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ABSTRACT 

This paper presents a new programming paradigm named Notification Oriented Paradigm (NOP) and analyses per-
formance aspects of NOP programs by means of an experiment. NOP provides a new manner to conceive, structure, and 
execute software, which allows better performance, causal-knowledge organization, and entity decoupling than standard 
solutions based upon current paradigms. These paradigms are essentially Imperative Paradigm (IP) and Declarative 
Paradigm (DP). In short, DP solutions are considered easier to use than IP solutions thanks to the concept of high-level 
programming. However, they are considered slower to execute and lesser flexible to program than IP. Anyway, both 
paradigms present similar drawbacks like causal-evaluation redundancies and strongly coupled entities, which decrease 
software performance and processing distribution feasibility. These problems exist due to an orientation to monolithic 
inference mechanism based upon sequential evaluation by means of searches over passive computational entities. NOP 
proposes another manner to structure software and make its inferences, which is based upon small, smart, and decoup-
led collaborative entities whose interaction happen by means of precise notifications. This paper discusses NOP as a 
paradigm and presents certain comparison of NOP against IP. Actually, performance is evaluated by means of IP and 
NOP programs with respect to a same application, which allow demonstrating NOP superiority. 
 
Keywords: Notification Oriented Paradigm; Notification Oriented Inference; NOP and IP Comparison 

1. Introduction 

This section mentions drawbacks from current program- 
ming paradigms, introduces Notification Oriented Para- 
digm as a new solution, and presents paper objectives. 

1.1. Review Stage 

The computational processing power has grown each year 
and the tendency is that technology evolution contributes 
to the creation of still faster processing technologies [1]. 
Even if this scenario is positive in terms of pure technol-
ogy evolution, in general it does not motivate informa-
tion-technology professionals to optimize the use of proc- 
essing resources when they develop software [2]. 

This behavior has been tolerated in standard software 
development where there is not need of intensive pro- 
cessing or processing constraints. However, it is not ac- 
ceptable to certain software classes, such as software for 
embedded systems [3]. Such systems normally employ 
less-powerful processors due to factors such as constraints 
on power consumption and system price to a given mar-
ket [4]. 

Besides, computational power misusing in software 
can also cause overuse of a given standard processor, im- 
plying in execution delays [3-5]. Still, in complex soft- 
ware, this can even exhaust a processor capacity, de- 
manding faster processor or even some sort of distribu- 
tions (e.g. dual-core) [3-6]. Indeed, an optimization-ori- 
ented programming could avoid such drawbacks and re- 
lated costs [3-7]. 

Therefore, suitable engineering tools for software de- 
velopment, namely programming languages and their 
environments, should facilitate the development of opti- 
mized and correct code [8-13]. Otherwise, engineering 
costs to produce optimized-code could exceed those of 
upgrading the processing capacity [3,8-10]. 

Still, suitable tools should also make the development 
of distributable code easy once, even with optimized 
code, distribution may be actually demanded in some 
cases [14-17]. However, the distribution is itself a prob- 
lem once, under different conditions, it could entail a set 
of (related) problems, such as complex load balancing, 
communication excess, and hard fine-grained distribution 
[3,14,15,18]. 
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In this context, a problem raises from the fact that 
usual programming languages (e.g. Pascal, C/C++, and 
Java) present no real facilities to develop optimized and 
really distributable code, particularly in terms of fine- 
grained decoupling of code [2,3,18,19]. This happens due 
to the structure and execution nature imposed by their 
paradigm [6,8,9].  

1.2. Imperative and Declarative Programming 

Usual programming languages are based on the Impera- 
tive Paradigm, which cover sub-paradigms such as Pro- 
cedural and Object Oriented ones [9,20,21]. Besides, the 
latter is normally considered better than the former due to 
its richer abstraction mechanism. Anyway, both present 
drawbacks due to their imperative nature [9,20,22]. 

Essentially, Imperative Paradigm imposes loop-ori- 
ented searches over passive elements related to data (e.g. 
variables, vectors, and trees) and causal expressions (i.e. 
if-then statements or similar) that cause execution re- 
dundancies. This leads to create programs as a mono- 
lithic entity comprising prolix and coupled code, gener- 
ating non-optimized and interdependent code execution 
[7,8,22,23]. 

Declarative Paradigm is the alternative to the Impera- 
tive Paradigm. Essentially, it enables a higher level of 
abstraction and easier programming [21,22]. Also, some 
declarative solutions avoid many execution redundancies 
in order to optimize execution, such as Rule Based Sys- 
tem (RBS) based on Rete or Hal algorithms [24-27]. 
However, programs constructed using usual languages 
from Declarative Paradigm (e.g. LISP, PROLOG, and 
RBS in general) or even using optimized solution (e.g. 
Rete-driven RBS) also present drawbacks [7,8]. 

Declarative Paradigm solutions use computationally 
expensive high-level data structures causing considerable 
processing overheads. Thus, even with redundant code, 
Imperative Paradigm solutions are normally better in per- 
formance than Declarative Paradigm solutions [9,28]. 
Furthermore, similarly to the Imperative Paradigm pro- 
gramming, the Declarative Paradigm programming also 
generates code coupling due to the similar search-based 
inference process [3,7,22]. Still, other approaches be- 
tween them, such as event-driven and functional pro- 
gramming, do not solve these problems even if they may 
reduce some problems, like reduce certain redundancies 
[23,28]. 

1.3. Development Issues & Solution Perspective 

As a matter of fact, there are software development is- 
sues in terms of ease composition of optimized and dis- 
tributable code [3,7,8]. Therefore, this impels new solu- 
tions to make simpler the task of building better software. 
In this context, a new programming paradigm, called No-  

tification Oriented Paradigm (NOP), was proposed in or-
der to solve some of the highlighted problems [3,7,8]. 

The NOP basis was initially proposed by J. M. Simão 
as a manufacturing discrete-control solution [12,29]. This 
solution was evolved as general discrete-control solution 
and then as a new inference-engine solution [3], achiev- 
ing finally the form of a new programming paradigm 
[7-9]. 

The essence of NOP is its inference process based on 
small, smart, and decoupled collaborative entities that 
interact by means of precise notifications [3]. This solves 
redundancies and centralization problems of the current 
causal-logical processing, thereby solving processing mi- 
suse and coupling issues of current paradigms [3,7-9]. 

1.4. Paper Context and Objective 

This paper discusses NOP as a solution to certain current 
paradigm deficiencies. Particularly, the paper presents a 
performance study, in a mono-processed case, related to 
a program based on NOP compared against an equivalent 
program based on Imperative Paradigm.  

In short, the study shows NOP advantages to save 
processing. Moreover, it allows presenting other research 
perspectives with respect to NOP. For instance, it allows 
showing the suitability to distribution by highlighting the 
achieved decoupling degree of NOP (code) elements. 

2. Background 

This section explores programming paradigm drawbacks. 

2.1. Imperative Programming Issues 

The main drawbacks of Imperative Programming are 
concerned to the related code redundancy and coupling 
[3]. The first mainly affects processing time and the se- 
cond processing distribution, as detailed in the next sub- 
sections. 

2.1.1. Imperative Programming Redundancy 
In Imperative Programming, like procedural or object 
oriented programming, a number of code redundancies 
and interdependences comes from the manner the causal 
expressions are evaluated. This is exemplified in the 
pseudo-code in Figure 1 that represents a usual code 
elaborated without strong technical and intellectual ef-
forts. This means that the pseudo-code was elaborated in 
a non complicated manner, as software elaboration should 
ideally be [7,9]. 

In the example, each causal expression has three logi- 
cal premises and a loop forces the sequential evaluation 
of all causal expressions. However, most evaluations are 
unnecessary because usually just few attributes of objects 
(i.e. variables) have their values changed at each iteration.  
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Figure 1. Example of imperative code. 
 
This type of code causes the problem called, in the com- 
puter science, temporal and structural redundancy [3,26]. 

The temporal redundancy is the repetitive, unnecessary 
evaluation of causal expressions in the presence of ele- 
ment states (e.g. attribute or variable states) already eva- 
luated and unchanged. For instance, this occurs in the 
considered loop-oriented code example. The structural 
redundancy, in turn, is the recurrence of a given logical 
expression evaluation in two or more causal expressions 
[3]. For instance, the logical expression (object 1. attri- 
bute 1 = 1) is replicated in several causal expressions (i.e. 
if-then statements) [3,7]. 

These redundancies can be seen unimportant in this 
didactic code example, mainly if the number (n) of cau- 
sal expressions is small. However, even with better code, 
if more complex examples were considered integrating 
many (remaining) redundancies, there would be a ten- 
dency to performance degradation and increasing of de- 
velopment complexity inclusively to avoid that degrada- 
tion [7,9]. 

The code redundancies may result, for example, in the 
need of a more powerful processor than it is really re- 
quired [3,6]. Also, they may result in the need for code 
distribution to processors, thereby implying in other pro- 
blems such as module splitting and synchronization. 
These problems, even if solvable, are additional issues in 
the software development whose complexity increases as 
much as the fine-grained code distribution is demanded, 
particularly in terms of logical-causal (i.e. “if-then”) cal- 
culation [3,6,8].  

2.1.2. Imperative Programming Coupling 
Besides the usual repetitive and unnecessary evaluations 
in the imperative code, the evaluated elements and causal 
expressions are passive in the program decisional execu- 
tion, although they are essential in this process. For in- 
stance, a given if-then statement (i.e. a causal expression) 
and concerned variables (i.e. evaluated elements) do not 
take part in the decision with respect to the moment in  

time they must be evaluated [3]. 
The passivity of causal expressions and concerned 

elements is due to the way they are evaluated in the time. 
An execution line in each program (or at least in each 
program thread) carries out this evaluation, usually guided 
by means of a set of loops. As these causal expressions 
and concerned elements do not actively conduct their 
own execution (i.e. they are passive), their interdepen-
dency is not explicit in each program execution [3]. 

Thus, at first, causal expressions or evaluated elements 
depend on results or states of others. This means that 
they are somehow coupled and should be placed together, 
at least in the context of each module. This coupling in- 
creases code complexity, which complicates, for instance, 
an eventual distribution of each single code part in fine- 
grained way. This makes each module, or even the whole 
program, a monolithic computational unit [3]. 

2.1.3. Imperative Programming Distribution  
Hardness 

When distribution is intended (e.g. process, processor, 
and cluster distribution), an analysis of code could iden- 
tify less dependent code sets to facilitate their splitting. 
However, this is normally a complex activity due to the 
code coupling and complexity caused by the imperative 
programming [13,19]. 

In this sense, well-designed software composed of mo- 
dules as decoupled as possible, using advanced and quite 
complicated software engineering concepts like aspects 
[14] and axiomatic design [30], can help distribution. 
Still, middleware such as CORBA and RMI would be 
helpful in terms of infrastructure to some types of mo- 
dule distribution, if there is enough module decoupling 
[14,31,32]. 

In spite of those advances, distribution of single code 
elements or even code modules is still a complex activity 
demanding research efforts [13-15,18,33,34]. It would be 
necessary additional efforts to achieve easiness in distri- 
bution (e.g. automatic, fast, and real-time distribution), as 
well as correctness in distribution (e.g. fine-grained, bal- 
anced, and minimal inter-dependent distribution) [3]. 

Indeed, distribution hardness is an issue because there 
are contexts where distribution is actually necessary [6, 
16,17]. For instance, a given optimized program exceed-
ing the capacity of an available processor would demand 
processing splitting [5]. Other instances are programs that 
must guaranty error isolation or even robustness by dis-
tributed module redundancy [12]. These features can be 
found in application of nuclear-plant control [35], intel-
ligent manufacturing [12,29,36,37], and cooperative con-
trols [38]. 

Besides, there are other applications that are inherently 
distributed and need flexible distribution, such as those  
of ubiquitous computing. More precise examples are sen- 
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sor networks and some intelligent manufacturing control 
[34,37]. Moreover, the easy and correct distribution is an 
expectation due to the reduction of processor prices and 
the communication networks advances as well [9,39]. 

2.1.4. Imperative Programming Development  
Hardness 

In addition to optimization and distribution issues, the 
program development with Imperative Programming can 
be seen as hard due to complicated syntax and a diversity 
of concepts to be learned, such as pointers, control vari- 
ables, and nested loops [40]. The development process 
would be error-prone once a lot of code still comes from 
a manual elaboration using those concepts. In this con- 
text, the exemplified imperative algorithm (Figure 1) 
could be certainly optimized, however without signifi- 
cant easiness in this activity and true fine-grained code 
decoupling. 

It would be necessary to investigate better solutions 
than those provided by Imperative Paradigm. A solution 
to solve some of its problems may be the use of program- 
ming languages from another paradigm, such as Declara- 
tive Programming that automates the evaluation process 
of causal expressions and concerned elements [20,41]. 

2.2. Declarative Programming Issues 

A well-known example of Declarative Programming and 
its nature is Rule Based System (RBS) [3,40]. A RBS 
provides a high-level language in the form of causal- 
rules, which prevents the developers from algorithm par-
ticularities [40]. RBS is composed of three general mo- 
dular entities (Fact Base, Rule Base, and Inference En-
gine) with well-distinguished responsibilities, as usual in 
declarative language (e.g. LISP, PROLOG, and CLIPS) 
[41].  

In Declarative Programming, the variable states are 
dealt in a Fact Base and the causal knowledge in a Causal 
Base (Rule Base in RBS), which are automatically mat- 
ched by means of an Inference Engine (IE) [25,40]. More- 
over, some IE algorithms (e.g. RETE [24-26], TREAT 
[42,43], LEAPS [44], and HAL [27] algorithms) avoid 
most of temporal and structural redundancies [9]. How- 
ever, the data structures used to solve redundancies in 
those IEs implies in too much consuming of processing 
capacity [26]. 

Actually, the use of Declarative Programming only 
compensates when the software under development pre- 
sents many redundancies and few data variation. Also, in 
general, an IE related to a given declarative language 
limits the inventiveness, makes difficult some algorithm 
optimizations, and obscures hardware access, which can 
be inappropriate in certain contexts [9,23,28,45]. 

A solution to these problems can be the symbiotic use 

of Declarative and Imperative Programming [20,45]. 
Indeed, such approach has been presented, like CLIPS++, 
ILOG, and Rules. However, they are not popular due to 
factors such as syntax mixing, paradigms mixing, and 
technical cultural reasons [9]. Anyway, even Declarative 
Paradigm being a relevant solution, it does not solve 
some problems. 

Indeed, beyond processing-overhead, declarative pro- 
gramming also presents code coupling. Each declarative 
program has also an execution or inference policy whose 
essence is a monolithic entity (e.g. Inference Engine) re- 
sponsible for analyzing every passive data-entity (Fact- 
Base) and causal expression (Causal-Base). Thus, the 
inference based on a search technique (i.e. matching) 
implies a strong dependency between facts and rules be- 
cause they together constitute the search space [3]. 

2.3. Other Programming Approach Drawbacks 

Enhancements in the context of Imperative and Declara- 
tive Paradigm have been provided to reduce the effects of 
recurrent loops or searches, such as event-driven pro- 
gramming and functional programming [9,41,46]. Event 
programming and functional programming have been 
used to different software such as discrete control, gra- 
phical interfaces, and multi-agent systems [9,41,46]. 

Essentially, each event (a button pressing, a hardware 
interruption or a received message) triggers a given exe- 
cution (process, procedure or method execution), usually 
in a given sort of module (block, object or even agent), 
instead of repeated analysis of the conditions for its exe- 
cution. The same principle applies to the called func- 
tional programming whose difference would be function 
calling via other function in place of events. Still, func- 
tion means procedure, method or similar unity. Besides, 
functional and event programming used together would 
be usual. 

However, the algorithm in each module process or 
procedure is built using Declarative or Imperative pro- 
gramming. This implies in the highlighted deficiencies, 
namely code redundancy and coupling, even if they are 
diminished by events or function calls. Indeed, if each 
module has extensible or even considerable causal-logi- 
cal calculation, they can be a problem together in terms 
of processing misuse and distribution. This may demand 
special design effort to achieve optimization and module 
decoupling. 

An alternative programming approach is the Data 
Flow Programming [15] that supposedly should allow the 
program execution oriented by data instead of an execu- 
tion line based on search over data. Therefore, this would 
allow decoupling and distribution [15]. The distribution 
in Data Flow Programming is achieved in arithmetical 
processing, however it is not really achieved in logical- 
causal calculation [15,18]. This calculation is carried out 

Copyright © 2012 SciRes.                                                                                 JSEA 



Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 406 

by means of current advanced inference engines, namely 
Rete [18,47]. 

The fact is that current inference engines attempt to 
achieve a data-driven approach. However, the inference 
process is still based on searches even if they use data 
from (some sort of) object-oriented tree to speed up the 
inference cycle or searches. Thus, the highlighted prob- 
lems remain. 

2.4. Enhancement in Programming 

In short, as explained in terms of Imperative and Decla- 
rative Paradigms, current paradigms do not make easy to 
achieve the following qualities together: 
 Effective code optimization to be sure about the even- 

tual need of a faster processor and/or multiprocessing. 
 Easy way to compose correct code (i.e. without er- 

rors).  
 Easy code splitting and distribution to processing 

nodes. 
This is a problem mainly when considering the in- 

creasing market demand by software, where development 
easiness, code optimization, and processing distribution 
are current requirements [48-50]. Indeed, this software 
development “crisis” impels new researches and solu- 
tions to make simpler the task of building better soft- 
ware. 

In this context, a new programming paradigm called 
Notification Oriented Paradigm (NOP) was proposed to 
solve some of the highlighted problems. NOP keeps the 
main advantages of Declarative Programming/Rule Based 
Systems (e.g. higher causal abstraction and organization 
by means of fact base and causal base) and Imperative/ 
Object Oriented Programming (e.g. reusability, flexibi- 
lity, and suitable structural abstraction via classes and 
objects). In addition, NOP evolves some of their con-
cepts and solves some of their deficiencies [3,7,9]. 

3. Marksmanship Game 

Before NOP concepts were firstly used to discrete con- 
trol applications for quite diversified and complex simu- 
lated manufacturing systems. The simulator used was 
ANALYTICE II, developed at CPGEI/UTFPR. Specifi- 
cally, concepts of the nowadays called NOP were used to 
build a control meta-model, which allows instantiating 
control applications, particularly to ANALYTICE II [12]. 
Those concepts revealed to be suitable to control applica- 
tions [12,29].  

In a given period of time, the solution was called 
Holonic Control Meta-Model due to its holistic features 
and its applicability to the so called Holonic Manufactur-
ing Systems [29]. Nowadays, this Holonic Control Meta- 
model is also called Notification Oriented Control (NOC). 
Besides, NOC is considered the genesis of the now called 

Notification Oriented Inference (NOI). In turn, NOI is 
considered the genesis of NOP. Thus, discrete control 
applications of NOC could be interpreted as a NOP do-
main application. 

Nevertheless, each control application over ANA- 
LYTICE II is actually complex to be used in a compari- 
son study between NOP and other paradigms, such as 
comparison between NOP and Imperative Paradigm. 
Indeed, the understanding of complex application could 
undermine NOP understanding and the experiment un- 
derstanding as well. Thus, to better explain differences 
between these paradigms, another and simpler applica- 
tion is here proposed aiming at the NOP nature and ex- 
periment essence. 

This new application refers to the marksmanship game 
that, in general, is an environment where a thrower is 
positioned at a given distance from a target and he tries 
to hit the target by firing a projectile. In this paper, the 
game is adapted once the throwers are represented by 
archers that try hitting the targets composed of black or 
gray apples, as illustrated in Figure 2 with two scenarios. 

In the 1st scenario, there is an archer for each apple, 
both identified by the same number. Apples are posi- 
tioned in a parallel line with respect to archers, as shown 
in Figure 2(a). In an ordered manner, each apple is shot 
by the respective archer during each iteration of each 
phase, if the suitable condition is true. In each iteration, it 
is evaluated the color and status of each apple and the 
status of each archer. 

The conditional evaluation is illustrated in the causal 
expression in Figure 3. The condition is true if the apple 
color is black, the apple status is ready to be hit, and the 
respective archer status is ready to shoot the apple. Still, 
 

 

Figure 2. First (a) and second (b) scenario for the marks-
manship game. 
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Figure 3. The representation of a rule. 
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the status of each Apple and the status of each Archer are 
fixed as ready.  

Still in the 1st scenario, before the beginning of each 
iteration, all apples are gray (i.e. disabled). However, in 
the beginning of each iteration, a given percentage of the 
apples is replaced by black apples (i.e. enabled apples). 
This percentage is defined and incremented at each phase 
that the iteration pertains. Still, for an iteration to be 
completed, each enabled apple must be shot by its re- 
spective archer. After completing the iteration, shot ap- 
ples are replaced by new gray apples in order to be used 
in the next iteration. 

In the 2nd scenario illustrated in Figure 2(b), in turn, 
interactions between archers and apples present similari- 
ties with the 1st scenario. In fact, they differ just in two 
aspects:  
 The addition of a gun to signalize the each iteration 

start; 
 Shot apples are not replaced by new ones in the itera- 

tions of a phase because the apples accept more then 
one shot. 

In order to offer a suitable comparison on these sce- 
narios, the experiments vary the amount of satisfied con-
ditional-causal evaluations by phase in each experiment. 
The percentage of enabled apples (used in the iterations) 
is varied from none to all in the phases, creating different 
types of iterations. The aim is to evaluate redundancy 
effects when the number of causal evaluations in true 
states is increased. 

These scenarios offer a suitable scope to perform com- 
parative tests between Imperative Paradigm and NOP. 
The first and second scenarios respectively emphasize 
temporal and structural redundancies on the causal ex- 
pressions of Imperative languages. Still, they emphasize 
the main NOP features and advantages in the redundancy 
removal. 

4. Notification Oriented Paradigm (NOP) 

The Notification Oriented Paradigm (NOP) introduces a 

new concept to conceive, construct, and execute software 
applications. NOP is based upon the concept of small, 
smart, and decoupled entities that collaborate by means 
of precise notifications to carry out the software infer-
ence [3,7]. This allows enhancing software applications 
performance and potentially makes easier to compose 
software, both non-distributed and distributed ones [9]. 

4.1. NOP Structural View 

NOP causal expressions are represented by common cau- 
sal rules, such as that in Figure 3, which are naturally 
understood by programmers of current paradigms. How- 
ever, each rule is technically enclosed in a special com- 
putational-entity called “Rule”. An example of Rule En- 
tity content is illustrated in Figure 4. This Rule struc- 
tures and infers the causal knowledge with respect to the 
case in which an Apple would be crossed by an Arrow 
projected by an Archer. 

Structurally, a Rule has two parts, namely a “Condi- 
tion” and an “Action”, as shown by means of the UML 
class diagram in Figure 5. Both are entities that work 
together to handle the causal knowledge of the Rule. The 
Condition is the decisional part, whereas the Action is 
the execution part of the Rule. Both make reference to 
factual elements of the system, such as “Apple” and 
“Archer”. 

NOP factual elements are represented by means of a 
special type of entity called “Fact Base Element” (FBE). 
A FBE includes a set of attributes. Each attribute is rep- 
resented by another special type of entity called “Attri- 
bute”, such as Color and Status Attributes of the Apple 
FBE. 

Attributes states are evaluated in the Conditions of 
Rules by associated entities called “Premises”. In the 
example, the Condition of the Rule is associated to three 
Premises, which verify the state of FBE Attributes as 
follow: (a) Is the Color of the Apple Black? (b) Is the 
Apple Status Ready? (c) Is the Archer Status Ready? 

When each Premise of a Rule Condition is in true state, 
 

 

Figure 4. Rule entity. 
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Figure 5. Rule and fact base element class diagram. 
 
which is concluded by means of a given inference pro- 
cess, the Rule becomes true and can activate its Action 
that is composed of special-entities called “Instigations”. 
In the considered Rule, the Action contains only one In- 
stigation that makes the Archer to throw an arrow in the 
Apple. 

In fact, Instigations are linked to and instigate the 
execution of “Methods”, which are another special-entity 
of FBE. Each Method allows executing services of its 
FBE. Generally, the call of FBE Method changes one or 
more FBE Attribute states, feeding the inference process. 

4.2. NOP Inference Process 

The inference process of NOP is innovative once the 
Rules have their inference carried out by active collabo- 
ration of its notifier entities [3]. In short, the collabora- 
tion happens as follow: for each change in an Attribute 
state of a FBE, the state evaluation occurs only in the 
related Premises and then only in related and pertinent 
Conditions of Rules by means of punctual notifications 
between the collaborators.  

In order to detail this Notification Oriented Inference, 
it is firstly necessary to explain the Premise composition. 
Each Premise represents a Boolean value about one or 
even two Attribute state, which justify its composition: (a) 
a reference to an Attribute discrete value, called Refe- 
rence, which is received by notification; (b) a logical 
operator, called Operator, useful to make comparisons; 
and (c) another value called Value that can be a constant 
or even a discrete value of other referenced Attribute. 

A Premise makes a logical calculation when it receives 
notification of one or even two Attributes (i.e. Reference 
and even Value). This calculation is carried out by com- 
paring the Reference with the Value, using the Operator. 

In a similar way, a Premise collaborates with the causal 
evaluation of a Condition. If the Boolean value of a noti- 
fied Premise is changed, then it notifies the related Con- 
dition set. 

Thus, each notified Condition calculates their Boolean 
value by the conjunction of Premises values. When all 
Premises of a Condition are satisfied, a Condition is also 
satisfied and notifies the respective Rule to execute.  

The collaboration between NOP entities by means of 
notifications can be observed at the schema illustrated in 
Figure 6. In this schema, the flow of notifications is rep- 
resented by arrows linked to rectangles that symbolize 
NOP entities. 

An important point to clarify about NOP collaborative 
entities is that each notifier one (e.g. Attributes) registers 
its client ones (e.g. Premises) in their creation. For ex- 
ample, when a Premise is created and makes reference to 
an Attribute, the latter automatically includes the former 
in its internal set of entities to be notified when its state 
change. 

4.3. NOP Redundancy Avoidance-Performance 

In NOP, an Attribute state is evaluated by means of a set 
of logical expression (i.e. Premise) and causal expression 
(i.e. Condition) in the changing of its state. Thanks to the 
cooperation by means of precise notifications, NOP avoids 
the two types of aforementioned redundancies.  

The temporal redundancy is solved in NOP by elimi- 
nating searches over passive elements, once some data- 
entities (e.g. Attributes) are reactive in relation to their 
state updating and can punctually notify only the parts of 
a causal expression that are interested in the updated state 
(e.g. Premises), avoiding that other parts and even other 
causal expressions be unnecessarily evaluated or reevalu-
ated. 

Indeed, each Attribute notifies just the strictly con- 
cerned Premise due to state change and each Premise 
notifies just the strictly concerned Condition due to state 
change, therefore implicitly avoiding temporal redun-
dancy. Besides, the structural redundancy is also solved 
in NOP when Premise collaboration is shared with two or 
more causal expressions (i.e. Conditions). Thus, the Pre- 
mise carries out logic calculation only once and shares 
the logic result with the related Conditions, thereby avoid-
ing re-evaluations. 

4.4. NOP Decoupling and Distribution 

Actually, besides solving redundancy and then perfor- 
mance problems, NOP also is potentially applicable to 
develop parallel/distributed applications because of the 
“decoupling” (or minimal coupling to be precise) of enti- 
ties. In inference terms, there is no great difference if an 
entity is notified in the same memory region, in the same 
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Figure 6. Notification chain of rules and collaborators [3]. 
 
computer memory or in the same sub-network.  

For instance, a notifier entity (e.g. an Attribute) can 
execute in one machine or processor whereas a “client” 
entity (e.g. a Premise) can execute in another. For the 
notifier, it is “only” necessary to know the address of the 
client entity. However, these issues also should be con- 
sidered in more technical and experimental details in 
future publications once there are current works in this 
context. 

4.5. NOP Implementation 

In order to provide the use of these solutions before the 
conception of a particular language and compiler, the 
NOP entities were materialized in C++ programming lan- 
guage in the form of a framework and the applications 
developed have been made just by instantiating this fra- 
mework [9]. Moreover, to make easier this process, a 
prototypal wizard tool has been proposed to automate 
this process. 

It is a tool that generates NOP smart-entities from 
rules elaborated in a graphical interface. In this case, de- 
velopers “only” need to implement FBEs with Attributes 
and Methods, once other NOP special-entities will be 
composed and linked by the tool. This allows using the 
time to the construction of the causal base (i.e. composi- 
tion of NOP rules) without concerns about instantiations 
of the NOP entities. 

5. A Performance Study 

NOP promises to solve some current paradigm deficien- 
cies, highlighting here the imperative one. This promise  

happens by the proposition of an alternative manner to 
create and execute software based on an inference me- 
chanism composed of collaborative notifier objects [3,7, 
8]. 

The cooperation between NOP entities (a sort of 
smart-objects in the current framework) via notifications 
happens efficiently and in a decoupled way. This allows 
enhancing application performance in monoprocessed 
architectures and presumably also in parallel/distributed 
ones [3,7,9]. 

This paper emphasizes monoprocessed architectures, 
presenting NOP as a solution that avoids temporal and 
structural redundancies, thereby saving resources and 
speeding up the application performance with respect to 
imperative programming in terms of causal calculation.  

In order to clarify the NOP efficiency, this section pre- 
sents a performance comparative study between pro- 
grams from NOP and Imperative Paradigm, which are 
applied to the two before described marksmanship sce- 
narios. The first scenario highlights temporal redundan- 
cies, whereas the second one highlights structural redun- 
dancies. 

Besides, both scenarios are implemented via C++ lan- 
guage and NOP C++ framework, which are compiled 
with the compiler DJ’s GNU Programming Platform (DJ 
GPP) to non-preemptive MS-DOS using maximum op-
timization. 

5.1. Scenario Organization 

In both scenarios, it is considered that 100 archers inter- 
act with the same amount of apples. The archers are rep-  
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resented by the class Archer and the apples by the class 
Apple. The Archer and Apple instances are assembled in 
two vectors, which are respectively named Archer List 
and Apple List. Respectively to the first and second sce- 
narios, the Figures 7 and 10 present part of these codes 
that use vector class of C++ Standard Template Library 
(STL). 

In the IP implementation, two vectors with typical ob- 
jects are used to define and evaluate 100 imperative 
causal expressions in the form of if statements via a loop. 
In the NOP implementation, in turn, other two vectors 
with FBE objects are used only to instantiate 100 NOP 
causal expression entities, i.e. NOP Rules, once Rule 
evaluations occur via notifications. Of course, both IP 
and NOP codes have their causal evaluation composed 
with quite similar efforts in order to carry out a fairer 
comparison. 

In both implementations, there are 10 phases, each one 
with 100.000 iterations. Each interaction evaluates causal 
expressions in the concerned paradigm. Still, each phase 
defines percentage of the causal expressions in true state. 
First phase defines 10%, second defines 20%, and so 
forth. Besides, each program was executed 10 times by 
phase, resulting in an average of used time in millise- 
conds. 

The time is measured only to the iteration execution, 
ignoring the time related to the preparation to the itera- 
tions. In the 1st scenario, this means that the time to re- 
place the shot apples by new ones is ignored. In the 2nd 
scenario, where the gun should be firstly turned off in 
order to fire again, the time to reactivate the gun is ig- 
nored. 

5.2. First Scenario 

The causal expressions related to the first scenario are 
illustrated in the code shown in Figure 7, where lines 1 
to 10 refer to imperative code and lines 11 to 20 to NOP 
code. 

Each causal expression is composed of three logical 
expressions or premises that respectively refer to the 
evaluation of: (a) an Apple color (i.e. lines 4 and 15), (b) 
an Apple position status (i.e. 5 and 16), and an Archer 
status (i.e. 6 and 17). In these causal expression premises, 
just the first can vary its logical state during the iterations, 
whereas other two premises always present true logical 
state. 

These causal expressions are used to express the prob- 
lem of temporal redundancy in Imperative Programming 
and the solution to this problem in NOP. The temporal 
redundancy happens when at least one premise is false 
and it continues false and evaluated in more than one 
iteration. 

In this scenario, considering none causal expression is 
satisfied in each iteration (i.e. 0% of all causal expres- 
sions), IP mechanism evaluates and reevaluates indefi- 
nitely the causal expressions until a given stop criterion 
is achieved. 

Also, considering only one causal expression satisfied 
in each iteration (i.e. 1% of all causal expressions), IP 
mechanism evaluates all causal expressions (almost all 
unnecessarily) in order to execute the commands of the 
unique satisfied causal expression. This sequential exe- 
cution process delays the evaluation of pertinent causal 
expression. 

NOP does not use computational resources unneces- 
sarily when there is state invariability, avoiding causal 
expression reevaluation. Also, it avoids searches notify- 
ing punctually each causal expression really affected by 
state changes and immediately after the change has oc- 
curred. 

In order to confirm this fact, a practical experiment 
was carried out to the current scenario. Results are fa- 
vorable to NOP and are presented in Figure 8. Accord- 
ing to the graphic, NOP presents better performance 
when it avoids unnecessary processing and searches for 
causal expressions. 

 

 

Figure 7. Causal expressions related to the 1st scenario. 
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Figure 8. No one and one causal expression in state true. 
 

In agreement with Forgy’s research [26], most causal 
expressions in imperative code are evaluated unnecessa- 
rily, once few of them are affected for changes in data 
during an iteration of the Imperative Paradigm mecha- 
nism. 

According to him, less than 1% of the application data 
changes in one iteration. Thus, comparing this affirma- 
tion with the actual experiment results to this scenario, 
NOP can be considered as a solution to improve the effi- 
ciency of the most computational systems based on the 
IP. 

However, this affirmation is not applicable to all com- 
putational systems. For example, Friedman-Hill [51] af-
firms that 20% of causal-expression can be affected in 
each interaction. Still, even if it is not usual, some sys- 
tems could have, in the worst case, the most or even all 
causal expressions affected by changes of one or more 
variable states. 

Thus, another experiment was carried out over the 
present scenario in order to compare both paradigms in 
relation to different levels of temporal redundancy. In 
this experiment the causal expressions affected by state 
changes increase in terms of quantity in each experiment 
phase in order to reduce the effects of temporal redun- 
dancies. These experiments results are expressed in Fig-
ure 9. 

According with the result of this particular scenario,  

NOP outperforms IP until when 40% of causal expres- 
sions are affected by states change. This rate is extremely 
greater than the rate affirmed by Forgy [26]. However, 
NOP is less efficient than IP when the changes in the 
states affect a rate greater than 40%. This happens due to 
the simplicity that IP evaluates the causal expressions, 
aided by the reduction of the temporal redundancies in 
each experimental phase. 

This simplicity may be clearly noted by the represen- 
tations of the causal expressions. In the considered IP 
code, each causal expression manipulates only two ob- 
jects (instances of classes Archer and Apple) whereas a 
NOP Rule manipulates also the collaborator objects from 
the notification mechanism (Attributes, Premises and Con- 
dition). 

In the actual NOP implementation, in terms of instruc- 
tions in Assembly Language, Rules are surely more 
complex and composed of a greater number of instruc-
tions to be processed than causal expressions of Impera-
tive Programming. Furthermore, NOP is currently imple- 
mented as an abstraction layer over C++ language, af-
fecting its performance. Thus, the results may be im-
proved by a sequence of optimizations that pass certainly 
through the construction of a particular compiler [9]. 

5.3. Second Scenario 

The 2nd scenario presents temporal and structural redun- 
dancies, but the structural redundancy is highlighted. In 
this scenario, the gun is a common element to all archers, 
once these must “listen” the gun signal to hit the apples. 

Thus, in each iteration, the gun state must be evaluated 
by each archer. This fact explains the need of one more 
premise to the causal expressions presented in the first 
scenario. The causal expressions with additional premise 
(line 18) are presented in Figure 10. 

Considering the causal expressions in the Figure 10, 
Imperative Paradigm mechanism evaluates the premise  

 

 

Figure 9. Variable percentage of true causal expressions—1st scenario. 
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Figure 10. Causal expressions related to the 2nd scenario. 
 
relative to the Gun state in each causal expression (line 
6), whereas NOP mechanism identifies redundancies and 
shares the same Premise by the respective Conditions 
(line 18). 

Certainly, the imperative code could be more opti- 
mized, such as using a causal expression evaluating the 
gun state before the loop. However, this would not be 
possible if the causal expressions were spread in many 
parts of a complex code, as usual happens in software. 

In short, the idea is to highlight the structural redun- 
dancy that often occurs in Imperative Paradigm code. 
Thus, in order to effectively evaluate the structural re- 
dundancy in this scenario, it was considered that only the 
gun state is changed in each iteration. This allows vary- 
ing the logical state just of the premises related to the 
gun. 

Also, it was considered that a percentage of apples are 
enabled before the beginning of each experiment phase 
and they remain in these states until the end of the ex- 
periment phase to avoid state changes in other premises. 
The results of each experiment phase are presented in 
Figure 11. 

According to the graph over this scenario, NOP pre- 
sents better performance when it solves both redundan- 
cies, presenting better results than the previous scenario. 
It is due to the capacity of the notification mechanism to 
memorize logical states already evaluated and sharing of 
the logical state of the respective Premise to all con- 
nected Conditions. 

6. Conclusion and Future Works 

This section discusses NOP properties and future works. 

6.1. NOP Features 

NOP would be an instrument to improve applications’ 
performance in terms of causal calculation, especially of  

complex ones such as those that execute permanently and 
need excellent resource use and response time. This is 
possible thanks to the notification mechanism, which 
allows an innovative causal-evaluation process with re- 
spect to those of current programming paradigms [7-9, 
29]. 

In the current paradigms, the evaluation process is 
based on monolithic inference-process that performs some 
sort of search over passive fact-bases (e.g. variables and 
vector sets) and causal-bases (e.g. if-then statement sets), 
which generates a set of deficiencies. Precise deficiency 
examples are the misuse of computation capacity and 
code coupling that respectively generate degradation of 
the performance and hardness to develop multi-processed 
software. 

In turn, NOP proposes factual and causal smart-enti- 
ties named as Fact Base Elements (FBEs) and Rules that 
are related to other collaborative notifier smart-entities. 
Each FBE is related to Attributes and Methods, whereas 
each Rule to Premises-Conditions and Actions-Insti- 
gations. All these entities collaboratively carry out the in- 
ference process by means of notifications, providing so-
lutions to deficiencies of current paradigms. In this con-
text, this paper addressed the performance subject mak-
ing some comparisons of NOP and Imperative Program- 
ming instances. 

6.2. NOP Performance 

As demonstrated, NOP improves performance by means 
of its innovative notification mechanism [3,7]. This mecha-
nism assures that each change of “variable” (i.e. FBE 
Attribute) state activates only the strictly necessary evalua-
tions of logical and causal expressions (i.e. Premises and 
Conditions of Rules) [3,9]. Also, NOP improves the per-
formance by sharing the results of logic evaluation (i.e. 
notification of Premises) between causal evaluations (i.e. 
execution of Conditions), avoiding unnecessary repetitions 
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Figure 11. Variable percentage of true causal expressions—2nd scenario. 
 
of code and processing in the execution of the Rules [3].  

Thus, temporal and structural redundancies are avoided 
by NOP, guarantying suitable performance by definition 
[3]. Actually, even if NOP uses high-level concepts in-
spired from Rule Based System and Object Oriented Sys-
tem concepts (e.g. rule-objects) and even if its actual 
implementation is an abstraction layer over C++, NOP 
implementation does have suitable performance [9].  

In this context, under the same conditions, NOP pro- 
grams presented in this paper outperforms pure Impera- 
tive Paradigm programs in relevant percentages of the 
considered experiments. Besides, other additional experi- 
ments with similar results are presented in [9]. Still, some 
experiments therein compared the NOP implementation 
with a Declarative Programming best practice and demon- 
strated its performance superiority [9]. 

Furthermore, some optimization of NOP implementa- 
tion may provide better results than the current results, 
namely in terms of performance. Certainly, these opti- 
mizations are related to the development of a particular 
compiler to solve some drawbacks of the actual imple- 
mentation of NOP, such as the overhead of using com- 
putationally expensive data-structure over an intermedi- 
ary language. These advances are under consideration in 
other works. 

6.3. NOP Originality 

At first, NOP entities (Rules and FBEs) may be confused 
as just an advance of Rule Based, Object Oriented, and 
Event-Driven Systems, including then Data-Flow-like 
Programming and Inference Engines. However, NOP is 
far than a simple evolution of them. It is a new approach 
that proposes Rule and FBE smart-entities composed of 
other collaborative punctual-notifier smart-entities, which 
provide new type of logical-causal calculation or infe- 
rence process.  

This inference solution, in turn, is not just an applica- 
tion of known software notifier patterns, useful to Event- 

Driven Systems, such as the observer-pattern. It is the 
extrapolation of that once the execution of the NOP 
logical-causal calculation via punctual notifications has 
not been conceived before. At least, this is the honest 
authors’ perception after more than one decade of litera- 
ture reviewing. 

Indeed, this inference innovation changes all the soft- 
ware essence with respect to logical-causal reasoning (i.e. 
one of its essential parts) and then makes the solution a 
new programming paradigm. Moreover, as NOP changes 
the form in which software is structured and executed, it 
also determines a change in the form that software is 
conceived.  

6.4. NOP New Paradigm 

Even if the causal programming can be easily made using 
NOP, highlighting the support of a wizard tool, it is ne- 
cessary to know NOP principles [8]. It is necessary to the 
developer to understand the structure and execution 
process of the application under NOP to elaborate better 
solutions. 

This awareness allows understanding, for example, 
that NOP software has high performance by definition, in 
term of logical-causal calculation, and that the concerned 
mechanism is automatically built in background during 
the causal code composition. This would allow the de- 
veloper employing this type of code as much as necessary 
to each application without strong response-time con-
cerns. Still, that awareness allows realizing other possi-
bilities of NOP use, such as understanding how to suita-
bly apply mechanisms to solve conflicts and guaranty 
determinism. 

In this context, a simple mechanism to deal with con- 
flict and determinism is the first Rule approved to be 
executed. However, there are better mechanisms possible, 
due to the inference based on notification that can be 
only well used by developer with understanding of the 
software paradigm. These issues are somehow described 
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in embryo in the first author’s Ph.D. thesis [12] and last 
author’s M.Sc. Thesis [9] and actually described in two 
patent requests. 

6.5. NOP Decoupling, Distribution & Formalism  

The understanding of the NOP nature by the developer 
normally allows its better use also in the case of distri- 
buted software. For example, it is important to know how 
NOP works in order to find better distribution strategies, 
such as to allocate together NOP entities having more 
interactions thereby avoiding unnecessary network com- 
munication [3].  

Still, the understanding of NOP principles is important 
to complex applications where the notification flow is 
intense and need more formalism and traceability, such 
as real-time discrete-control applications. Indeed, this 
sort of application may demand support of formal tools 
to design. 

A particular example of formalism is the Petri nets. 
Actually, Petri nets are compatible with rule-based sys- 
tem in general in terms of expression of causal relations 
[52]. Moreover, they are particularly compatible with the 
NOP principles also in term of their essence [3]. In this 
context, it would be necessary to know NOP and Petri 
nets principles, understanding that both are naturally 
compatible [3]. 

Actually, Petri nets present a manner to model causal 
relations based on sensitization, which is similar to noti- 
fication principles of NOP. Even if Petri nets do not pre- 
cise how really carry out the causal calculation based on 
sensitization, it presents a model where abstractly this 
calculation would be notification-driven. At the best of 
authors’ knowledge, there was not a suitable computa-
tional solution to really implement and play Petri nets 
until NOP solution. Before, Petri nets have been misused 
in computational implementations, which are based on 
searches and not on notifications or sensitization-like 
[3,12]. 

6.6. NOP Expectation 

The presented programming solution called NOP is seen 
as a new paradigm because it provides a new structure, 
execution approach, and thinking with respect to soft- 
ware development. Besides, NOP is better in many as- 
pects than the current paradigms and can be used to- 
gether with them.  

Thus, the applicability of NOP concepts presents ex- 
pectation. It is believed that the maturity of the solution 
would allow its diffusion and adoption as an alternative 
to increase the performance and make better the concep- 
tion of software in non-distributed and distributed envi- 
ronments. 
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