
Journal of Software Engineering and Applications, 2012, 5, 402-416
http://dx.doi.org/10.4236/jsea.2012.56047 Published Online June 2012 (http://www.SciRP.org/journal/jsea)

Notification Oriented Paradigm (NOP) and Imperative
Paradigm: A Comparative Study

Jean M. Simão1,2, Cesar A. Tacla1,2, Paulo C. Stadzisz1,2, Roni F. Banaszewski1

1Graduate School in Electrical Engineering & Industrial Computer Science (CPGEI), Federal University of Technology of Paraná
(UTFPR), Curitiba, Brazil; 2Graduate School of Applied Computing (PPGCA), Federal University of Technology of Paraná
(UTFPR), Curitiba, Brazil.
Email: {jeansimao, tacla, stadzisz}@utfpr.edu.br

Received March 22nd, 2012; revised April 19th, 2012; accepted April 28th, 2012

ABSTRACT

This paper presents a new programming paradigm named Notification Oriented Paradigm (NOP) and analyses per-
formance aspects of NOP programs by means of an experiment. NOP provides a new manner to conceive, structure, and
execute software, which allows better performance, causal-knowledge organization, and entity decoupling than standard
solutions based upon current paradigms. These paradigms are essentially Imperative Paradigm (IP) and Declarative
Paradigm (DP). In short, DP solutions are considered easier to use than IP solutions thanks to the concept of high-level
programming. However, they are considered slower to execute and lesser flexible to program than IP. Anyway, both
paradigms present similar drawbacks like causal-evaluation redundancies and strongly coupled entities, which decrease
software performance and processing distribution feasibility. These problems exist due to an orientation to monolithic
inference mechanism based upon sequential evaluation by means of searches over passive computational entities. NOP
proposes another manner to structure software and make its inferences, which is based upon small, smart, and decoup-
led collaborative entities whose interaction happen by means of precise notifications. This paper discusses NOP as a
paradigm and presents certain comparison of NOP against IP. Actually, performance is evaluated by means of IP and
NOP programs with respect to a same application, which allow demonstrating NOP superiority.

Keywords: Notification Oriented Paradigm; Notification Oriented Inference; NOP and IP Comparison

1. Introduction

This section mentions drawbacks from current program-
ming paradigms, introduces Notification Oriented Para-
digm as a new solution, and presents paper objectives.

1.1. Review Stage

The computational processing power has grown each year
and the tendency is that technology evolution contributes
to the creation of still faster processing technologies [1].
Even if this scenario is positive in terms of pure technol-
ogy evolution, in general it does not motivate informa-
tion-technology professionals to optimize the use of proc-
essing resources when they develop software [2].

This behavior has been tolerated in standard software
development where there is not need of intensive pro-
cessing or processing constraints. However, it is not ac-
ceptable to certain software classes, such as software for
embedded systems [3]. Such systems normally employ
less-powerful processors due to factors such as constraints
on power consumption and system price to a given mar-
ket [4].

Besides, computational power misusing in software
can also cause overuse of a given standard processor, im-
plying in execution delays [3-5]. Still, in complex soft-
ware, this can even exhaust a processor capacity, de-
manding faster processor or even some sort of distribu-
tions (e.g. dual-core) [3-6]. Indeed, an optimization-ori-
ented programming could avoid such drawbacks and re-
lated costs [3-7].

Therefore, suitable engineering tools for software de-
velopment, namely programming languages and their
environments, should facilitate the development of opti-
mized and correct code [8-13]. Otherwise, engineering
costs to produce optimized-code could exceed those of
upgrading the processing capacity [3,8-10].

Still, suitable tools should also make the development
of distributable code easy once, even with optimized
code, distribution may be actually demanded in some
cases [14-17]. However, the distribution is itself a prob-
lem once, under different conditions, it could entail a set
of (related) problems, such as complex load balancing,
communication excess, and hard fine-grained distribution
[3,14,15,18].

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 403

In this context, a problem raises from the fact that
usual programming languages (e.g. Pascal, C/C++, and
Java) present no real facilities to develop optimized and
really distributable code, particularly in terms of fine-
grained decoupling of code [2,3,18,19]. This happens due
to the structure and execution nature imposed by their
paradigm [6,8,9].

1.2. Imperative and Declarative Programming

Usual programming languages are based on the Impera-
tive Paradigm, which cover sub-paradigms such as Pro-
cedural and Object Oriented ones [9,20,21]. Besides, the
latter is normally considered better than the former due to
its richer abstraction mechanism. Anyway, both present
drawbacks due to their imperative nature [9,20,22].

Essentially, Imperative Paradigm imposes loop-ori-
ented searches over passive elements related to data (e.g.
variables, vectors, and trees) and causal expressions (i.e.
if-then statements or similar) that cause execution re-
dundancies. This leads to create programs as a mono-
lithic entity comprising prolix and coupled code, gener-
ating non-optimized and interdependent code execution
[7,8,22,23].

Declarative Paradigm is the alternative to the Impera-
tive Paradigm. Essentially, it enables a higher level of
abstraction and easier programming [21,22]. Also, some
declarative solutions avoid many execution redundancies
in order to optimize execution, such as Rule Based Sys-
tem (RBS) based on Rete or Hal algorithms [24-27].
However, programs constructed using usual languages
from Declarative Paradigm (e.g. LISP, PROLOG, and
RBS in general) or even using optimized solution (e.g.
Rete-driven RBS) also present drawbacks [7,8].

Declarative Paradigm solutions use computationally
expensive high-level data structures causing considerable
processing overheads. Thus, even with redundant code,
Imperative Paradigm solutions are normally better in per-
formance than Declarative Paradigm solutions [9,28].
Furthermore, similarly to the Imperative Paradigm pro-
gramming, the Declarative Paradigm programming also
generates code coupling due to the similar search-based
inference process [3,7,22]. Still, other approaches be-
tween them, such as event-driven and functional pro-
gramming, do not solve these problems even if they may
reduce some problems, like reduce certain redundancies
[23,28].

1.3. Development Issues & Solution Perspective

As a matter of fact, there are software development is-
sues in terms of ease composition of optimized and dis-
tributable code [3,7,8]. Therefore, this impels new solu-
tions to make simpler the task of building better software.
In this context, a new programming paradigm, called No-

tification Oriented Paradigm (NOP), was proposed in or-
der to solve some of the highlighted problems [3,7,8].

The NOP basis was initially proposed by J. M. Simão
as a manufacturing discrete-control solution [12,29]. This
solution was evolved as general discrete-control solution
and then as a new inference-engine solution [3], achiev-
ing finally the form of a new programming paradigm
[7-9].

The essence of NOP is its inference process based on
small, smart, and decoupled collaborative entities that
interact by means of precise notifications [3]. This solves
redundancies and centralization problems of the current
causal-logical processing, thereby solving processing mi-
suse and coupling issues of current paradigms [3,7-9].

1.4. Paper Context and Objective

This paper discusses NOP as a solution to certain current
paradigm deficiencies. Particularly, the paper presents a
performance study, in a mono-processed case, related to
a program based on NOP compared against an equivalent
program based on Imperative Paradigm.

In short, the study shows NOP advantages to save
processing. Moreover, it allows presenting other research
perspectives with respect to NOP. For instance, it allows
showing the suitability to distribution by highlighting the
achieved decoupling degree of NOP (code) elements.

2. Background

This section explores programming paradigm drawbacks.

2.1. Imperative Programming Issues

The main drawbacks of Imperative Programming are
concerned to the related code redundancy and coupling
[3]. The first mainly affects processing time and the se-
cond processing distribution, as detailed in the next sub-
sections.

2.1.1. Imperative Programming Redundancy
In Imperative Programming, like procedural or object
oriented programming, a number of code redundancies
and interdependences comes from the manner the causal
expressions are evaluated. This is exemplified in the
pseudo-code in Figure 1 that represents a usual code
elaborated without strong technical and intellectual ef-
forts. This means that the pseudo-code was elaborated in
a non complicated manner, as software elaboration should
ideally be [7,9].

In the example, each causal expression has three logi-
cal premises and a loop forces the sequential evaluation
of all causal expressions. However, most evaluations are
unnecessary because usually just few attributes of objects
(i.e. variables) have their values changed at each iteration.

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 404

Figure 1. Example of imperative code.

This type of code causes the problem called, in the com-
puter science, temporal and structural redundancy [3,26].

The temporal redundancy is the repetitive, unnecessary
evaluation of causal expressions in the presence of ele-
ment states (e.g. attribute or variable states) already eva-
luated and unchanged. For instance, this occurs in the
considered loop-oriented code example. The structural
redundancy, in turn, is the recurrence of a given logical
expression evaluation in two or more causal expressions
[3]. For instance, the logical expression (object 1. attri-
bute 1 = 1) is replicated in several causal expressions (i.e.
if-then statements) [3,7].

These redundancies can be seen unimportant in this
didactic code example, mainly if the number (n) of cau-
sal expressions is small. However, even with better code,
if more complex examples were considered integrating
many (remaining) redundancies, there would be a ten-
dency to performance degradation and increasing of de-
velopment complexity inclusively to avoid that degrada-
tion [7,9].

The code redundancies may result, for example, in the
need of a more powerful processor than it is really re-
quired [3,6]. Also, they may result in the need for code
distribution to processors, thereby implying in other pro-
blems such as module splitting and synchronization.
These problems, even if solvable, are additional issues in
the software development whose complexity increases as
much as the fine-grained code distribution is demanded,
particularly in terms of logical-causal (i.e. “if-then”) cal-
culation [3,6,8].

2.1.2. Imperative Programming Coupling
Besides the usual repetitive and unnecessary evaluations
in the imperative code, the evaluated elements and causal
expressions are passive in the program decisional execu-
tion, although they are essential in this process. For in-
stance, a given if-then statement (i.e. a causal expression)
and concerned variables (i.e. evaluated elements) do not
take part in the decision with respect to the moment in

time they must be evaluated [3].
The passivity of causal expressions and concerned

elements is due to the way they are evaluated in the time.
An execution line in each program (or at least in each
program thread) carries out this evaluation, usually guided
by means of a set of loops. As these causal expressions
and concerned elements do not actively conduct their
own execution (i.e. they are passive), their interdepen-
dency is not explicit in each program execution [3].

Thus, at first, causal expressions or evaluated elements
depend on results or states of others. This means that
they are somehow coupled and should be placed together,
at least in the context of each module. This coupling in-
creases code complexity, which complicates, for instance,
an eventual distribution of each single code part in fine-
grained way. This makes each module, or even the whole
program, a monolithic computational unit [3].

2.1.3. Imperative Programming Distribution
Hardness

When distribution is intended (e.g. process, processor,
and cluster distribution), an analysis of code could iden-
tify less dependent code sets to facilitate their splitting.
However, this is normally a complex activity due to the
code coupling and complexity caused by the imperative
programming [13,19].

In this sense, well-designed software composed of mo-
dules as decoupled as possible, using advanced and quite
complicated software engineering concepts like aspects
[14] and axiomatic design [30], can help distribution.
Still, middleware such as CORBA and RMI would be
helpful in terms of infrastructure to some types of mo-
dule distribution, if there is enough module decoupling
[14,31,32].

In spite of those advances, distribution of single code
elements or even code modules is still a complex activity
demanding research efforts [13-15,18,33,34]. It would be
necessary additional efforts to achieve easiness in distri-
bution (e.g. automatic, fast, and real-time distribution), as
well as correctness in distribution (e.g. fine-grained, bal-
anced, and minimal inter-dependent distribution) [3].

Indeed, distribution hardness is an issue because there
are contexts where distribution is actually necessary [6,
16,17]. For instance, a given optimized program exceed-
ing the capacity of an available processor would demand
processing splitting [5]. Other instances are programs that
must guaranty error isolation or even robustness by dis-
tributed module redundancy [12]. These features can be
found in application of nuclear-plant control [35], intel-
ligent manufacturing [12,29,36,37], and cooperative con-
trols [38].

Besides, there are other applications that are inherently
distributed and need flexible distribution, such as those
of ubiquitous computing. More precise examples are sen-

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 405

sor networks and some intelligent manufacturing control
[34,37]. Moreover, the easy and correct distribution is an
expectation due to the reduction of processor prices and
the communication networks advances as well [9,39].

2.1.4. Imperative Programming Development
Hardness

In addition to optimization and distribution issues, the
program development with Imperative Programming can
be seen as hard due to complicated syntax and a diversity
of concepts to be learned, such as pointers, control vari-
ables, and nested loops [40]. The development process
would be error-prone once a lot of code still comes from
a manual elaboration using those concepts. In this con-
text, the exemplified imperative algorithm (Figure 1)
could be certainly optimized, however without signifi-
cant easiness in this activity and true fine-grained code
decoupling.

It would be necessary to investigate better solutions
than those provided by Imperative Paradigm. A solution
to solve some of its problems may be the use of program-
ming languages from another paradigm, such as Declara-
tive Programming that automates the evaluation process
of causal expressions and concerned elements [20,41].

2.2. Declarative Programming Issues

A well-known example of Declarative Programming and
its nature is Rule Based System (RBS) [3,40]. A RBS
provides a high-level language in the form of causal-
rules, which prevents the developers from algorithm par-
ticularities [40]. RBS is composed of three general mo-
dular entities (Fact Base, Rule Base, and Inference En-
gine) with well-distinguished responsibilities, as usual in
declarative language (e.g. LISP, PROLOG, and CLIPS)
[41].

In Declarative Programming, the variable states are
dealt in a Fact Base and the causal knowledge in a Causal
Base (Rule Base in RBS), which are automatically mat-
ched by means of an Inference Engine (IE) [25,40]. More-
over, some IE algorithms (e.g. RETE [24-26], TREAT
[42,43], LEAPS [44], and HAL [27] algorithms) avoid
most of temporal and structural redundancies [9]. How-
ever, the data structures used to solve redundancies in
those IEs implies in too much consuming of processing
capacity [26].

Actually, the use of Declarative Programming only
compensates when the software under development pre-
sents many redundancies and few data variation. Also, in
general, an IE related to a given declarative language
limits the inventiveness, makes difficult some algorithm
optimizations, and obscures hardware access, which can
be inappropriate in certain contexts [9,23,28,45].

A solution to these problems can be the symbiotic use

of Declarative and Imperative Programming [20,45].
Indeed, such approach has been presented, like CLIPS++,
ILOG, and Rules. However, they are not popular due to
factors such as syntax mixing, paradigms mixing, and
technical cultural reasons [9]. Anyway, even Declarative
Paradigm being a relevant solution, it does not solve
some problems.

Indeed, beyond processing-overhead, declarative pro-
gramming also presents code coupling. Each declarative
program has also an execution or inference policy whose
essence is a monolithic entity (e.g. Inference Engine) re-
sponsible for analyzing every passive data-entity (Fact-
Base) and causal expression (Causal-Base). Thus, the
inference based on a search technique (i.e. matching)
implies a strong dependency between facts and rules be-
cause they together constitute the search space [3].

2.3. Other Programming Approach Drawbacks

Enhancements in the context of Imperative and Declara-
tive Paradigm have been provided to reduce the effects of
recurrent loops or searches, such as event-driven pro-
gramming and functional programming [9,41,46]. Event
programming and functional programming have been
used to different software such as discrete control, gra-
phical interfaces, and multi-agent systems [9,41,46].

Essentially, each event (a button pressing, a hardware
interruption or a received message) triggers a given exe-
cution (process, procedure or method execution), usually
in a given sort of module (block, object or even agent),
instead of repeated analysis of the conditions for its exe-
cution. The same principle applies to the called func-
tional programming whose difference would be function
calling via other function in place of events. Still, func-
tion means procedure, method or similar unity. Besides,
functional and event programming used together would
be usual.

However, the algorithm in each module process or
procedure is built using Declarative or Imperative pro-
gramming. This implies in the highlighted deficiencies,
namely code redundancy and coupling, even if they are
diminished by events or function calls. Indeed, if each
module has extensible or even considerable causal-logi-
cal calculation, they can be a problem together in terms
of processing misuse and distribution. This may demand
special design effort to achieve optimization and module
decoupling.

An alternative programming approach is the Data
Flow Programming [15] that supposedly should allow the
program execution oriented by data instead of an execu-
tion line based on search over data. Therefore, this would
allow decoupling and distribution [15]. The distribution
in Data Flow Programming is achieved in arithmetical
processing, however it is not really achieved in logical-
causal calculation [15,18]. This calculation is carried out

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 406

by means of current advanced inference engines, namely
Rete [18,47].

The fact is that current inference engines attempt to
achieve a data-driven approach. However, the inference
process is still based on searches even if they use data
from (some sort of) object-oriented tree to speed up the
inference cycle or searches. Thus, the highlighted prob-
lems remain.

2.4. Enhancement in Programming

In short, as explained in terms of Imperative and Decla-
rative Paradigms, current paradigms do not make easy to
achieve the following qualities together:
 Effective code optimization to be sure about the even-

tual need of a faster processor and/or multiprocessing.
 Easy way to compose correct code (i.e. without er-

rors).
 Easy code splitting and distribution to processing

nodes.
This is a problem mainly when considering the in-

creasing market demand by software, where development
easiness, code optimization, and processing distribution
are current requirements [48-50]. Indeed, this software
development “crisis” impels new researches and solu-
tions to make simpler the task of building better soft-
ware.

In this context, a new programming paradigm called
Notification Oriented Paradigm (NOP) was proposed to
solve some of the highlighted problems. NOP keeps the
main advantages of Declarative Programming/Rule Based
Systems (e.g. higher causal abstraction and organization
by means of fact base and causal base) and Imperative/
Object Oriented Programming (e.g. reusability, flexibi-
lity, and suitable structural abstraction via classes and
objects). In addition, NOP evolves some of their con-
cepts and solves some of their deficiencies [3,7,9].

3. Marksmanship Game

Before NOP concepts were firstly used to discrete con-
trol applications for quite diversified and complex simu-
lated manufacturing systems. The simulator used was
ANALYTICE II, developed at CPGEI/UTFPR. Specifi-
cally, concepts of the nowadays called NOP were used to
build a control meta-model, which allows instantiating
control applications, particularly to ANALYTICE II [12].
Those concepts revealed to be suitable to control applica-
tions [12,29].

In a given period of time, the solution was called
Holonic Control Meta-Model due to its holistic features
and its applicability to the so called Holonic Manufactur-
ing Systems [29]. Nowadays, this Holonic Control Meta-
model is also called Notification Oriented Control (NOC).
Besides, NOC is considered the genesis of the now called

Notification Oriented Inference (NOI). In turn, NOI is
considered the genesis of NOP. Thus, discrete control
applications of NOC could be interpreted as a NOP do-
main application.

Nevertheless, each control application over ANA-
LYTICE II is actually complex to be used in a compari-
son study between NOP and other paradigms, such as
comparison between NOP and Imperative Paradigm.
Indeed, the understanding of complex application could
undermine NOP understanding and the experiment un-
derstanding as well. Thus, to better explain differences
between these paradigms, another and simpler applica-
tion is here proposed aiming at the NOP nature and ex-
periment essence.

This new application refers to the marksmanship game
that, in general, is an environment where a thrower is
positioned at a given distance from a target and he tries
to hit the target by firing a projectile. In this paper, the
game is adapted once the throwers are represented by
archers that try hitting the targets composed of black or
gray apples, as illustrated in Figure 2 with two scenarios.

In the 1st scenario, there is an archer for each apple,
both identified by the same number. Apples are posi-
tioned in a parallel line with respect to archers, as shown
in Figure 2(a). In an ordered manner, each apple is shot
by the respective archer during each iteration of each
phase, if the suitable condition is true. In each iteration, it
is evaluated the color and status of each apple and the
status of each archer.

The conditional evaluation is illustrated in the causal
expression in Figure 3. The condition is true if the apple
color is black, the apple status is ready to be hit, and the
respective archer status is ready to shoot the apple. Still,

Figure 2. First (a) and second (b) scenario for the marks-
manship game.

Rule
If

Then

Condition

Action

FBE Apple.1 Attribute Status = Ready AND Premises

FBE Archer.1 Attribute Status =

Instigate FBE Archer.1 Throw.Arrow.To (Apple.1) Instigation

ANDFBE Apple.1 Attribute Color = Black

Reference Operator Value

Ready

Rule
If

Then

Condition

Action

FBE Apple.1 Attribute Status = Ready FBE Apple.1 Attribute Status = Ready AND Premises

FBE Archer.1 Attribute Status = FBE Archer.1 Attribute Status =

Instigate FBE Archer.1 Throw.Arrow.To (Apple.1)Instigate FBE Archer.1 Throw.Arrow.To (Apple.1) Instigation

ANDFBE Apple.1 Attribute Color FBE Apple.1 Attribute Color = Black

ReferenceReference OperatorOperator ValueValue

Ready

Figure 3. The representation of a rule.

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study

Copyright © 2012 SciRes. JSEA

407

the status of each Apple and the status of each Archer are
fixed as ready.

Still in the 1st scenario, before the beginning of each
iteration, all apples are gray (i.e. disabled). However, in
the beginning of each iteration, a given percentage of the
apples is replaced by black apples (i.e. enabled apples).
This percentage is defined and incremented at each phase
that the iteration pertains. Still, for an iteration to be
completed, each enabled apple must be shot by its re-
spective archer. After completing the iteration, shot ap-
ples are replaced by new gray apples in order to be used
in the next iteration.

In the 2nd scenario illustrated in Figure 2(b), in turn,
interactions between archers and apples present similari-
ties with the 1st scenario. In fact, they differ just in two
aspects:
 The addition of a gun to signalize the each iteration

start;
 Shot apples are not replaced by new ones in the itera-

tions of a phase because the apples accept more then
one shot.

In order to offer a suitable comparison on these sce-
narios, the experiments vary the amount of satisfied con-
ditional-causal evaluations by phase in each experiment.
The percentage of enabled apples (used in the iterations)
is varied from none to all in the phases, creating different
types of iterations. The aim is to evaluate redundancy
effects when the number of causal evaluations in true
states is increased.

These scenarios offer a suitable scope to perform com-
parative tests between Imperative Paradigm and NOP.
The first and second scenarios respectively emphasize
temporal and structural redundancies on the causal ex-
pressions of Imperative languages. Still, they emphasize
the main NOP features and advantages in the redundancy
removal.

4. Notification Oriented Paradigm (NOP)

The Notification Oriented Paradigm (NOP) introduces a

new concept to conceive, construct, and execute software
applications. NOP is based upon the concept of small,
smart, and decoupled entities that collaborate by means
of precise notifications to carry out the software infer-
ence [3,7]. This allows enhancing software applications
performance and potentially makes easier to compose
software, both non-distributed and distributed ones [9].

4.1. NOP Structural View

NOP causal expressions are represented by common cau-
sal rules, such as that in Figure 3, which are naturally
understood by programmers of current paradigms. How-
ever, each rule is technically enclosed in a special com-
putational-entity called “Rule”. An example of Rule En-
tity content is illustrated in Figure 4. This Rule struc-
tures and infers the causal knowledge with respect to the
case in which an Apple would be crossed by an Arrow
projected by an Archer.

Structurally, a Rule has two parts, namely a “Condi-
tion” and an “Action”, as shown by means of the UML
class diagram in Figure 5. Both are entities that work
together to handle the causal knowledge of the Rule. The
Condition is the decisional part, whereas the Action is
the execution part of the Rule. Both make reference to
factual elements of the system, such as “Apple” and
“Archer”.

NOP factual elements are represented by means of a
special type of entity called “Fact Base Element” (FBE).
A FBE includes a set of attributes. Each attribute is rep-
resented by another special type of entity called “Attri-
bute”, such as Color and Status Attributes of the Apple
FBE.

Attributes states are evaluated in the Conditions of
Rules by associated entities called “Premises”. In the
example, the Condition of the Rule is associated to three
Premises, which verify the state of FBE Attributes as
follow: (a) Is the Color of the Apple Black? (b) Is the
Apple Status Ready? (c) Is the Archer Status Ready?

When each Premise of a Rule Condition is in true state,

Figure 4. Rule entity.

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 408

FBE

Method Attribute

1..*0..*

Change State **

Premise

Notify State

0..*

1..2

Condition

Notify State
0..*

1..*

Rule

<<NOP>>

1

Action

1

Instigation

Activate
1..*

0..*

Instigate
1..*

0..*

<<NOP>>

<<NOP>>

<<NOP>>

<<NOP>>

<<NOP>> <<NOP>>

<<NOP>>

FBE

Method Attribute

1..*0..*

Change State **

Premise

Notify State

0..*

1..2

Condition

Notify State
0..*

1..*

Rule

<<NOP>>

1

Action

1

Instigation

Activate
1..*

0..*

Instigate
1..*

0..*

<<NOP>>

<<NOP>>

<<NOP>>

<<NOP>>

<<NOP>> <<NOP>>

<<NOP>>

Figure 5. Rule and fact base element class diagram.

which is concluded by means of a given inference pro-
cess, the Rule becomes true and can activate its Action
that is composed of special-entities called “Instigations”.
In the considered Rule, the Action contains only one In-
stigation that makes the Archer to throw an arrow in the
Apple.

In fact, Instigations are linked to and instigate the
execution of “Methods”, which are another special-entity
of FBE. Each Method allows executing services of its
FBE. Generally, the call of FBE Method changes one or
more FBE Attribute states, feeding the inference process.

4.2. NOP Inference Process

The inference process of NOP is innovative once the
Rules have their inference carried out by active collabo-
ration of its notifier entities [3]. In short, the collabora-
tion happens as follow: for each change in an Attribute
state of a FBE, the state evaluation occurs only in the
related Premises and then only in related and pertinent
Conditions of Rules by means of punctual notifications
between the collaborators.

In order to detail this Notification Oriented Inference,
it is firstly necessary to explain the Premise composition.
Each Premise represents a Boolean value about one or
even two Attribute state, which justify its composition: (a)
a reference to an Attribute discrete value, called Refe-
rence, which is received by notification; (b) a logical
operator, called Operator, useful to make comparisons;
and (c) another value called Value that can be a constant
or even a discrete value of other referenced Attribute.

A Premise makes a logical calculation when it receives
notification of one or even two Attributes (i.e. Reference
and even Value). This calculation is carried out by com-
paring the Reference with the Value, using the Operator.

In a similar way, a Premise collaborates with the causal
evaluation of a Condition. If the Boolean value of a noti-
fied Premise is changed, then it notifies the related Con-
dition set.

Thus, each notified Condition calculates their Boolean
value by the conjunction of Premises values. When all
Premises of a Condition are satisfied, a Condition is also
satisfied and notifies the respective Rule to execute.

The collaboration between NOP entities by means of
notifications can be observed at the schema illustrated in
Figure 6. In this schema, the flow of notifications is rep-
resented by arrows linked to rectangles that symbolize
NOP entities.

An important point to clarify about NOP collaborative
entities is that each notifier one (e.g. Attributes) registers
its client ones (e.g. Premises) in their creation. For ex-
ample, when a Premise is created and makes reference to
an Attribute, the latter automatically includes the former
in its internal set of entities to be notified when its state
change.

4.3. NOP Redundancy Avoidance-Performance

In NOP, an Attribute state is evaluated by means of a set
of logical expression (i.e. Premise) and causal expression
(i.e. Condition) in the changing of its state. Thanks to the
cooperation by means of precise notifications, NOP avoids
the two types of aforementioned redundancies.

The temporal redundancy is solved in NOP by elimi-
nating searches over passive elements, once some data-
entities (e.g. Attributes) are reactive in relation to their
state updating and can punctually notify only the parts of
a causal expression that are interested in the updated state
(e.g. Premises), avoiding that other parts and even other
causal expressions be unnecessarily evaluated or reevalu-
ated.

Indeed, each Attribute notifies just the strictly con-
cerned Premise due to state change and each Premise
notifies just the strictly concerned Condition due to state
change, therefore implicitly avoiding temporal redun-
dancy. Besides, the structural redundancy is also solved
in NOP when Premise collaboration is shared with two or
more causal expressions (i.e. Conditions). Thus, the Pre-
mise carries out logic calculation only once and shares
the logic result with the related Conditions, thereby avoid-
ing re-evaluations.

4.4. NOP Decoupling and Distribution

Actually, besides solving redundancy and then perfor-
mance problems, NOP also is potentially applicable to
develop parallel/distributed applications because of the
“decoupling” (or minimal coupling to be precise) of enti-
ties. In inference terms, there is no great difference if an
entity is notified in the same memory region, in the same

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 409

Figure 6. Notification chain of rules and collaborators [3].

computer memory or in the same sub-network.

For instance, a notifier entity (e.g. an Attribute) can
execute in one machine or processor whereas a “client”
entity (e.g. a Premise) can execute in another. For the
notifier, it is “only” necessary to know the address of the
client entity. However, these issues also should be con-
sidered in more technical and experimental details in
future publications once there are current works in this
context.

4.5. NOP Implementation

In order to provide the use of these solutions before the
conception of a particular language and compiler, the
NOP entities were materialized in C++ programming lan-
guage in the form of a framework and the applications
developed have been made just by instantiating this fra-
mework [9]. Moreover, to make easier this process, a
prototypal wizard tool has been proposed to automate
this process.

It is a tool that generates NOP smart-entities from
rules elaborated in a graphical interface. In this case, de-
velopers “only” need to implement FBEs with Attributes
and Methods, once other NOP special-entities will be
composed and linked by the tool. This allows using the
time to the construction of the causal base (i.e. composi-
tion of NOP rules) without concerns about instantiations
of the NOP entities.

5. A Performance Study

NOP promises to solve some current paradigm deficien-
cies, highlighting here the imperative one. This promise

happens by the proposition of an alternative manner to
create and execute software based on an inference me-
chanism composed of collaborative notifier objects [3,7,
8].

The cooperation between NOP entities (a sort of
smart-objects in the current framework) via notifications
happens efficiently and in a decoupled way. This allows
enhancing application performance in monoprocessed
architectures and presumably also in parallel/distributed
ones [3,7,9].

This paper emphasizes monoprocessed architectures,
presenting NOP as a solution that avoids temporal and
structural redundancies, thereby saving resources and
speeding up the application performance with respect to
imperative programming in terms of causal calculation.

In order to clarify the NOP efficiency, this section pre-
sents a performance comparative study between pro-
grams from NOP and Imperative Paradigm, which are
applied to the two before described marksmanship sce-
narios. The first scenario highlights temporal redundan-
cies, whereas the second one highlights structural redun-
dancies.

Besides, both scenarios are implemented via C++ lan-
guage and NOP C++ framework, which are compiled
with the compiler DJ’s GNU Programming Platform (DJ
GPP) to non-preemptive MS-DOS using maximum op-
timization.

5.1. Scenario Organization

In both scenarios, it is considered that 100 archers inter-
act with the same amount of apples. The archers are rep-

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 410

resented by the class Archer and the apples by the class
Apple. The Archer and Apple instances are assembled in
two vectors, which are respectively named Archer List
and Apple List. Respectively to the first and second sce-
narios, the Figures 7 and 10 present part of these codes
that use vector class of C++ Standard Template Library
(STL).

In the IP implementation, two vectors with typical ob-
jects are used to define and evaluate 100 imperative
causal expressions in the form of if statements via a loop.
In the NOP implementation, in turn, other two vectors
with FBE objects are used only to instantiate 100 NOP
causal expression entities, i.e. NOP Rules, once Rule
evaluations occur via notifications. Of course, both IP
and NOP codes have their causal evaluation composed
with quite similar efforts in order to carry out a fairer
comparison.

In both implementations, there are 10 phases, each one
with 100.000 iterations. Each interaction evaluates causal
expressions in the concerned paradigm. Still, each phase
defines percentage of the causal expressions in true state.
First phase defines 10%, second defines 20%, and so
forth. Besides, each program was executed 10 times by
phase, resulting in an average of used time in millise-
conds.

The time is measured only to the iteration execution,
ignoring the time related to the preparation to the itera-
tions. In the 1st scenario, this means that the time to re-
place the shot apples by new ones is ignored. In the 2nd
scenario, where the gun should be firstly turned off in
order to fire again, the time to reactivate the gun is ig-
nored.

5.2. First Scenario

The causal expressions related to the first scenario are
illustrated in the code shown in Figure 7, where lines 1
to 10 refer to imperative code and lines 11 to 20 to NOP
code.

Each causal expression is composed of three logical
expressions or premises that respectively refer to the
evaluation of: (a) an Apple color (i.e. lines 4 and 15), (b)
an Apple position status (i.e. 5 and 16), and an Archer
status (i.e. 6 and 17). In these causal expression premises,
just the first can vary its logical state during the iterations,
whereas other two premises always present true logical
state.

These causal expressions are used to express the prob-
lem of temporal redundancy in Imperative Programming
and the solution to this problem in NOP. The temporal
redundancy happens when at least one premise is false
and it continues false and evaluated in more than one
iteration.

In this scenario, considering none causal expression is
satisfied in each iteration (i.e. 0% of all causal expres-
sions), IP mechanism evaluates and reevaluates indefi-
nitely the causal expressions until a given stop criterion
is achieved.

Also, considering only one causal expression satisfied
in each iteration (i.e. 1% of all causal expressions), IP
mechanism evaluates all causal expressions (almost all
unnecessarily) in order to execute the commands of the
unique satisfied causal expression. This sequential exe-
cution process delays the evaluation of pertinent causal
expression.

NOP does not use computational resources unneces-
sarily when there is state invariability, avoiding causal
expression reevaluation. Also, it avoids searches notify-
ing punctually each causal expression really affected by
state changes and immediately after the change has oc-
curred.

In order to confirm this fact, a practical experiment
was carried out to the current scenario. Results are fa-
vorable to NOP and are presented in Figure 8. Accord-
ing to the graphic, NOP presents better performance
when it avoids unnecessary processing and searches for
causal expressions.

Figure 7. Causal expressions related to the 1st scenario.

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 411

Figure 8. No one and one causal expression in state true.

In agreement with Forgy’s research [26], most causal
expressions in imperative code are evaluated unnecessa-
rily, once few of them are affected for changes in data
during an iteration of the Imperative Paradigm mecha-
nism.

According to him, less than 1% of the application data
changes in one iteration. Thus, comparing this affirma-
tion with the actual experiment results to this scenario,
NOP can be considered as a solution to improve the effi-
ciency of the most computational systems based on the
IP.

However, this affirmation is not applicable to all com-
putational systems. For example, Friedman-Hill [51] af-
firms that 20% of causal-expression can be affected in
each interaction. Still, even if it is not usual, some sys-
tems could have, in the worst case, the most or even all
causal expressions affected by changes of one or more
variable states.

Thus, another experiment was carried out over the
present scenario in order to compare both paradigms in
relation to different levels of temporal redundancy. In
this experiment the causal expressions affected by state
changes increase in terms of quantity in each experiment
phase in order to reduce the effects of temporal redun-
dancies. These experiments results are expressed in Fig-
ure 9.

According with the result of this particular scenario,

NOP outperforms IP until when 40% of causal expres-
sions are affected by states change. This rate is extremely
greater than the rate affirmed by Forgy [26]. However,
NOP is less efficient than IP when the changes in the
states affect a rate greater than 40%. This happens due to
the simplicity that IP evaluates the causal expressions,
aided by the reduction of the temporal redundancies in
each experimental phase.

This simplicity may be clearly noted by the represen-
tations of the causal expressions. In the considered IP
code, each causal expression manipulates only two ob-
jects (instances of classes Archer and Apple) whereas a
NOP Rule manipulates also the collaborator objects from
the notification mechanism (Attributes, Premises and Con-
dition).

In the actual NOP implementation, in terms of instruc-
tions in Assembly Language, Rules are surely more
complex and composed of a greater number of instruc-
tions to be processed than causal expressions of Impera-
tive Programming. Furthermore, NOP is currently imple-
mented as an abstraction layer over C++ language, af-
fecting its performance. Thus, the results may be im-
proved by a sequence of optimizations that pass certainly
through the construction of a particular compiler [9].

5.3. Second Scenario

The 2nd scenario presents temporal and structural redun-
dancies, but the structural redundancy is highlighted. In
this scenario, the gun is a common element to all archers,
once these must “listen” the gun signal to hit the apples.

Thus, in each iteration, the gun state must be evaluated
by each archer. This fact explains the need of one more
premise to the causal expressions presented in the first
scenario. The causal expressions with additional premise
(line 18) are presented in Figure 10.

Considering the causal expressions in the Figure 10,
Imperative Paradigm mechanism evaluates the premise

Figure 9. Variable percentage of true causal expressions—1st scenario.

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 412

Figure 10. Causal expressions related to the 2nd scenario.

relative to the Gun state in each causal expression (line
6), whereas NOP mechanism identifies redundancies and
shares the same Premise by the respective Conditions
(line 18).

Certainly, the imperative code could be more opti-
mized, such as using a causal expression evaluating the
gun state before the loop. However, this would not be
possible if the causal expressions were spread in many
parts of a complex code, as usual happens in software.

In short, the idea is to highlight the structural redun-
dancy that often occurs in Imperative Paradigm code.
Thus, in order to effectively evaluate the structural re-
dundancy in this scenario, it was considered that only the
gun state is changed in each iteration. This allows vary-
ing the logical state just of the premises related to the
gun.

Also, it was considered that a percentage of apples are
enabled before the beginning of each experiment phase
and they remain in these states until the end of the ex-
periment phase to avoid state changes in other premises.
The results of each experiment phase are presented in
Figure 11.

According to the graph over this scenario, NOP pre-
sents better performance when it solves both redundan-
cies, presenting better results than the previous scenario.
It is due to the capacity of the notification mechanism to
memorize logical states already evaluated and sharing of
the logical state of the respective Premise to all con-
nected Conditions.

6. Conclusion and Future Works

This section discusses NOP properties and future works.

6.1. NOP Features

NOP would be an instrument to improve applications’
performance in terms of causal calculation, especially of

complex ones such as those that execute permanently and
need excellent resource use and response time. This is
possible thanks to the notification mechanism, which
allows an innovative causal-evaluation process with re-
spect to those of current programming paradigms [7-9,
29].

In the current paradigms, the evaluation process is
based on monolithic inference-process that performs some
sort of search over passive fact-bases (e.g. variables and
vector sets) and causal-bases (e.g. if-then statement sets),
which generates a set of deficiencies. Precise deficiency
examples are the misuse of computation capacity and
code coupling that respectively generate degradation of
the performance and hardness to develop multi-processed
software.

In turn, NOP proposes factual and causal smart-enti-
ties named as Fact Base Elements (FBEs) and Rules that
are related to other collaborative notifier smart-entities.
Each FBE is related to Attributes and Methods, whereas
each Rule to Premises-Conditions and Actions-Insti-
gations. All these entities collaboratively carry out the in-
ference process by means of notifications, providing so-
lutions to deficiencies of current paradigms. In this con-
text, this paper addressed the performance subject mak-
ing some comparisons of NOP and Imperative Program-
ming instances.

6.2. NOP Performance

As demonstrated, NOP improves performance by means
of its innovative notification mechanism [3,7]. This mecha-
nism assures that each change of “variable” (i.e. FBE
Attribute) state activates only the strictly necessary evalua-
tions of logical and causal expressions (i.e. Premises and
Conditions of Rules) [3,9]. Also, NOP improves the per-
formance by sharing the results of logic evaluation (i.e.
notification of Premises) between causal evaluations (i.e.
execution of Conditions), avoiding unnecessary repetitions

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 413

Figure 11. Variable percentage of true causal expressions—2nd scenario.

of code and processing in the execution of the Rules [3].

Thus, temporal and structural redundancies are avoided
by NOP, guarantying suitable performance by definition
[3]. Actually, even if NOP uses high-level concepts in-
spired from Rule Based System and Object Oriented Sys-
tem concepts (e.g. rule-objects) and even if its actual
implementation is an abstraction layer over C++, NOP
implementation does have suitable performance [9].

In this context, under the same conditions, NOP pro-
grams presented in this paper outperforms pure Impera-
tive Paradigm programs in relevant percentages of the
considered experiments. Besides, other additional experi-
ments with similar results are presented in [9]. Still, some
experiments therein compared the NOP implementation
with a Declarative Programming best practice and demon-
strated its performance superiority [9].

Furthermore, some optimization of NOP implementa-
tion may provide better results than the current results,
namely in terms of performance. Certainly, these opti-
mizations are related to the development of a particular
compiler to solve some drawbacks of the actual imple-
mentation of NOP, such as the overhead of using com-
putationally expensive data-structure over an intermedi-
ary language. These advances are under consideration in
other works.

6.3. NOP Originality

At first, NOP entities (Rules and FBEs) may be confused
as just an advance of Rule Based, Object Oriented, and
Event-Driven Systems, including then Data-Flow-like
Programming and Inference Engines. However, NOP is
far than a simple evolution of them. It is a new approach
that proposes Rule and FBE smart-entities composed of
other collaborative punctual-notifier smart-entities, which
provide new type of logical-causal calculation or infe-
rence process.

This inference solution, in turn, is not just an applica-
tion of known software notifier patterns, useful to Event-

Driven Systems, such as the observer-pattern. It is the
extrapolation of that once the execution of the NOP
logical-causal calculation via punctual notifications has
not been conceived before. At least, this is the honest
authors’ perception after more than one decade of litera-
ture reviewing.

Indeed, this inference innovation changes all the soft-
ware essence with respect to logical-causal reasoning (i.e.
one of its essential parts) and then makes the solution a
new programming paradigm. Moreover, as NOP changes
the form in which software is structured and executed, it
also determines a change in the form that software is
conceived.

6.4. NOP New Paradigm

Even if the causal programming can be easily made using
NOP, highlighting the support of a wizard tool, it is ne-
cessary to know NOP principles [8]. It is necessary to the
developer to understand the structure and execution
process of the application under NOP to elaborate better
solutions.

This awareness allows understanding, for example,
that NOP software has high performance by definition, in
term of logical-causal calculation, and that the concerned
mechanism is automatically built in background during
the causal code composition. This would allow the de-
veloper employing this type of code as much as necessary
to each application without strong response-time con-
cerns. Still, that awareness allows realizing other possi-
bilities of NOP use, such as understanding how to suita-
bly apply mechanisms to solve conflicts and guaranty
determinism.

In this context, a simple mechanism to deal with con-
flict and determinism is the first Rule approved to be
executed. However, there are better mechanisms possible,
due to the inference based on notification that can be
only well used by developer with understanding of the
software paradigm. These issues are somehow described

Copyright © 2012 SciRes. JSEA

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 414

in embryo in the first author’s Ph.D. thesis [12] and last
author’s M.Sc. Thesis [9] and actually described in two
patent requests.

6.5. NOP Decoupling, Distribution & Formalism

The understanding of the NOP nature by the developer
normally allows its better use also in the case of distri-
buted software. For example, it is important to know how
NOP works in order to find better distribution strategies,
such as to allocate together NOP entities having more
interactions thereby avoiding unnecessary network com-
munication [3].

Still, the understanding of NOP principles is important
to complex applications where the notification flow is
intense and need more formalism and traceability, such
as real-time discrete-control applications. Indeed, this
sort of application may demand support of formal tools
to design.

A particular example of formalism is the Petri nets.
Actually, Petri nets are compatible with rule-based sys-
tem in general in terms of expression of causal relations
[52]. Moreover, they are particularly compatible with the
NOP principles also in term of their essence [3]. In this
context, it would be necessary to know NOP and Petri
nets principles, understanding that both are naturally
compatible [3].

Actually, Petri nets present a manner to model causal
relations based on sensitization, which is similar to noti-
fication principles of NOP. Even if Petri nets do not pre-
cise how really carry out the causal calculation based on
sensitization, it presents a model where abstractly this
calculation would be notification-driven. At the best of
authors’ knowledge, there was not a suitable computa-
tional solution to really implement and play Petri nets
until NOP solution. Before, Petri nets have been misused
in computational implementations, which are based on
searches and not on notifications or sensitization-like
[3,12].

6.6. NOP Expectation

The presented programming solution called NOP is seen
as a new paradigm because it provides a new structure,
execution approach, and thinking with respect to soft-
ware development. Besides, NOP is better in many as-
pects than the current paradigms and can be used to-
gether with them.

Thus, the applicability of NOP concepts presents ex-
pectation. It is believed that the maturity of the solution
would allow its diffusion and adoption as an alternative
to increase the performance and make better the concep-
tion of software in non-distributed and distributed envi-
ronments.

7. Acknowledgements

R. F. Banaszewski’s M.Sc. thesis [9] was supported by
CAPES Foundation (Brazil).

REFERENCES
[1] R. W. Keyes, “The Technical Impact of Moore’s Law,”

IEEE Solid-State Circuits Society Newsletter, Vol. 20, No.
3, 2006, pp. 25-27.

[2] E. S. Raymond, “The Art of UNIX Programming,” Ad-
dison-Wesley, Boston, 2003.

[3] J. M. Simão and P. C. Stadzisz, “Inference Based on No-
tifications: A Holonic Metamodel Applied to Control Is-
sues,” IEEE Transactions on Systems, Man and Cyber-
netics, Part A, Vol. 39, No. 1, 2009, pp. 238-250.
10.1109/TSMCA.2008.2006371

[4] W. Wolf, “High-Performance Embedded Computing: Ar-
chitectures, Applications and Methodologies,” Morgan
Kaufmann Publishers, Waltham, 2007.

[5] S. Oliveira and D. Stewart, “Writing Scientific Software:
A Guided to Good Style,” Cambridge University Press,
Cambridge, 2006.

[6] C. Hughes and T. Hughes, “Parallel and Distributed Pro-
gramming Using C++,” Addison-Wesley, Boston, 2003.

[7] J. M. Simão, P. C. Stadzisz, “Notification Oriented Para-
digm (NOP)—A Notification Oriented Technique to Soft-
ware Composition and Execution,” Patent Pending Sub-
mitted to INPI/Brazil in 2008 and UTFPR Innovation
Agency 2007.

[8] R. F. Banaszewski, P. C. Stadzisz, C. A. Tacla and J. M
Simão, “Notification Oriented Paradigm (NOP): A Soft-
ware Development Approach Based on Artificial Intelli-
gence Concepts,” 4th Congress of Logic Applied Techno-
logy, Santos, 21-23 November 2007, pp. 216-222.

[9] R. F. Banaszewski, “Notification Oriented Paradigm: Ad-
vances and Comparisons,” M.Sc. Thesis, Federal Univer-
sity of Technology of Paraná, Curitiba, 2009.

[10] M. Herlihy and N. Shavit, “The Art of Multiprocessor
Programming,” Morgan Kaufmann Publishers, Waltham,
2008.

[11] D. Harel, H. Lacover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtull-Trauting and M. Trakhtenbrot, “State-
mate: A Working Environment for the Development of
Complex Reactive Systems,” IEEE Transaction on Soft-
ware Engineering, Vol. 16, No. 4, 1990, pp. 403-414.
doi:10.1109/32.54292

[12] J. M. Simão, “A Contribution to the Development of a
HMS Simulation Tool and Proposition of a Meta-Model
for Holonic Control,” Ph.D. Thesis, Federal University of
Technology of Paraná, Curitiba, 2005.

[13] B. De Wachter, T. Massart and C. Meuter, “dSL: An
Environment with Automatic Code Distribution for In-
dustrial Control Systems,” Proceedings of the 7th Inter-
national Conference on Principles of Distributed Systems,
Vol. 3144, 2004, pp. 132-145.
doi:10.1007/978-3-540-27860-3_14

[14] D. Sevilla, J. M. Garcia and A. Gómez, “Using AOP to

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/TSMCA.2008.2006371
http://dx.doi.org/10.1109/32.54292
http://dx.doi.org/10.1007/978-3-540-27860-3_14

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study 415

Automatically Provide Distribution, Fault Tolerance, and
Load Balancing to the CORBA-LC Component Model,”
John von Neumann Institute for Computing, Vol. 38, 2007,
pp. 347-354.

[15] W. M. Johnston, J. R. P. Hanna and R. J. Millar, “Advan-
ce in Dataflow Programming Languages,” ACM Compu-
ting Surveys, Vol. 36, No. 1, 2004, pp. 1-34.
doi:10.1145/1013208.1013209

[16] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed
Systems—Concepts and Designs,” Addison-Wesley, Bos-
ton, 2001.

[17] W. A. Gruver, “Distributed Intelligence Systems: A new
Paradigm for System Integration,” Proceedings of the
IEEE International Conference on Information Reuse and
Integration (IRI), Las Vegas, 13-15 August 2007, pp. 14-
15. doi:10.1109/IRI.2007.4296581

[18] J. L. Gaudiot and A. Sohn, “Data-Driven Parallel Produc-
tion Systems,” IEEE Transactions on Software Enginee-
ring, Vol. 16, No. 3, 1990, pp. 281-293.
doi:10.1109/32.48936

[19] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges IV, J.
G. Holm, A. Lain, D. J. Palermo, S. Ramaswamy and E.
Su, “The Paradigm Compiler for Distributed-Memory
Multicomputer,” Computer, Vol. 28, No. 10, 1995, pp. 37-
47. doi:10.1109/2.467577

[20] P. V. Roy and S. Haridi, “Concepts, Techniques, and Mo-
dels of Computer Programming,” MIT Press, Cambridge,
2004.

[21] S. H. Kaisler, “Software Paradigm,” John Wiley & Sons,
Hoboken, 2005.

[22] M. Gabbrielli and S. Martini, “Programming Languages:
Principles and Paradigms,” Springer-Verlag, London, 2010.

[23] J. G. Brookshear, “Computer Science: An Overview,” Addi-
son-Wesley, Boston, 2006.

[24] A. M. K. Cheng and J. R. Chen, “Response Time Analy-
sis of OPS5 Production Systems,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 12, No. 3, 2000,
pp. 391-409. doi:10.1109/69.846292

[25] J. A. Kang and A. M. K. Cheng, “Shortening Matching
Time in OPS5 Production Systems,” IEEE Transactions
on Software Engineering, Vol. 30, No. 7, 2004, pp. 448-
457. doi:10.1109/TSE.2004.32

[26] C. L. Forgy, “RETE: A Fast Algorithm for the Many Pa-
ttern/Many Object Pattern Match Problem,” Artificial In-
telligence, Vol. 19, No. 1, 1982, pp. 17-37.
doi:10.1016/0004-3702(82)90020-0

[27] P. Y. Lee and A. M. K. Cheng, “HAL: A Faster Match
Algorithm,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 14, No. 5, 2002, pp. 1047-1058.
doi:10.1109/TKDE.2002.1033773

[28] M. L. Scott, “Programming Language Pragmatics,” 2nd
Edition, Morgan Kaufmann Publishers Inc., Waltham,
2000.

[29] J. M. Simão, C. A. Tacla and P. C. Stadzisz, “Holonic
Control Metamodel,” IEEE Transactions on Systems, Man,
and Cybernetics, Part A, Vol. 39, No. 5, 2009, pp. 1126-
1139. doi:10.1109/TSMCA.2009.2022060

[30] A. R. Pimentel and P. C. Stadzisz, “Application of the

Independence Axiom on the Design of Object-Oriented
Software Using the Axiomatic Design Theory,” Journal
of Integrated Design & Process Science, Vol. 10, No. 1,
2006, pp. 57-69.

[31] S. M. Ahmed, “CORBA Programming Unleashed,” Sams
Publishing, Indianapolis, 1998.

[32] D. Reilly and M. Reilly, “Java Network Programming
and Distributed Computing,” Addison-Wesley, Boston,
2002.

[33] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Automatic
Java Application Partitioning,” Lecture Notes in Compu-
ter Science, Vol. 2374, 2002, pp. 178-204.

[34] S. Loke, “Context-Aware Pervasive Systems: Architec-
tures for a New Breed of Applications,” Auerbach Publi-
cations, Boca Raton, 2006. doi:10.1201/9781420013498

[35] M. Díaz, D. Garrido, S. Romero, B. Rubio, E. Soler and J.
M. Troya, “A Component-Based Nuclear Power Plant Si-
mulator Kernel: Research Articles,” Concurrency and Com-
putation: Practice and Experience, Vol. 19, No. 5, 2007, pp.
593-607. doi:10.1002/cpe.1075

[36] S. M. Deen, “Agent-Based Manufacturing: Advances in
the Holonic Approach”, Springer, 2003.

[37] H. Tianfield, “A New Framework of Holonic Self-Or-
ganization for Multi-Agent Systems,” IEEE International
Conference on System, Man and Cybernetics, Montreal,
7-10 October 2007, pp. 753-758.
doi:10.1109/ICSMC.2007.4414048

[38] V. Kumar, N. Leonard and A. S. Morse, “Cooperative Con-
trol,” Springer-Verlag, New York, 2005.

[39] A. S. Tanenbaum and M. van Steen, “Distributed Systems:
Principles and Paradigms,” Prentice Hall, Upper Saddle
River, 2002.

[40] J. Giarratano and G. Riley, “Expert Systems: Principles
and Practice,” PWS Publishing, Boston, 1993.

[41] S. Russel and P. Norvig, “Artificial Intelligence: A Mod-
ern Approach: Englewood Cliffs,” Prentice-Hall, Upper
Saddle River, 2003.

[42] D. P. Miranker, “TREAT: A Better Match Algorithm for
AI Production System,” 6th National Conference on Arti-
ficial Intelligence, Seattle, 13-17 July 1987, pp. 42-47.

[43] D. P. Miranker and B. Lofaso. “The Organization and
Performance of a TREAT-Based Production System Com-
piler,” IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 1, No. 1, 1991, pp. 3-10.
doi:10.1109/69.75882

[44] D. P. Miranker, D. A. Brant, B. Lofaso and D. Gadbois,
“On the Performance of Lazy Matching in Production
System,” 8th National Conference on Artificial Intelli-
gence, Boston, 29 July-3 August 1992, pp. 685-692.

[45] D. Watt, “Programming Language Design Concepts,” John
Wiley & Sons, Hoboken, 2004.

[46] T. Faison, “Event-Based Programming: Taking Events to
the Limit,” Apress, New York, 2006.

[47] S. M. Tuttle and C. F. Eick, “Suggesting Causes of Faults
in Data-Driven Rule-Based Systems,” Proceedings of the
IEEE 4th International Conference on Tools with Artifi-
cial Intelligence, Arlington, 10-13 November 1992, pp.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1145/1013208.1013209
http://dx.doi.org/10.1109/IRI.2007.4296581
http://dx.doi.org/10.1109/32.48936
http://dx.doi.org/10.1109/2.467577
http://dx.doi.org/10.1109/69.846292
http://dx.doi.org/10.1109/TSE.2004.32
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1109/TKDE.2002.1033773
http://dx.doi.org/10.1109/TSMCA.2009.2022060
http://dx.doi.org/10.1201/9781420013498
http://dx.doi.org/10.1002/cpe.1075
http://dx.doi.org/10.1109/ICSMC.2007.4414048
http://dx.doi.org/10.1109/69.75882

Notification Oriented Paradigm (NOP) and Imperative Paradigm: A Comparative Study

Copyright © 2012 SciRes. JSEA

416

413-416.

[48] C. E. B. Paes and C. M. Hirata, “RUP Extension for the
Software Performance,” 32nd Annual IEEE International
Computer Software and Applications, 28 July-1 August 2008,
pp. 732-738.

[49] G. R. Watson, C. E. Rasmussen and B. R. Tibbitts, “An
Integrated Approach to Improving the Parallel Applica-
tion Development Process,” IEEE International Sympo-
sium on Parallel & Distributed Processing, Rome, 23-29
May 2009, pp. 1-8.

[50] I. Sommerville, “Software Engineering,” 8th Edition, Addi-
son-Wesley, Boston, 2004.

[51] E. Friedman-Hill, “Jess in Action: Rule-Based System in
Java,” Manning Publications Company, Greenwich, 2003.

[52] V. R. L. Shen and T. T. Y. Juang, “Verification of Know-
ledge-Based Systems Using Predicate/Transition Nets,”
IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems & Humans, Vol. 38, No. 1, 2008, pp. 78-
87.

