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Abstract 
 
Support vector machine (SVM) is a popular pattern classification method with many application areas. SVM 
shows its outstanding performance in high-dimensional data classification. In the process of classification, 
SVM kernel parameter setting during the SVM training procedure, along with the feature selection signifi-
cantly influences the classification accuracy. This paper proposes two novel intelligent optimization methods, 
which simultaneously determines the parameter values while discovering a subset of features to increase 
SVM classification accuracy. The study focuses on two evolutionary computing approaches to optimize the 
parameters of SVM: particle swarm optimization (PSO) and genetic algorithm (GA). And we combine above 
the two intelligent optimization methods with SVM to choose appropriate subset features and SVM parame-
ters, which are termed GA-FSSVM (Genetic Algorithm-Feature Selection Support Vector Machines) and 
PSO-FSSVM(Particle Swarm Optimization-Feature Selection Support Vector Machines) models. Experi-
mental results demonstrate that the classification accuracy by our proposed methods outperforms traditional 
grid search approach and many other approaches. Moreover, the result indicates that PSO-FSSVM can ob-
tain higher classification accuracy than GA-FSSVM classification for hyperspectral data. 
 
Keywords: Support Vector Machine (SVM), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 

Feature Selection, Optimization 

1. Introduction 
 
Support vector machine (SVM) was first proposed by 
Vapnik [1] and has recently been applied in a range of 
problems including pattern recognition, bioinformatics 
and text categorization. SVM classifies data with differ-
ent class labels by determining a set of support vectors 
that are members of the set of training inputs that outline 
a hyperplane in the feature space. When using SVM, two 
issues should be solved: how to choose the optimal input 
feature subset for SVM, and how to set the best kernel 
parameters. Traditionally, the two issues are solved 
separately ignoring their close connections, this always 
leads low classification accuracy. These two problems 
are crucial, because the feature subset choice influences 
the appropriate kernel parameters and vice versa [2]. 
Therefore, obtaining the optimal feature subset and SVM 
parameters must occur simultaneously. 

Feature selection is used to identify a powerfully pre-
dictive subset of fields within a database and reduce the 

number of fields presented to the mining process. By 
extracting as much information as possible from a given 
data set while using the smallest number of features, we 
can save significant computational time and build models 
that generalize better for unseen data points. Feature 
subset selection is an important issue in building an 
SVM-based classification model. 

As well as feature selection, the proper setting of pa-
rameters for the SVM classifier can also increase classi-
fication accuracy. The parameters that should be opti-
mized include penalty parameter C and the kernel func-
tion parameters such as the gamma (γ) for the radial basis 
function (RBF) kernel. To design a SVM classifier, one 
must choose a kernel function, set the kernel parameters 
and determine a soft margin constant C (penalty parame-
ter). As a rule, the Grid algorithm is an alternative to 
finding the best C and gamma (γ) when using the RBF 
kernel function. However, this method is time consuming 
and does not perform well [3]. Moreover, the Grid algo-
rithm can not perform the feature selection task. 
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Both feature subset selection and model parameter set-
ting substantially influence classification accuracy. The 
optimal feature subset and model parameters must be 
determined simultaneously. Since feature subset and 
model parameters greatly affects the classification accu-
racy. 

To simultaneously optimize the feature subset and the 
SVM kernel parameters, this study attempts to increase 
the classification accuracy rate by employing two evolu-
tionary computing optimization-based approaches: ge-
netic algorithm (GA) and particle swarm optimization 
(PSO) in SVM. These novel approaches are termed 
PSO-FSSVM (Particle Swarm Optimization-Feature Se- 
lection Support Vector Machines) and GA-FSSVM (Ge-
netic Algorithm-Feature Selection Support Vector Ma-
chines). The developed approaches not only tune the 
parameter values of SVM, but also identify a subset of 
features for specific problems, maximizing the classifi-
cation accuracy rate of SVM. This makes the optimal 
separating hyperplane obtainable in both linear and 
non-linear classification problems.  

The remainder of this paper is organized as follows. 
Section 2 reviews pertinent literature on SVM and the 
feature selection. Section 3 then describes basic GA 
concept and GA-FSSVM model of feature selection and 
parameter optimization. Also, Section 3 then describes in 
detail the developed PSO-FSSVM approach for deter-
mining the parameter values for SVM with feature selec-
tion. Section 4 compares the experimental results with 
those of existing traditional approaches. Conclusions are 
finally drawn in Section 5, along with recommendations 
for future research. 
 
2. Literature Review 
 
Approaches for feature selection can be categorized into 
two models, namely a filter model and a wrapper model 
[4]. Statistical techniques, such as principal component 
analysis, factor analysis, independent component analy-
sis and discriminate analysis can be adopted in filter- 
based feature selection approaches to investigate other 
indirect performance measures, most of which are based 
on distance and information. Chen and Hsieh [5] pre-
sented latent semantic analysis and web page feature 
selection, which are combined with the SVM technique 
to extract features. Gold [6] presented a Bayesian view-
point of SVM classifiers to tune hyper-parameter values 
in order to determine useful criteria for pruning irrele-
vant features. 

The wrapper model [7] applies the classifier accuracy 
rate as the performance measure. Some researchers have 
concluded that if the purpose of the model is to minimize 
the classifier error rate, and the measurement cost for all 
the features is equal, then the classifier’s predictive ac-
curacy is the most important factor. Restated, the classi-

fier should be constructed to achieve the highest classi-
fication accuracy. The features adopted by the classifier 
are then chosen as the optimal features. In the wrapper 
model, meta-heuristic approaches are commonly em-
ployed to help in looking for the best feature subset. Al-
though meta-heuristic approaches are slow, they obtain 
the (near) best feature subset. Shon [8] employed GA to 
screen the features of a dataset. The selected subset of 
features is then fed into the SVM for classification test-
ing. Zhang [9] developed a GA-based approach to dis-
cover a beneficial subset of features for SVM in machine 
condition monitoring. Samanta [10] proposed a GA ap-
proach to modify the RBF width parameter of SVM with 
feature selection. Nevertheless, since these approaches 
only consider the RBF width parameter for the SVM, 
they may miss the optimal parameter setting. Huang and 
Wang [11] presented a GA-based feature selection and 
parameters optimization for SVM. Moreover, Huang et 
al. [12] utilized the GA-based feature selection and pa-
rameter optimization for credit scoring. 

Several kernel functions help the SVM obtain the op-
timal solution. The most frequently used such kernel 
functions are the polynomial, sigmoid and radial basis 
kernel function (RBF). The RBF is generally applied 
most frequently, because it can classify high-dimensional 
data, unlike a linear kernel function. Additionally, the 
RBF has fewer parameters to set than a polynomial ker-
nel. RBF and other kernel functions have similar overall 
performance. Consequently, RBF is an effective option 
for kernel function. Therefore, this study applies an RBF 
kernel function in the SVM to obtain optimal solution. 
Two major RBF parameters applied in SVM, C and γ, 
must be set appropriately. Parameter C represents the 
cost of the penalty. The choice of value for C influences 
on the classification outcome. If C is too large, then the 
classification accuracy rate is very high in the training 
phase, but very low in the testing phase. If C is too small, 
then the classification accuracy rate is unsatisfactory, 
making the model useless. Parameter γ has a much 
greater influence on classification outcomes than C, be-
cause its value affects the partitioning outcome in the 
feature space. An excessively large value for parameter γ 
results in over-fitting, while a disproportionately small 
value leads to under-fitting. Grid search [13] is the most 
common method to determine appropriate values for C 
and γ. Values for parameters C and γ that lead to the 
highest classification accuracy rate in this interval can be 
found by setting appropriate values for the upper and 
lower bounds (the search interval) and the jumping in-
terval in the search. Nevertheless, this approach is a local 
search method, and vulnerable to local optima. Addition-
ally, setting the search interval is a problem. Too large a 
search interval wastes computational resource, while too 
small a search interval might render a satisfactory out-
come impossible. 
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In addition to the commonly used grid search ap-
proach, other techniques are employed in SVM to im-
prove the possibility of a correct choice of parameter 
values. Pai and Hong [14] proposed an SA-based ap-
proach to obtain parameter values for SVM, and applied 
it in real data; however, this approach does not address 
feature selection, and therefore may exclude the optimal 
result. As well as the two parameters C and γ, other fac-
tors, such as the quality of the feature's dataset, may in-
fluence the classification accuracy rate. For instance, the 
correlations between features influence the classification 
result. Accidental removal of important features might 
lower the classification accuracy rate. Additionally, some 
dataset features may have no influence at all, or may 
contain a high level of noise. Removing such features 
can improve the searching speed and accuracy rate. 

It is worth underlining that the kernel-based imple-
mentation of SVM involves the problem of the selection 
of multiple parameters, including the kernel parameters 
(e.g., the γ and p parameters for the Gaussian and poly-
nomial kernels, respectively) and the regularization pa-
rameters C. 

Studies have also illustrated that a radial basis kernel 
yields the best results in remote sensing applications [15, 
16]. We chose to use the radial basis kernel for SVM in 
this study. The verification of the applicability of other 
specialized kernel functions for the classification of re-
mote sensing data may be used in future studies. The 
equation for the radial basis kernel is 

( ) ( )2, exp || ||i iK x x x xγ= − −          (1) 

where γ represents a parameter inversely proportional to 
the width of the Gaussian kernel. 
 
3. The Proposed GA-FSSVM and 

PSO-FSSVM Models 
 
3.1. Genetic Algorithm 
 
The genetic algorithms are inspired by theory of evolu-
tion; it is type of an evolutionary computing. The prob-
lems are solved by an evolutionary process resulting in a 
fittest solution in genetic algorithm. A genetic algorithm 
(GA) is used to solve global optimization problems. The 
procedure starts from a set of randomly created or se-
lected possible solutions, referred to as the population. 
Every individual in the population means a possible so-
lution, referred to as a chromosome. Within every gen-
eration, a fitness function should be used to evaluate the 
quality of every chromosome to determine the probabil-
ity of it surviving to the next generation; usually, the 
chromosomes with larger fitness have a higher survival 
probability. Thus, GA should select the chromosomes 
with larger fitness for reproduction by using operations 
like selection, crossover and mutation in order to form a 

new group of chromosomes which are more likely to 
reach the goal. This reproduction goes through one gen-
eration to another, until it converges on the individual 
generation with the most fitness for goal functions or the 
required number of generations was reached. The opti-
mal solution is then determined. 

GA coding strategies mainly include two sectors: one 
sector recommends the least digits for coding usage, such 
as binary codes, another one recommends using the 
real-valued coding based on calculation convenience and 
accuracy. Binary codes are adopted for the decision 
variables in solving the discrete problems, a suitable en-
coding scheme is needed to encode the chromosome of 
each individual, in our study, an encoding scheme is 
usually a binary string. We may define the length of bit 
string according the precision. 
 
3.2. GA-FSSVM Model 
 
As mentioned before, a kernel function is required in 
SVM for transforming the training data. This study 
adopts RBF as the kernel function to establish support 
vector classifiers, since the classification performance is 
significant when the knowledge concerning the data set 
is lacking. Therefore, there are two parameters, C and γ, 
required within the SVM algorithm for accurate settings, 
since they are closely related to the learning and predict-
ing performance. However, determining the values ex-
actly is difficult for SVM. Generally, to find the best C 
and γ, a given parameter is first fixed, and then within 
the value ranges another parameter is changed and cross 
comparison is made using the grid search algorithm. This 
method is conducted with a series of selections and 
comparisons, and it will face the problems of lower effi-
ciency and inferior accuracy when conducting a wider 
search. However, GA for reproduction could provide the 
solution for this study. The scheme of an integration of 
GA and SVM is shown in Figure 1, to establish a train-
ing and SVM classification model that can be used to 
determine optimized SVM parameters and subset fea-
tures mask. Following the above scheme of the proposed 
GA-FSSVM model, Figure 1 describes the operating 
procedure in this study. 

A fitness function assesses the quality of a solution in 
the evaluation step. The crossover and mutation func-
tions are the main operators that randomly impact the 
fitness value. Chromosomes are selected for reproduction 
by evaluating the fitness value. The fitter chromosomes 
have higher probability to be selected into the recombi-
nation pool using the roulette wheel or the tournament 
selection methods. New population replaces the old 
population using the elitism or diversity replacement 
strategy and forms a new population in the next genera-
tion. The evolutionary process operates many genera-
tions until termination condition is satisfied. 
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Figure 1. System architecture of the integrated GA-FSSVM 
scheme. 
 

To implement our proposed approach, this research 
uses the RBF kernel function for the SVM classifier be-
cause the RBF kernel function can analysis higher-di-
mensional data and requires that only two parameters, C 
and γ be defined When the RBF kernel is selected, the 
parameters (C and γ) and features used as input attributes 
must be optimized using our proposed GA-based system. 
Therefore, the chromosome comprises three parts: C, γ 
and the features mask. However, these chromosomes 
have different parameters when other types of kernel 
functions are selected. The binary coding system is used 
to represent the chromosome. 

Figure 2 shows the binary chromosome representa- 
tion of our design. In Figure 2, 1

cg ~ nc
cg  represents the 

value of parameter C, 1gγ ~ ng γ
γ  represents the parameter 

value γ, and 1
fg ~ n f

fg  represents the feature mask. cn  
is the number of bits representing parameter C, nγ  is 
the number of bits representing  parameter g, and fn  
is the number of bits representing the features. Note that 
we can choose cn  and nγ  according to the calculation 
precision required, and that fn  equals the number of 
features varying from the different datasets. In Figure 2, 
the bit strings representing the genotype of parameter C 
and γ should be transformed into phenotype. Note that 
the precision of representing parameter depends on the  

 
fnncn

f
i
ff

i
c

i
cc ggggggggg KKKKKK 111 γ

γγγ

 
Figure 2. The chromosome comprise three parts: C, γ and 
the features mask. 
 
length of the bit string, and the minimum and maximum 
value of the parameter is determined by the user. For 
chromosome representing the feature mask, the bit with 
value ‘1’ represents the feature is selected, and ‘0’ indi-
cates feature is not selected. In our study, classification 
accuracy, the numbers of selected features are the criteria 
used to design a fitness function. Thus, for the individual 
with high classification, a small number of features pro-
duce a high fitness value. 
 
3.3. Particle Swarm Optimization 
 
Particle swarm optimization (PSO) [17] is an emerging 
population-based meta-heuristic that simulates social 
behavior such as birds flocking to a promising position to 
achieve precise objectives in a multi-dimensional space. 
Like evolutionary algorithms, PSO performs searches 
using a population (called swarm) of individuals (called 
particles) that are updated from iteration to iteration. To 
discover the optimal solution, each particle changes its 
searching direction according to two factors, its own best 
previous experience (pbest) and the best experience of all 
other members (gbest). They are called pbest the cogni-
tion part, and gbest the social part. Each particle repre-
sents a candidate position (i.e., solution). A particle is 
considered as a point in a D-dimension space, and its 
status is characterized according to its position and ve-
locity. The D-dimensional position for the particle i at 
iteration t can be represented as 1 2{ , , }t t t t

i i i iDx x x x= … . 
Likewise, the velocity (i.e., distance change), which is 
also an D-dimension vector, for particle i at iteration t 
can be described as 1 2{ , , }t t t t

i i i iDv v v v= … .  

Let 1 2{ , , }t t t t
i i i iDp p p p= …  represent the best solution 

that particle i has obtained until iteration t, and 

1 2{ , , }t t t t
g g g gDp p p p= …  denote the best solution obtained 

from t
ip  in the population at iteration t. To search for the 

optimal solution, each particle changes its velocity ac-
cording to the cognition and social parts as follows: 

( ) ( )1
1 1 2 2

t t t t t t
id id id id gd idV V c r P x c r P x−= + − + −          (2) 
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 (3) 

d=1, 2,…, D where c1 indicates the cognition learning 
factor; c2 indicates the social learning factor, and r1 and 
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r2 are random numbers uniformly distributed in U(0,1). 
Each particle then moves to a new potential solution 
based on the following equation: 1t t t

id id idX X V+ = + , d = 1, 
2,…, D. The basic process of the PSO algorithm is given 
as follows. 

Step 1: (Initialization) Randomly generate initial par-
ticles. 

Step 2: (Fitness) Measure the fitness of each particle in 
the population. 

Step 3: (Update) Compute the velocity of each particle 
with Equation (2). 

Step 4: (Construction) For each particle, move to the 
next position according to Equation (3). 

Step 5: (Termination) Stop the algorithm if termina-
tion criterion is satisfied; return to Step 2 otherwise the 
iteration is terminated if the number of iteration reaches 
the pre-determined maximum number of iteration. 

Figure 3 shows the flowchart for PSO-SVM classifier. 
Based on the rules of particle swarm optimization, we 

set the required particle number first, and then the initial 
coding alphabetic string for each particle is randomly 
produced. In our study, we coded each particle to imitate 
a chromosome in a genetic algorithm. 
 
3.4. PSO-FSSVM Model 
 
In this following of the section, we describe the proposed 
SVM-PSO classification system for the classification of 
high-dimensional data. As mentioned in the Introduction, 
the aim of this system is to optimize the SVM classifier 
accuracy by automatically: 1) detecting the subset of the 
best discriminative features (without requiring a user- 
defined number of desired features) and 2) solving the 
SVM-RBF model selection issue (i.e., estimating the best 
values of the regularization and kernel parameters). In 
order to attain this, the system is derived from an opti-
mization framework based on PSO. 

This study developed a PSO approach, termed PSO- 
FSSVM, for parameter determination and feature selec-
tion in the SVM. Without feature selection, two decision 
variables, designated C and γ are required. For the fea-
ture selection, if n features are required to decide which 
features are chosen, then 2 + n decision variables must be 
adopted. The value of n variables ranges between 0 and 1. 
If the value of a variable is less than or equal to 0.5, then 
its corresponding feature is not chosen. Conversely, if 
the value of a variable is greater than 0.5, then its corre-
sponding feature is chosen. Figure 4 illustrates the solu-
tion representation. Pc = C, Pγ = γ, an = Feature n is se-
lected or not. 

The following shows the while process for PSO- 
FSSVM. First, the population of particles is initialized, 
each particle having a random position within the 
D-dimensional space and a random velocity for each 
dimension. Second, each particle’s fitness for the SVM is  

 
Figure 3. The process of PSO algorithm for solving optimi-
zation problems. 
 

1 2 3 ………… n + 2 

Pc Pγ a1 ………… an 

Figure 4. Solution representation. 
 
evaluated. The each particle’s fitness in this study is the 
classification accuracy. If the fitness is better than the 
particle’s best fitness, then the position vector is saved 
for the particle. If the particle’s fitness is better than the 
global best fitness, then the position vector is saved for 
the global best. Finally the particle’s velocity and posi-
tion are updated until the termination condition is satis-
fied. Figure 5 shows the architecture of the developed 
PSO-based parameter determination and feature selection 
approach for SVM. 
 
4. Experimental Results 
 
To evaluate the classification accuracy of the proposed 
system in different classification tasks, we tried two 
real-world datasets: the UCI database [18] and hyper-
spectral benchmark data set [19]. These two data sets 
have been frequently used as benchmarks to compare the 
performance of different classification methods in the 
literature.  

Our implementation was carried out on the Matlab 7.0 
development environment by extending the LIBSVM  
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Figure 5. The architecture of the proposed PSD-SVM based parameters determination and feature selection approach for 
SVM. 
 
which is originally designed by Chang and Lin [20]. The 
empirical evaluation was performed on Intel Pentium 
Dual-Core CPU running at 1.6 GHz and 2G RAM. 
 
4.1. UCI Dataset  
 
These UCI datasets consist of numeric and nominal at-
tributes. To guarantee valid results for making predic-
tions regarding new data, the dataset is further randomly 
partitioned into training sets and independent test sets via 
a k-fold cross validation. Each of the k subsets acted as 
an independent holdout test set for the model trained 
with the remaining k – 1 subsets. The advantages of cross 
validation are that all of the test sets were independent 
and the reliability of the results could be improved. The 
data set is divided into k subsets for cross validation. A 
typical experiment uses k = 10. Other values may be used 
according to the data set size. For a small data set, it may 
be better to set larger k, because this leaves more exam-
ples in the training set. This study used k = 10, meaning 
that all of the data will be divided into 10 parts, each of 
which will take turns at being the testing data set. The 
other nine data parts serve as the training data set for 
adjusting the model prediction parameters. 

The Grid search algorithm is a common method for 
searching for the best C and γ . Figure 6 shows the 
process of Grid algorithm combined with SVM classifier. 
In the Grid algorithm, pairs of (C, γ ) are tried and the 
one with the best cross-validation accuracy is chosen.  

After identifying a ‘better’ region on the grid, a finer grid 
search on that region can be conducted. This research 
conducted the experiments using the proposed GA-SVM 
and PSO-SVM approaches and the Grid algorithm. The 
results from the proposed method were compared with 
that from the Grid algorithm. In all of the experiments 
10-fold cross validation is used to estimate the accuracy 
of each learned classifier. 

The detail parameter setting for genetic algorithm is as 
the following: population size 20, crossover rate 0.6, 
mutation rate 0.05, single-point crossover, roulette wheel 
selection, and elitism replacement, we set nc = 12, nγ = 15, 
the value of nf depends on the experimental datasets 
stated in Table 2. According to the fitness function and 
the number of selected features, we can compare differ-
ent methods. The GA-FSSVM and PSO-FSSVM related 
parameters is described in Table 3. 

The termination criterion is that the generation number 
reaches generation 100. The best chromosome is ob-
tained when the termination criteria satisfy. Taking the 
German dataset, for example, over accuracy, number of 
selected features for each fold using GA-FSSVM ap-
proach, PSO-FSSVM approach and Grid algorithm are 
shown in Table 1. For GA-SVM approach, its average 
accuracy is 87.08%, and average number of features is 
11.46, and for PSO-SVM approach, the average accuracy 
is 85.47% and average number of features is 10.92, but 
for Grid algorithm, its average accuracy is 81.46%, and 
all 24 features are used.  
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Table 1. Experimental result for German dataset using GA-based, PSO-based and grid algorithm approach. 

Fold # GA-FSSVM PSO-FSSVM Grid algorithm 

 overall accuracy selected features overall accuracy [%] selected features overall accuracy [%] 

1 85 12 91 9 79 

2 86 8 90 12 80 

3 87 14 87 10 78 

4 88 11 86 11 81 

5 87 10 83 14 84 

6 84 9 84 13 80 

7 86 14 87 14 82 

8 88 14 86 10 82 

9 87 13 83 10 86 

10 89 10 88 7 82 

11 91 13 81 11 81 

12 85 13 82 11 84 

13 89 8 83 10 80 

Average 87.076923 11.46153 85.461538 10.923076 81.461538 

 
Table 2. Experimental results for test dataset. 

Names GA-FSSVM PSO-FSSVM Grid algorithm 

 overall accuracy selected eatures overall accuracy [%] selected features overall accuracy [%] 

Australian 88.2 5.87 91.34 6.23 87.14 

Heart disease 92.05 7.53 95.12 5.76 85.47 

Vehicle 88.43 9.34 93.02 11.5 83.33 

Sonar 96.26 18.23 98.24 16.25 95.19 

breast cancer 95.87 1.39 98.9 1.2 94.67 

 
Table 3. Parameters setting. 

PSO-FSSVM GA-FSSVM Grid Algorithm 

Parameter value Parameter Value Parameter Value 

Population size 20 Population size 20 C 0…215 

Number of generations 100 Number of generations 100 γ 2-15 …1 

Vmax 4 Probability of crossover 0.6   

C1,C2 2 Probability of mutation 0.05   
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Figure 6. Parameters setting using grid algorithm. 

 
To compare the two proposed evolutionary computing 

approaches with the Grid algorithm, as shown in Table 1. 
Generally, compared with the Grid algorithm, the two 
proposed approaches have good accuracy performance 
with fewer features. 
 
4.2. Hyperspectral Dataset 
 
4.2.1. Dataset Description 
To validate the proposed intelligent optimization meth-
ods, we also compare the two evolutionary computing 
methods with traditional classification method for hy-
perspectral data classification. The classifier is used by 
SVM. 

The hyperspectral remote sensing image used in our 
experiments is a section of a scene taken over northwest 
Indiana’s Indian Pines by the AVIRIS sensor in 1992 
[19]. From the 220 spectral channels acquired by the 
AVIRIS sensor, 20 channels are discarded because af-
fected by atmospheric problems. From the 16 different 
land-cover classes available in the original ground truth, 
seven classes are removed, since only few training sam-
ples were available for them (this makes the experimen-
tal analysis more significant from the statistical view-
point). The remaining nine land-cover classes were used 
to generate a set of 4757 training samples (used for 
learning the classifiers) and a set of 4588 test samples 
(exploited for assessing their accuracies) (see Table 4). 
The origin image and reference image are shown in Fig-
ure 7. 
 
4.2.2. Experiment Settings 
In the experiments, when using the proposed intelligent 
optimization methods, we considered the nonlinear SVM 
based on the popular Gaussian kernel (referred to as 
SVM-RBF). The related parameters C and γ for this ker-
nel were varied in the arbitrarily fixed ranges [10−3, 300]  

Table 4. Number of training and test samples. 

CLASS TRAINNING TEST TOTAL 

ω1-Corn-no till 742 692 1434 

ω2-Corn-min till 442 392 834 

ω3-Grass/Pasture 260 237 497 

ω4-Grass/Trees 389 358 747 

ω5-Hay-windrowed 236 253 489 

ω6-Soybean-no till 487 481 968 

ω7-Soybean-min till 1245 1223 2468 

ω8-Soybean-clean till 305 309 614 

ω9-Woods 651 643 1294 

Total 4757 4588 9345 

 

 
(a)                       (b) 

Figure 7. Hyperspectral image data. (a) Origin image; (b) 
Ground truth image. 
 
and [10−3, 3], so as to cover high and small regularization 
of the classification model, and fat as well as thin kernels, 
respectively. The experiments are implemented by 
LIBSVM [20]. 

LIBSVM is widely used in SVM classifier, but the 
value of RBF kernel parameters is always difficult to 
define. The default values are as follows: C is 1, and γ is 
the reciprocal of the dimension. In our experiment, the 
dimension is the band number, so the parameter value of 
γ is 0.005.In the same way, the default value of C of 
SVM parameter in ENVI is 100, and γ is the reciprocal 
of the dimension. In our experiment, the dimension is the 
band number, so the parameter value of γ is 0.005. In 
addition, we also select SVM parameters by grid algo-
rithm. In grid algorithm, according to reference [4], the 
range of C and γ is [2-5, 215] and [2-15, 23], the step length 
is 22. 

Concerning the PSO algorithm, we considered the fol-
lowing standard parameters: swarm size S = 20, inertia 
weight w = 1, acceleration constants c1 and c2 equal to 2, 
and maximum number of iterations fixed at 300. The 
parameters setting is summarized in Table 5. 
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In addition, for comparison purpose, we implemented 
the three traditional methods and our two intelligent op-
timization methods for classification. The experimental 
comparison results are shown in Figure 8 and Table 6. 

We apply the PSO-FSSVM classifier to the available 
training data. Note that each particle of the swarm was 
defined by position and velocity vectors of a dimension 
of 202. At convergence of the optimization process, we 
assessed the PSO-FSSVM-RBF classifier accuracy on 
the test samples. The achieved overall accuracy is 95.25% 
corresponding to substantial accuracy gains as compared 
to what is yielded either by the SVM classifier (with the 
Gaussian kernel) based grid algorithm applied to all 
available features (+4.27%) or by the GA-FSSVM clas-
sifier (+2.36) with 101 features. Moreover, by means of 
this approach, the average subset feature number is 120, 
which is fewer than original feature number 220. The 
whole process is implemented automatically and without 
user’s interface. 

Table 6 illustrates the classification of different classi-
fiers. As can be seen our proposed classifier have better 
accuracy than traditional classifiers. The LIBSVM de-
fault setting lead to the lowest accuracy, which is 
52.79%.The best percentage of classification, is 95.25% 
by PSO-FSSVM method. The results still confirm the 
strong superiority of our proposed PSO-FSSVM over the 
other classifiers, with a gain in overall accuracy +12.80%, 
+4.27% and +2.36% with respect to the default SVM 
classifier in ENVI, the grid algorithm, and the GA-SVM 
classifiers (see Table 6). 

From the obtained experimental results, we conclude 
the proposed PSO-FSSVM classifier has the best classi-
fication accuracy account of its superior generalization 
capability as compared to traditional classification tech-
niques. 
 
5. Discussion and Conclusion 
 
Feature selection is an important issue in the construction 
of classification system. The number of input features in 
a classifier should be limited to ensure good predictive 
power without an excessively computationally intensive 
model. This work investigated two novel intelligent op-
timization models that hybridized the two evolutionary 
computing optimizations and support vector machines to 
maintain the classification accuracy with small and suit-
able feature subsets. The work is novel, since few re-
searches have conducted on the GA-FSSVM and PSO- 
FSSVM classification system to find simultaneously an 
optimal feature subset and SVM model parameters in 
high-dimensional data classification. 

In this paper, we addressed the problem of the classi-
fication of high dimensional data using intelligent opti-
mization methods. This study presents two evolutionary 
computing optimization approaches: GA-FSSVM and 
PSO-FSSVM, capable of searching for the optimal pa-
rameter values for SVM and a subset of beneficial fea-
tures. This optimal subset of features and SVM parame-
ters are then adopted in both training and testing to obtain  

 
Table 5. Parameters setting of different methods. 

PSO-SVM GA-SVM Grid Algorithm 

Parameter Value Parameter Value Parameter Value 

Swarm size 20 Population size 20 C [2-5, 2-3,⋯ ,215] 

Number of generations 300 Number of generations 300 γ [2-15, 2-13,⋯ ,23] 

Vmax 4 Probability of crossover 0.6   

C1, C2 2 Probability of mutation 0.05   

C:0-300; γ:0-3  C:0-300; γ:0-3    

 
Table 6. Classification result by different parameter selection methods. 

Methods of selecting parameters C γ Band num Classification accuracy (%) 

LIBSVM default 1 0.005 200 52.79 

ENVI default 100 0.005 200 82.45 

10–cross validation (grid search algorithm) 8 2 200 90.98 

GA-FSSVM 157.89 0.243 101 92.89 

PSO-FSSVM 223.32 0.9696 120 95.25 
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(c)                            (d) 

 
 

 
(e)                            (f) 

Figure 8. Classification accuracy of different classifiers. (a) 
Train data and test data; (b) LIBSVM 52.79%; (c) ENVI 
82.45%; (d) Grid algorithm 90.98%; (e) GA-FSSVM 92.89%; 
(f) PSO-FSSVM 95.25%. 
 
the optimal outcomes in classification. Comparison of 
the obtained results with traditional Grid-based approach 
demonstrates that the developed PSO-FSSVM and 
GA-FSSVM approach have better classification accuracy 
with fewer features. After using feature selection in the 
experiment, the proposed approaches are applied to 
eliminate unnecessary or insignificant features, and ef-
fectively determine the parameter values, in turn im-
proving the overall classification results, and the PSO- 
FSSVM approach is better than GA-FSSVM in most 
datasets in our experiments. 

Experimental results concerning a simulated dataset 
revealed that the proposed approach not only optimized 
the classifier’s model parameters and correctly obtained 
the discriminating feature subset, but also achieved ac-
curate classification accuracy. 

Results of this study are obtained with an RBF kernel 
function. However, other kernel parameters can also be 

optimized using the same approach. Experimental results 
obtained from UCI datasets, other public datasets and 
real-world problems can be tested in the future to verify 
and extend this approach. 

In the future, we need to further improve the classifi-
cation accuracy by using other evolutionary optimization 
algorithm, such as Simulated Annealing Algorithm (SAA), 
Artificial Immune Algorithm (AIA). In addition, we are 
to optimize the SVM classifiers by several combinative 
evolutionary optimization methods in the future. 
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