and 

would effectively amount to different choices of spectral 
functions. 

The linearly independent energy eigenfunctions 
obtained are orthogonal under the inner product  
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with all wavefunctions in the defined Hilbert space 
identically vanishing for 0x . The orthogonality 
relation is  
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The Dirac  -function representation used is  
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b) The solution to the time-dependent Schrödinger 
equation, 
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can be written as the energy-convolution integral,   
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with )(E  a spectral function such that this integral is 

convergent for all x  and all t  and the resulting 
wavefunction is square-integrable. Note that square- 
integrability of ),( tx  also requires E  to be real. The 

overall normalization constant is, then, calculated from 
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The first choice of spectral function to be considered is  
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with K  a positive constant. This offers the advantage 
that the integrals above can be evaluated in closed form 
and the resulting wave function is square-integrable even 
without the presence of the convergence factor that 
appears in Equation (27). The time-dependent solution is, 
then,  
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is the overall normalization factor obtained by means of 
Equation (33). 

c) The probability density ),(),(= * txtx   can 

be calculated for the interior (region I) and the exterior 
(region II) of the potential well. It is presented in Figure 
1 at six times starting from 0=t , in increasing order. 
The initial wavefunction is not entirely localized inside 
the well. As time progresses the wavefunction spreads 
and tunnels through the potential barrier in both 
directions. The interference of the wave that propagates 
outwards through the barrier and the wave that is outside 
creates the observed ripples. Inside the well there are no 
ripples because the wavefunction is forced to be odd in 
x , having a node at 0=x . The centroid of the pro- 
bability density in region II at 0=t  is always located 
at L2 , regardless of the value of K . 

The survival probability is, then, defined to be  

.),(),(=)( *

0
dxtxtxtP

L

in            (39) 

This yields the closed-form result  
2 2

3/2
4 22

1 3 4 2 3 4 2

2
( ) = erf

8 8

K L

K t
in

KL KL
P t C e

K K t K K t

  


         

(40) 

A plot of the survival probability versus time is given in 
Figure 2. (0)inP  is controlled by K . It decreases as K  

increases, i.e., as the momentum spectrum becomes 
sharper. For example, if 3=L , (0)inP  is 0.9615 for 

0.1=K , 0.5 for 0.5=K , and 0.1468 for 1.2=K . A 
physical interpretation of this effect is that at 0=t  
some decays have already happened. On the other hand 
the decay becomes slower as K  increases. The 
expansion of 

inP  in inverse powers of time includes 

only odd terms with alternating signs. At large times the 
leading term, that has a positive sign, is proportional to 

3t , a clearly non-exponential behavior. 

4. Corrections to the Exponential Decay Law 

The law governing the decay of physical systems is 
typically assumed to be a simple exponential time- 
dependence of the number )(tN  of the systems that 

have not decayed until time t , i.e., ( ) = (0)N t N  
e ( )xp t , where   is the decay constant. As 
mentioned earlier this simple law is consistent with the 
Breit-Wigner curve and Fermi's golden rule if the final 
density of states is energy independent. It refers to the 
survival probability of a given initial energy resonance 
(quasi-stationary state). For the choice of spectral 
function given by Equation (34) the initial state is not a 
resonance state. If a very large number of systems is 
assumed to be initially described by ,0)(x  and a 
system is said to have decayed if the particle has exited 
the potential well, then the number of surviving systems 
is proportional to the probability inP , i.e., 

.
(0)

)(
=

(0)

)(

in

in

P

tP

N

tN               (41) 

The differential decay law is  

,)()(= dttNtdN              (42) 

where,   is, in general, dependent on time. Substi- 
tution from Equation (41) gives  

))].((l[=
1
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d
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In the case studied, Equation (40) yields  
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
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where 24/= tKKLz  . This function is plotted versus 
time in Figure 3. 

The decay parameter   peaks in time. Its maximal 

value, max , is smaller as K  or L  increases but does  
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Figure 1. The probability density for a potential consisting of an infinite wall and a repulsive delta function and using the 
spectral function given by Equation (34) at six times (from the upper panel in the left colume to the lower panel in the right 
column, = 0.0,0.3,0.6,0.9,1.2,1.5t ). In this plot = 3L , 

0 = 1V  and = 1 / 2K  

    
not depend on 0V . The peak and the small time interval 
around it correspond to an almost exponential decay. 
This, however, cannot be directly associated with the 
dominant (lowest energy) resonance that this potential 
accommodates. Resonances in the energy can be iden- 
tified as the maxima of the function [18] 
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plotted in Figure 4 for 3=L  and 1=0V . It can be  
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seen that the resonances are not exactly of the Breit- 
Wigner shape, therefore they do not decay exactly 
exponentially. The dominant (lowest peak energy) 
resonance has a width at half maximum of 0.1  
corresponding to a “life-time” of 10 . In a resonant 
decay the width in energy is expected to be equal to the 
value of the decay constant. Clearly, the width here is 
very different from 1.3max  (Figure 3). The reso- 

nance peak energy and width depend only on the strength 
and the geometry of the potential, while max  also 

depends on the spectral function. The choice )(1 E  used 

 

 

Figure 2. The survival probability for a potential consisting 
of an infinite wall and a repulsive delta function and using 
the spectral function given by Equation (34) versus time 
(solid line). In this plot = 3L , 0 = 1V  and = 1 / 2K . The 

dashed line represents the exponentially decaying function, 
( ) =f t  exp( )a bt , fitted to data points, calculated from 

the actual solution, in the range = 2t  to 4. The 2  per 

degree of freedom is of order 610-  
 

 

Figure 3. The decay parameter   for a potential 
consisting of an infinite wall and a repulsive delta function 
and using a spectral function that is exponential in the 
energy versus time. In this plot = 3L  and = 1 / 2K . 
There is no dependence on 

0V  

 

Figure 4. Energy resonances for the infinite wall plus 
repulsive delta function potential for = 3L  and 0 = 1V  

 
here does not give this resonance a large weight (as 
opposed to Winter’s choice which involves an initial 
state very close to the resonance for large 0V ). The 
lower energy components of the wavefunction indeed 
dominate and tunnel through the barrier at a slow rate 
smearing the resonance effect. Therefore, the limited 
quasi-expo- nential behavior observed in this study is not 
of a resonance nature. 

The expansion of   in inverse powers of time 
includes only odd terms with alternating signs. At large 
times the leading term, that has a positive sign, is 
proportional to 1t , affirming the non-exponential 
behavior. At very large times the change of   with 
time is rather slow. A fit to inP  at large times with an 
exponential curve in a finite time interval (as it is done in 
experiments) gives a very small value of 2  per degree 
of freedom (of order 610 ) so that the distinction 
between inP  at large times and a simple exponential 

decay function is numerically minute (Figure 2). 

5. Generalization 

Exact, closed-form, analytical solutions to the time- 
dependent Schrödinger equation for the potential con- 
sisting of an infinite wall and a repulsive delta function 
have been obtained by the authors of this article for other 
spectral function choices. For example, the choice  

2

1 cos 2
2

( ) =
2

L
i E

E
E L




                   (46) 

yields a square-integrable wavefunction. In the absence 
of the delta function at Lx =  this would produce an 
effectively square density pulse at 0=t  located 
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between 0=x  and /2= Lx . Due to the actual boundary 
conditions at Lx =  this spectral function also produces 
a cusp centered at Lx 2= . The survival probability is 
readily expressible in terms of Fresnel sine and cosine 
integrals [19]. Its asymptotic large time behavior is 3t . 

A question that naturally arises at this point is whether 
the asymptotic time behavior can be generalized to other 
possible solutions to this problem. This question was first 
addressed by Khalfin [1] specifically for the case of 
quasi-stationary initial states. Here a detailed answer is 
provided for non-resonance cases employing the general 
requirements of convergence and square-integrability. 
There is a one-to-one correspondence between spectral 
functions and square-integrable wavefunctions. This can 
be seen upon projecting the wavefunction at = 0t  on 
an energy eigenfunction and employing the orthogonality 
condition of Equation (28):  

.,0)()(
)(

1
=)( *

0
dxxx

Ew
E E  

        (47) 

Given an initial wavefunction the corresponding 
spectral function can, in principle, be constructed. 
Schrödinger’s time-dependent equation then produces 
the wavefunction at any later (or earlier) time. 

Convergence of the energy superposition integral in 
region (II) requires that the spectral function be finite at 

0E . In addition, in order for ),( tx  to be 

square-integrable, )(E  must vanish at large energies. 

This requirement can be made precise by inserting 
Equation (32) into Equation (33) and applying Equation 
(28) to obtain 

1.=|)(|)( 2

0
dEEEw 


         (48) 

Inspection of the function )(Ew , given in Equation 

(29), leads to the conclusion that |)(| E  must vanish 

for E  faster than E1/  due to a constant term 
in )(Ew . 

Assuming that )(E  satisfies the convergence condi- 

tions and has no resonance structure, its contribution to 
the energy superposition integral giving ),()( txI , in 

region (I), comes mostly from low energies. Again, this 
situation must be contrasted to the case studied by 
Winter [2]. Then at any x  in region (I) the wave- 
function can be approximated as  

( )( )
1 0

( , ) (0) 2 .
E tmaxI iEtx t C E x e dE     (49) 

The upper limit of the integration is chosen as follows: 
the factor )(exp iEt  oscillates more rapidly as a 

function of the energy as t  increases. At very large 

times these oscillations eventually lead to a vanishing 
contribution to the integral. Therefore, the integral can be 
cut off at a point )(tEmax  whose first order term in the 

expansion in powers of t1/  is tymax/ , where maxy  is 

constant in t . At low energies )(E  is replaced by its 

(finite and non-zero) value at 0=E  and the function 

)2(sin Ex  is replaced by its argument at a given x . 

Then, the variable change Ety =  yields  

.2(0)
0

3/2
1

)( dyeytxC iymaxyI       (50) 

For small maxy  the integral is approximately 

3/22 [(2 / 3) maxy
5/2(2 / 5) ]maxi y . The wavefunction in region 

(I) is to the first non-vanishing order 

,(0)),( 3/2
1

)(  tMxCtxI           (51) 

where M is a constant and the survival probability 

(Equation (39)) decreases with time as 3t . Therefore, 
in order for the wavefunction to be square-integrable, the 
spectral function must be finite at 0E  and decrease 

at large E  faster than E1/ . Then, if 0(0)  , 

necessarily, the survival probability asymptotically 
decreases as 3t . 

This argument can be extended to any finite value of 
x  including region (II) since the coefficients 2C  and 

3C  are at most of (1)O  for small E . Therefore, the 

integral of the probability density over any finite range of 
x  is finite (even without the convergence factor present 

in Equation (27)) and it decreases asymptotically as 3t . 
The constant M  in Equation (51) can be exactly 

evaluated if )(E  decreases at large E  faster than 

E1/ . Then if )(E  is analytic in the fourth quadrant of 

the complex E -plane the contour integral of ( ) sinE  

( 2 )x E e ( )xp iEt along a closed path, consisting of the 

positive real axis from R to 0, the negative imaginary 
axis from 0 to iR  and a quarter-circle,  , of radius R, 
is zero (Figure 5). The integral along   is bounded by 
a constant times kR1/  with |=| ER  and 1>k  and, 

consequently, vanishes in the limit R . Then the 
integration over the real axis gives the same result as that 
over the imaginary axis. The variable change iyE =  

with y real, then, yields  

 ( )
1 0

( , ) = ( )sin 2 .I ytx t iC iy x iy e dy 
    (52) 

For large times only small values of y  contribute to 

the integral. The spectral function is substantially 
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different from zero only close to the origin and can be 
replaced by (0)  and be pulled out of the integral 

while the sine function can be approximated by its 
argument in a finite range of x . The remaining integral 
is evaluated as a gamma function and gives  

3/2/43
1

)( /2(0)),(  texCtx iI    (53) 

confirming the earlier result. 
The survival probability, 

inP , discussed thus far refers 

to the presence of the particle inside the potential well. 
As has been shown in the previous section the spectral 
function of Equation (34) produces non-zero probability 
density outside the well at 0=t  for 0>K . If the 
“interior” of the well is defined to extend to x  much 
larger than L2  (without moving the delta function from 

Lx = ) then at 0=t  the probability to find the particle  
“inside” can be arbitrarily close to unity. Specifically the 
“extended” survival probability )(4LPin  can be defined 

by extending the integral of Equation (39) to Lx 4= . 
This integral has been evaluated analytically and is 
plotted in Figure 6 as a function of time. As predicted 
and verified by an expansion of )(4LPin  in inverse 
powers of time, its asymptotic time dependence is 3t . 
An interesting feature of this plot is the presence of a 
step-wise behavior which can be attributed to inter- 
ference between waves moving in opposite directions. 

The spectral function  
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


         (54) 

has also been investigated. This yields an exact, closed 
form result which is square integrable [19]. In this case 

0=(0)3  so that the survival probability does not vary 

as 3t . Rather, it varies as 4t . A variation of the above 
analysis shows this to be the expected behavior. It should 
be clear that the lowest order non-vanishing term in an 
expansion of the spectral function about zero will control 
the behavior. 

6. Numerical Examples 

The discussion in the previous sections indicates that if 
the initial wavefunction is not near a resonance state of 
the given potential, exponential decay of the survival 
probability should not be expected. However, analytical, 
closed form solutions can only be obtained for a small 
number of potentials and initial states. A numerical 
approach is, then, needed to study arbitrary potentials 
and initial functions. To this end the time-dependent 
Schrödinger equation can be solved using the staggered 
leap-frog method on a grid of spatial points of lattice 

constant x  and with an appropriate time-step t . 
The method consists of computing the wavefunction at 
time tt  2  starting with the function at time t  and 
updating it with the Hamiltonian at tt  , as follows: 

)].,()(ˆ[2),(=)2,( ttxxHtitxttx    (55) 

This method being time-symmetric can be made very 
stable for a time step that is much smaller than the 
spacial lattice constant and, on a fine grid, it is also very 
accurate. The spatial derivative in the Hamiltonian, 

)(/1/2=ˆ 22 xVdxdH  , is computed using a spatially 

symmetric formula. The spatial grid is chosen to be 
much larger than the dimensions of the problem and on 
its edges reflecting boundary conditions are applied (i.e., 

 

 

Figure 5. The complex plane contour used to calculate the 
integral over E. 

 

 

Figure 6. The “extended” survival probability for a 
potential consisting of an infinite wall and a repulsive delta 
function and using the spectral function given by Equation 
(34) versus time. In this plot = 3L , 0 = 1V  and = 1 / 2K . 
The step-wise behavior is due to interference of waves 
moving in opposite directions 
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the wavefunction is forced to be 0 there). This ensures 
that no probability density leaks out of the grid but 
requires that the reflected waves not interfere with the 
wavefunction in the region of interest. Therefore, when 
such interference starts (inevitably) occurring at appre- 
ciable levels the computation is stopped. The Schrö- 
dinger equation is self-dispersive and does not obey 
relativistic causality. As a result, very fast moving or 
even superluminal components of the wavefunction can 
occur and reflect on the grid boundaries. The stability of 
the numerical solution is checked by evaluating the norm 
of the wavefunction at regular intervals to ensure it is 
equal to 1. This is achieved with 910   precision. Seve- 
ral cases, such as free gaussian wavepackets (spreading 
with time) or a harmonic oscillator potential with an 
initial wavefunction that is a linear combination of 
eigenstates, have been solved to verify that the method 
accurately reproduces known analytical results. 

The numerical technique is used to study the short- 
time behavior of a wavefunction that is initially set in a 
potential well of finite size and strength and then tunnels 
through its walls. Two simple potential functions are 
used to this end. The first one is a cut harmonic oscillator 
potential, 
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and the second is a cut linear potential,  
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The initial wavefunction is chosen to be a gaussian 
with no initial central momentum. Results for the 
survival probability, inP , defined as the integral of the 

density inside the potential well, for the case of the cut 
harmonic oscillator potential are shown in Figure 7. 
Here cT  indicates the classical period corresponding to 
the infinite harmonic oscillator potential with 1=m . 
There is a distinctive step-wise decay due to oscillations 
of the wavefunction. Each time the probability drops 
sharply a wavepacket is emitted on either side of the well. 
The derivative of inP  with respect to time is also shown 
to illustrate that it approaches 0 periodically. The 
qualitative features of the decay are not sensitive to the 
ratio of the standard deviation of the gaussian to the 
value of B . In the same manner results for the cut 

 

 

Figure 7. Results for a cut harmonic oscillator potential given by Equation (56) ( = 0.0001  and B = 200) with an initially 
gaussian wavepacket and 0 central momentum. Upper: the survival probability versus time exhibiting periodic flat regions; 
Lower: the derivative of the survival probability. The negative peaks occur when wavepackets emitted from the potential. cT  
is the period for the infinite harmonic oscillator potential with spring constant, α. This behavior is similar to that seen with a 
cut linear potential 
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Figure 8. Results for a cut linear potential given by Equation (57) with an initially gaussian wavepacket having 0 central 
momentum. Upper: the survival probability versus time exhibiting periodic flat regions; Lower: the derivative of the survival 
probability. The negative peaks occur when wavepackets are emitted from the potential. This behavior is similar to that seen 
with a cut harmonic oscillator potential 

 

 

Figure 9. Results for a cut harmonic oscillator potential given by Equation (56) ( = 0.0001  and B = 200) with an initially 
gaussian wavepacket that is the ground state of the infinite potential, having non-zero central momentum = 1.0p . Upper: 

the survival probability versus time exhibiting periodic flat regions; Lower: the derivative of the survival probability. The 
negative peaks occur when wavepackets emitted from the potential    



Exact Analytical and Numerical Solutions to the Time-Dependent Schrödinger Equation for a 
One-Dimensional Potential Exhibiting Non-Exponential Decay at all Times 

Copyright © 2010 SciRes.                                                                                 JMP 

135

 

 
Figure 10. The probability density for a cut harmonic 
oscillator potential given by Equation (56) ( = 0.0001  and 
B = 200) with an initially gaussian wavepacket that is the 
ground state, 0u , of the infinite potential, having non-zero 
central momentum, = 1.0p , captured at about 2.5 
classical periods of the infinite potential. The classical 
amplitude of oscillations is = 100cA . All quantities are 
expressed in natural units. Wavepackets are periodically 
emitted from the non-zero potential region, propagate 
outwards and spread out. The first emitted packet is 
traveling to the right and at this time frame is centered at 

3500x . The second emitted packet is traveling to the left 
and at this moment is centered at 900x . The interior 
wavefunction is hitting the left wall of the potential well at 
this moment 
 
linear potential are shown in Figure 8 with similar initial 
conditions. Again the decay is non-exponential with a 
step-wise behavior. To illustrate this result further an 
initial gaussian with non-zero central velocity, 0v , is set 
in a cut harmonic oscillator potential. This is accom- 
plished by multiplying the initial gaussian by )(exp ipx , 
where 0=p mv  is the central momentum. The results 
are shown in Figure 9. In this case inP  decays in larger 
steps. The emission of wavepackets is shown in Figure 
10,where the probability density is plotted versus x at a 
particular time. 

7. Conclusions 

Exponential time-dependence has been shown to be only 

an approximation to any real decay process even in the 
case of commonly encountered resonance states. For 
resonances, at large times a 2t dependence emerges 
preceded by some oscillations. The time-dependent 
Schrödinger equation for non-resonance initial states has 
been solved utilizing the eigenfunctions for a given 
Hamiltonian. It has been applied to the case of a potential 
consisting of an infinite wall and a repulsive delta 
function. Exact, analytical, normalized solutions have 
been obtained in closed form. In the case specifically 
exhibited, i.e., the choice spectral function )(1 E  
(Equation (34)), the survival probability, which is exactly 
detailed in Equation (40), exhibits a non-exponential 
behavior at all times. At large times it decays as 3t . To 
ensure square- integrability the spectral function must be 
finite at 0E  and decrease to 0 at large energies 
faster than E1/ . It was shown that this behavior 
pertains to all square-integrable wavefunctions that are 
solutions to this problem for which (0) 0  . Other 
spectral functions result in decays varying as t –n with n 
greater than 3. With the appropriate choice of spectral 
functions which, due to linear independence need not be 
the same for waves propagating in different directions, 
the method could be applied to a variety of potentials. 
Numerical studies of finite potential wells show that 
non-exponential decay prevails at short times and can 
exhibit an interesting step-wise behavior. In conclusion 
quantum mechanics predicts non-exponential decay for 
all systems studied. 
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