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ABSTRACT 

This paper is concerned with the earthquake analysis of suspension bridges, in which the effects of large deflections are 
taken into account. The first part of the study deals with an iteration scheme for the nonlinear static analysis of suspen- 
sion bridges by means of tangent stiffness matrices. The concept of tangent stiffness matrix is then introduced in the 
frequency equation governing the free vibration of the system. At any equilibrium stage, the vibrations are assumed to 
take place tangent to the curve representing the force-deflection characteristics of the structure. The bridge is idealized 
as a three dimensional lumped mass system and subjected to three orthogonal components of earthquake ground motion 
producing horizontal, vertical and torsional oscillations. By this means a realistic appraisal is achieved for torsional re- 
sponse as well as for the other types of vibration. The modal response spectrum technique is applied to evaluate the 
seismic loading for the combination of these vibrations. Various numerical examples are introduced in order to demon- 
strate the method of analysis. The procedure described enables the designer to evaluate the nonlinear dynamic response 
of suspension bridges in a systematic manner. 
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1. Introduction 

The suspension bridge is a highly nonlinear three dimen- 
sional structure. As a consequence, in dynamic studies 
the governing nonlinear equations of motion are frequently 
simplified by introducing assumptions which linearize 
these equations [1]. These simplifying assumptions may 
however be avoided, and the nonlinear behaviour of the 
structure may thereby be taken into account in both static 
and dynamic analyses, by using an iterative solution em- 
ploying tangent stiffness matrices. The iterative scheme 
has been successfully applied previously by a number of 
authors in connection with the static analysis of suspend- 
sion bridges [2-4]. In this paper the same operation is 
extended to solve the dynamic response problem of sus- 
pension bridges, which are idealized as three dimensional 
lumped mass systems vibrating due to earthquake ground 
motions. Only geometric nonlinearity is considered; the 
material is assumed to remain elastic. The method pro- 
posed for the nonlinear vibration analysis of suspension 
bridges involves two distinct steps, as outlined below: 

Firstly, under the static action of the dead and live 
loads the equilibrium configuration and the internal stress 

resultants of all constituent elements of the structure are 
first determined through an iteration routine based on the 
Newton-Raphson method. Secondly, the vibration of any 
point in the bridge, with respect to the static equilibrium 
position, is assumed to take place along the tangent to the 
curve defining the force-deflection characteristics of that 
point. The natural frequencies and mode shapes of the 
structure are obtained from a solution of the eigenvalue 
problem in which the frequency determinant is expressed 
in terms of the tangent stiffness matrix of the system. 
Once these fundamental dynamic properties are deter- 
mined, the response spectrum concept can be used in con- 
junction with classical modal analysis to evaluate the 
seismic forces acting on suspension bridges during earth- 
quakes. Details of these two basic steps are given in the 
following sections. 

2. Method of Nonlinear Analysis 

For the purpose of clarity, the method of analysis pre-
sented in this paper is introduced by reference to the 
simple nonlinear system shown in Figure 1. A schematic 
illustration of the iteration process used to obtain the 
static equilibrium geometry of this example structure is 
given in Figure 2. Firstly, a linear stiffness analysis is  *Corresponding author. 
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Figure 1. Sample suspended system. 
 

 

Figure 2. Determination of equilibrium configuration. 
 
performed under the action of the given external load, P1 
= Pe, yielding the straight line oa. The slope of this line, 
K1, is equal to the stiffness of the system in the unloaded 
position. The joint displacement, D1, obtained from this 
first linear cycle of analysis is larger than the equilibrium 
displacement, Deq. Secondly, the internal stress resultants 
of each member are calculated on the basis of the de- 
formed geometry D1 of the system using the nonlinear 
expressions of the tangent stiffness matrices given in  

Appendix . The resultant of the first cycle internal forces, 
P1i, is not in equilibrium with the external load Pe, as 
shown in Figure 2. The unbalanced joint load, P2, is  

2 1i eP P P                 (1)  

1

In order to eliminate P2, the displacement D1 must be 
diminished. This is accomplished by loading the joint 
with a force P2, applied in the direction of the resultant 
internal joint load P1i, and performing a second linear 
stiffness analysis of the structure under the action of P2. 
During this step the original stiffness K1 is replaced by a 
tangent stiffness, K2, which depends on the loaded mem- 
ber lengths and also on their end deformations and stress 
resultants in the previous cycle (see Appendix). The force- 
deflection characteristic of the structure is now repre- 
sented by the straight line bc, having slope K2 and leading 
to a cycle displacement D2, which reduces the initial dis- 
placement and brings the system closer to the actual 
equilibrium configuration. With repeated applications of 
the above mentioned linear cycles of analyses, the un- 
balanced joint load is continuously diminished, as may 
be seen in Figure 2. The tangent stiffness matrix is suc- 
cessively updated after each cycle so as to include the 
latest geometry and internal stress resultants of the system. 
At the end of any jth cycle the unbalanced joint load is 

j ji eP P P  

1 2

              (2) 

and the total joint displacement, Djt , is equal to the alge-
braic sum of the individual cycle displacements as, 

jt jD D D D             (3) 

The iterative process is repeated until the unbalanced 
joint load is reduced to some acceptable value. The above 
iterative scheme has been applied to the system shown in 
Figure 1, and the numerical results of each cycle are 
tabulated in Table 1. Although, seven cycles were re- 
quired to reach an exact solution, the error in the deflect- 
tion after the fourth cycle was only 1.6%. 

 
Table 1. Iteration scheme for the example structure of Figure 1. 

Cycle No. Unbalanced joint load Tangent stiffness Relative deflection at each cycle Final deflection Member length 

j PJ/2AE kj DJ Djt = j Dj Lj 

1 –23000.0 × 10–6 100.0 × 10–6 –30.00000 –30.00000 100.00000 

2 23998.1 × 10–6 1972.3 12.16725 17.83275 107.23805 

3 5939.0 × 10–6 1023.6 5.80228 12.03047 103.31825 

4 1125.8 × 10–6 645.9 1.74306 10.28741 101.90849 

5 88.6 × 10–6 545.3 0.16243 10.12498 101.54594 

6 0.7 × 10–6 536.3 0.00137 10.12361 101.51362 

7 0.0 536.2 0 Deq = 10.12361 101.51335 
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3. Equilibrium Configurations 

The preceding approach for establishing the equilibrium 
geometry of nonlinear structures is perfectly general and 
can be applied without variation to more complicated 
structures providing that the unbalanced loads are elimi- 
nated in every direction at every joint. However, in the 
case of suspension bridges the entire dead load is carried 
by the hangers and main cable only. The stiffening girder 
is assumed to be unstressed and the towers, which carry 
only an axial load, do not bend under dead load condition. 
Therefore, the geometry of the suspension bridge avail- 
able to the designer is usually the dead load equilibrium 
geometry, and the unloaded lengths of the cables and 
hangers are unknown. Since these unloaded lengths ap- 
pear in the tangent stiffness matrices, it is necessary to 
calculate them before establishing any subsequent geo- 
metric configuration as a result of added live loads. The 
unloaded geometry may be determined from a single 
cycle of linear analysis under the action of the known 
dead loads. The unloaded member lengths, L0, may be 
obtained from Hooke’s Law as 

 0L L 1 Q AE            (4) 

where L = the member length in the known dead load 
equilibrium configuration, AE = the axial rigidity of the 
member and Q = the member axial force due to dead 
loads. With the application of live load the originally 
unstressed carriage way participates in the overall be-
haviour of the bridge, which subsequently acquires a new 
equilibrium geometry, as illustrated in Figure 3. It should 
be noted that since the carriage way is not stressed under 
the dead load condition, the unloaded lengths of the 
members in the carriage girder are available from the 
known dead load geometry. The number of iteration cy- 
cles needed to establish the equilibrium configuration is 
obviously dependent on the degree of nonlinearity and on 

 

 

Figure 3. Dead load and live load geometries. 

the desired accuracy. In most studies of actual suspension 
bridges undertaken by the writers, four to six cycles were 
sufficient to eliminate the unbalanced joint loads to with- 
in an accuracy of about 0.3% of the maximum internal 
stress resultant. 

4. Frequency Analysis by Tangent Stiffnesses 

The dynamic analysis of discrete mass structures is a 
topic which has received extensive treatment in the lit- 
erature and is well known [5-7]. The nonlinear behaviour 
of suspension bridges during vibration about any static 
equilibrium configuration may be accounted for by re- 
placing the linear stiffness matrix of the system, [K]o, by 
a tangent stiffness matrix, [K]T = [K]o + [K]g . This is 
equivalent to assuming that at any equilibrium stage the 
vibration of any point in the bridge takes place along the 
tangent to the curve representing the force-deflection 
characteristics of the point. This idea of tangential vibra- 
tion is illustrated in Figure 4. Accordingly, the frequency 
determinant becomes 

   2 0
T

Det K M          (5) 

where, M = mass matrix, and ω = the natural frequency 
of the system in any one of its normal modes. [K]T de- 
pends on the strains and the internal forces developed in 
the members at the static equilibrium position. The ei-
genvalues, ω, as well as the eigenvectors, can be ob-
tained from a solution of Equation (5) using routine 
computer programs. The concept of tangential vibration 
may be simply illustrated by application of the single 
degree of freedom suspended system shown in Figure 5. 
This structure is considered to be vibrating freely about 
static equilibrium Position 3, corresponding to some dead 
and live load combination. The dynamic displacement of 
the system from the equilibrium position is defined by z, 
measured positive downward. This deformation is repre- 

 

 

Figure 4. Vibration along the tangent line. 
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Figure 5. Vibration of a nonlinear suspended system. 
 
sented by Position 4. Then, in accordance with D’Alem- 
bert’s principle, from Figure 5(c), 

0
Wz

W F F    




g
         (6) 

From statics, the resultant of the cable forces, F, is 
equal and opposite to the sum of the dead and live loads, 
W. When the system is translated by the amount z into 
Position 4 the resultant of the cable forces is increased by 
an increment ΔF, in order to maintain equilibrium. This 
increment is simply the product of the tangent stiffness of 
the cables, KT, and the displacement z. That is, 

TF K Z 



               (7) 

where KT is defined as the force required to deform the 
structure through a unit vertical displacement, measured 
with respect to the dead plus live load equilibrium ge- 
ometry under consideration. With the substitution of F = 
W, m = W/g and ΔF = KT z, Equation (6) is reduced to 

   0
T

m z K Z              (8) 

The response of the linear multidegree of freedom 
system can be described in terms of a combination of a 
number of equivalent single degree of freedom systems 
whose behaviours are governed by a set of independent 
equations of the above form. For the nonlinear system, in 
which tangential vibrations are contemplated, the dynamic 
response can therefore be obtained by direct application 
of the standard modal superposition technique, once the 
nonlinearity of the structure has been taken into account 
inside the stiffness matrix and Equation (5) has been 
solved. The modal superposition approach has previously 
been applied to suspension bridges [1,8], but the nonlin- 

earity of the structure was not taken into account inside 
the stiffness matrix. 

5. Idealization of the Bridge 

Depending on the memory capacity of the computer 
available, the suspension bridge may be idealized as a 
plane or space frame composed of a series of straight line 
elements. While the plane frame idealization may be 
used for the study of the response to vertical and longitu- 
dinal ground motions, the three dimensional idealization 
is desirable for a realistic investigation of the torsional 
and lateral vibrations of the deck due to ground motion 
perpendicular to the deck centerline. The main cable and 
hangers are considered as pure axial force members of 
constant cross-section, while the deck is assumed to be 
composed of beam-column elements between hangers. 
Loads are considered to act at the nodal points only. 
Since the stiffness matrix approach is quite general, it is 
not necessary to resort to any other simplifying assump- 
tions. The influence of hanger extensions, cable point 
loads, degree of fixity at the tower base, stability coeffi- 
cients due to compressive forces in the bending of tower 
continuity of the deck across the towers, and variations in 
moments of inertia can easily be taken into account [9,10]. 

In the case of a three dimensional idealization, all three 
rotations and the horizontal translations perpendicular to 
the bridge centerline have been suppressed at the cable - 
hanger junctions in order to prevent singularity in the 
stiffness matrix. This reduces the total number of degrees 
of freedom of the system. Further, distributed consistent 
mass matrices, rather than the lumped masses, have been 
used for each structural element during the full scale 
3D-analyses. 
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6. Primary and Secondary Degrees of  
Freedom 

The joints of a vibrating structure normally have more 
degrees of freedom than the number of directions along 
which the vibrations take place. For example, the joints 
of the cables and hangers are not considered to vibrate in 
the rotational degrees of freedom. To distinguish be- 
tween the vibrating and non-vibrating directions, the de- 
grees of freedom are classified into two groups as, Pri-
mary (P) and secondary (S) degrees of freedom. 

The master stiffness matrix generated for the system 
contains both primary and secondary degrees of freedom 
and is therefore of higher order than the size of the mass 
matrix of Equation (5) In order to make the matrices 
compatible, the master tangent stiffness matrix size is 
reduced by eliminating the secondary degrees of freedom 
(S), through a matrix partitioning process [7]. Alterna-
tively, there will be no necessity for matrix portitioning, 
if the rotary moments of inertia are supplied for flexural 
members [11]. 

7. Types of Vibration 

An earthquake may excite a suspension bridge in any one 
or a combination of the following three types of vibration. 
At any rate, a full 3-D modeling and analysis of the 
bridge will already accommodate all these three types of 
vibration and will output them in various mode shapes: 

1) Torsional vibration of the bridge deck, coupled with 
a lateral vibration of the towers, is due to horizontal 
ground motion perpendicular to the centerline of the 
bridge. The torsional vibration is essentially a combination 
of the vertical and lateral motion of the bridge deck. Such 
vibrations may also be developed due to lateral wind 
loading. 

2) Horizontal and vertical vibrations of the bridge deck, 

coupled with horizontal vibrations of the towers, are due 
to horizontal ground motion parallel to the centerline of 
the bridge.  

3) Vertical vibrations of the bridge deck, coupled with 
a horizontal (in longitudinal direction) vibration of the 
towers, are due to vertical ground motion. 

In all cases, vertical (axial) vibrations of the towers 
and also longitudinal (axial) vibrations of the bridge deck 
may be neglected, since their effects are relatively small. 
These three types of vibrations should be taken into ac-
count when performing an earthquake analysis of 3D- 
suspendsion bridges. Different aspects of this problem 
have been discussed in the literature for suspension bridges 
[12-19] and also for cable stayed bridges [20,21]. 

8. Numerical Examples 

The procedures discussed in the preceding sections will 
now be demonstrated by application to two example 
structures. The idealized N-S component of the 1940 El 
Centro earthquake spectrum [5] was used in the dynamic 
analysis of both structures; the spectrum values were 
multiplied by two-thirds when considering vertical exci- 
tation. The bridges were considered to have 1% of criti- 
cal damping in all modes, and the tower and anchorage 
supports were assumed to be subjected to the same 
ground motion. Although, the capacity of the program 
was sufficient to handle full scale suspension bridges, 
smaller hypothetical structures were selected for sake of 
simplicity and clarity of presentation. 

1) Example 1. 
A hypothetical suspension bridge was idealized as a 

2D lumped mass system as shown in Figure 6 and sub- 
jected to vertical ground motion only. The structural 
member properties of the bridge are summarized in Ta- 
ble 2. As discussed in Section 7, this excitation produced  

 

 

Figure 6. Idealised suspension bridge (Example 1). 
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Table 2. Member properties of example 1 (E = 210,000 MPa). 

I A Length Mass 
Tower 

cm4 cm2 m Ton 

1 

2 

3 

4 

 

5 

6 

7 

333,000 

333,000 

291,300 

249,700 

 

208,100 

166,500 

124,850  

322.6 

322.6 

290.3 

258.1 

 

225.8 

193.5 

161.3 

3.04 

3.04 

1.52 

1.52 

 

3.04 

3.04 

3.04 

6.80 

4.50 

6.10 

3.63 

 

3.18 

2.72 

2.27 

Girder 

Cable 

Hanger 

83,250 

0 

0 

193.5  

6.5 

5.1 

See Figure 6 See Figure 6 

 
vertical vibration of the deck and horizontal vibration of 
the towers. The primary (P) and secondary (S) degrees of 
freedom corresponding to the vertical ground motion are 
also shown in Figure 6 for a typical cable, girder and 
tower joint. The static equilibrium position about which 
the bridge was assumed to vibrate was taken as the dead, 
plus one-half live load configuration, which was esta- 
blished by the iteration scheme outlined in Section 2 
through Section 6. The mode shapes and natural periods 
for the first ten modes of vibration are illustrated in Fig-
ure 7. 

Mode - I
Ti = 1.906 Period (sec)

T = 1.744

Mode - 6
Ti = 0.415
T = 0.426

Mode - 2
Ti = 1.251
T = 1.113

Mode - 7
Ti = 0.414 
T = 0.414

Mode - 3
Ti = 0.677 
T = 0.652

Mode - 8
Ti = 0.313 
T = 0.304

Mode - 4
Ti = 0.560 
T = 0.534

Mode - 9
Ti = 0.201 
T = 0.197

Mode - 5
Ti = 0.480
T = 0.491

Mode - 10
Ti = 0.166 
T = 0.169

T i=Periods without tangent stiffness matrices
T=Period with tangent stiffness matrices

2) Example 2. 
In order to obtain a realistic appraisal of the dynamic 

response of suspension bridges, especially towards lateral 
ground motion, a three dimensional idealization of the 
structure is desirable. The unloaded and deformed shapes 
of a plane frame member are shown in Figure 9, while 
the deformation numbers of a 3D-truss and frame mem- 
ber are shown in Figure 10. For the purpose of illustra- 
tion, the centre span of the preceding example was ideal- 
ized into the twenty eight lumped mass system shown in 
Figure 8. The member properties are listed in Table 3. 
The bridge was subjected, non-concurrently, to the three 
types of vibrations described in Section 7. The geometry 
supplied in Figure 8 was assumed to be the equilibrium 
geometry about which the vibrations occurred. The lumped 
masses of the bridge deck were assumed to have both ver- 
tical and horizontal motions, allowing the investtigation 
of torsional vibrations. 

The natural periods, participation factors, spectral dis- 
placements and the mode shapes for the first ten modes 
of vibration, are given in Table 4. The horizontal and 
vertical mode shapes are of the same form as those 
shown with the preceding example, Figure 7. Mode 6 
and Mode 8 indicate the presence of a torsional oscilla- 
tion of the bridge deck. This potentially destructive vi- 
bration, which has caused real suspension bridge failures,  

 

Figure 7. Mode shapes of Example 1. 
 

such as Tacoma Narrows Bridge, in Washington, USA 
on November 08, 1940, emphasizes the usefulness of the 
three dimensional idealization. Only two of the first ten 
modes of vibration were of a torsional character. It is 
possible that higher torsional modes would have a sig- 
nificant influence on the maximum response. 
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10.67 m

7.62 m

12.14 m
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4.54 t
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Figure 8. Idealised suspension bridge (example 2). 
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Figure 9. Unloaded and deformed members. 
 

3) Example 3. 
A new suspension bridge named Chanakkale Ataturk 

Bridge is proposed for the Chanakkale Strait at a total 
length of 2200 meters [22]. It is believed that this bridge 
will boost the economical ties between Turkey and the 
European Countries, will enhance tourism all along the 
western and southern coastal regions of Turkey. A sub- 
merged floating tunnel is also proposed by Tezcan et al. 
[23] for the Gibraltar crossing between Morocco and 
Spain. The total length of this floating tunnel is envis- 
aged to be 14.5 kilometers of which 12.2 kilometers will 
be 100 meter under the sea. The discussion for the nu- 
merical analyses of these two long span crossings is too 
lengthy to be included within the framework of this paper. 

 
(a) 

Z

9 
3

6 12 

L0
8

11 
Y

7 

10 25
4

1

 X

(b) 

Figure 10. 3D-truss and frame members. 

9. Full Scale Bridge Testing 

The ambient and the forced vibration test results of the 
Istanbul Bogazici Bridge, are the successful examples for 
the correlation of analytical and experimental studies. 
Just a month before the opening of the Istanbul Bogazici 
Bridge (Figure 11) to traffic early in October 1973, a 
series of insitu experimental studies have been conducted, 
under the general supervision of the writers, as follows 
[24]:  

1) Strain gauge readings were taken at a number of 
locations on the orthotropic deck, towers and hangers,  
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Table 3. Member properties of example 2 (E = 210,000 
MPa). 

I = Moments of Inertia 
max. min. Torsional 

Area 

Element 
cm4 cm4 cm4 cm2 

 
Tower legs 

Tower top beam 
Tower bracing 

 
Edge Longitudinals 

Internal  
Longitudinals 
Transversals 

Cables 
Hangers 

 
225,360 

2880 
4079 

 
151,310 

 
43,400 
10,347 

0 
0 

 
16,936 

354 
4079 

 
10,570 

 
3642 
2214 

0 
0 

 
506 

0 
0 
 

368 
 

211 
64 
0 
0 

 
275 
38 
108 

 
228 

 
148 
85 
6.5 
5.1 

 
Table 4. Response analysis of the suspension bridge, exam-
ple 2. 

Period 
T 

Participation
Factor 
 

Spectral(1) 

Displacement 
Sd 

Modes of
the Deck Modes of  

Vibration 
sec - cm - 

1 
2 
3 
 
4 
5 
6 
 
7 
8 
9 

10 

2. 285 
1.200 
1. 078 

 
0.871 
0.852 
0.769 

 
0.741 
0.595 
0.500 
0.398 

1.172 
0 

1.294 
 

0.277 
0 

0.145 
 
0 
0 

0.433 
0 

38.0 
20.0 
18.0 

 
14.5 
14.2 
12.8 

 
12.3 
9.9 
8.3 
5.2 

Lateral 1 
Lateral 2 
Vertical 1

 
Lateral 3 
Vertical 2

Torsional 1
 

Lateral 4 
Torsional 2
Vertical 3
Vertical 4

(1)The 1940 EL Centro Earthquake, idealized spectrum for E-W component 
[5]. 

 

 
Figure 11. A general view of Istanbul Bogazici Bridge. 

 
when the carriage ways between the two towers were 
loaded with heavy trucks up to three fourths of the bridge 
capacity. The deflections of the deck, under this particu- 
lar loading, were also determined by means of precise 
leveling. The maximum centerline deflection was meas- 
ured to be 0.96 m, as verified by the 3D nonlinear ana-

lytical calculations described above. 
2) Three different sets of seismometers a) by İstanbul 

Kandilli Observatory team; b) by the team of seismolo- 
gists from the Earthquake Engineering Institute of Skopje 
and c) by Mr. Alkut Aytun, a Turkish seismologist, have 
been installed over the deck and the south tower in order 
to record the ambient wind vibrations of the bridge. The 
inversed fourier transform technique has been used to 
determine the fundamental periods of vibration. Loca- 
tions of seismometers and the 2D—mathematical model 
of the bridge are shown in Figure 12. The results of the 
ambient vibration tests are very close to those reported 
earlier by Brownjohn et al. [25]. 

3) Two Synchronised twin shakers of the type GSV- 
100 Teledyne, USA supplied by the Skopje Institute were 
welded at midspan and quarterspan points of the deck as 
shown in Figure 13, and the forced vibrations were re- 
corded. The fundamental periods of vibration for a vari- 
ety of relatively higher modes were determined together 
with the values of  = critical damping ratio. Most of the 
results and key parameters obtained from these tests, 
including those obtained from the wind tunnel tests at the 
National Physical Laboratories, Teddington, England are 
listed in Table 5. 
 

BEYLERBEYİ 

255 m 1074 / 2 = 537 m 

1074           1074           1074  

12     V       10            8    V V  

1 V 11 V.H  V.H V.H 5 

SEISMOMETER 

LOCATION NO:  

L
H 

3

33.40 6 V.H 

V.H  

1 V.

V = VERTICAL 

 

 
Figure 12. Location of seismometers. 

 

 

Figure 13. Shakers welded onto the deck by Skopje Institute. 
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Table 5. Results of ambient and forced vibration tests, Istan-
bul Bogazici Bridge, (sec). 

TEST METHOD 
Longitudional 

Vertical 

Lateral 
(Deck) 

Lateral 
(Tower) 

Torsional
(Deck) 

Wind (İstanbul Kandilli 
Observatory) 

 
Wind (Skopje Institute) 

 
Wind (Mr. Alkut Aytun) 

 
Forced Vibrations(1)  

(Skopje Institute) 
 

Wind Tunnel Tests(2) 
 

Computer Analyses 

 
6.22 

 
6.24 

 
6.10 

 
-(1) 

( = % 1.2)(3) 

 
6.41 S 

 
6.83 

 
14.15 

 
- 
 
- 
 

-(1) 

 

 

- 
 

15.48 

 
- 
 
- 
 

2.77 
 

-(1) 

 = % 4 
 
- 
 
- 

 
3.16 

 
3.02 

 
3.00 

 
-(1) 

 
 

3.16 
 

3.07 
(1)Shakers were not large enough to excite the Bridge in the first three modes; 
(2)National Physical Laboratory, Teddington, England; (3) = critical damp-
ing ratio. 

10. Conclusions 

1) The concept of tangent stiffness matrix, used in con- 
junction with the standard modal superposition method, 
provides a systematic approach to the nonlinear dynamic 
analysis of suspension bridges. 

2) For a realistic evaluation of the overall dynamic re- 
sponse of a suspension bridge, a three dimensional ide- 
alization is desirable. Such an idealization permits a 
study of the torsional oscillations of the bridge deck. In 
fact, significant vibrations of this type were observed due 
to earthquake ground motion perpendicular to the bridge 
centerline. 

3) The general procedures described in this paper may 
supply useful information in the study of the aerodynam- 
ics of suspension bridges. 
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Appendix length of the member, [k]g = geometric stiffness matrix, 

Q = Axial force, positive if tensile, l, m, n = direction 
cosines of the member centerline. For a space truss and 
space frame member as shown in Figure 10, the geomet- 
ric matrices are given in Eqs. A2, A3 and A4, respec-
tively. The linear stiffness matrices [k]o for a space truss 
and space frame member may be obtained from any or-
dinary text book [7,15]. 

Tangent stiffness matrix of a bar at any loaded configu- 
ration is given by  

[k]t = [k]o + [k]g              (A1) 

in which, [k]o = ordinary stiffness matrix in which Lo = 
the unloaded length of the member, L = the deformed  
 

 
 
 

Copyright © 2012 SciRes.                                                                                

http://dx.doi.org/10.1002/eqe.4290180210

