
J. Electromagnetic Analysis & Applications, 2009, 1: 48-60 
Published Online March 2009 in SciRes (www.SciRP.org/journal/jemaa) 

Copyright © 2009 SciRes                                                                               JEMAA 

1

Complex Dynamics Analysis for Cournot Game with 
Bounded Rationality in Power Market 

Hongming Yang1, Yongxi Zhang1 
 

1College of Electrical and Information Engineering, Changsha University of Science and Technology, China. 
Email: yhm5218@hotmail.com 
 

Received January 20th, 2009; revised February 11th, 2009; accepted February 23rd, 2009. 

ABSTRACT 

In order to accurately simulate the game behaviors of the market participants with bounded rationality, a new dynamic 
Cournot game model of power market considering the constraints of transmission network is proposed in this paper. 
The model is represented by a discrete differential equations embedded with the maximization problem of the social 
benefit of market. The Nash equilibrium and its stability in a duopoly game are quantitatively analyzed. It is found that 
there are different Nash equilibriums with different market parameters corresponding to different operating conditions 
of power network, i.e., congestion and non-congestion, and even in some cases there is not Nash equilibrium at all. The 
market dynamic behaviors are numerically simulated, in which the periodic or chaotic behaviors are focused when the 
market parameters are beyond the stability region of Nash equilibrium. 
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1. Introduction 

Some foundation industries, such as electric power, avia-
tion, telecommunication, railroad, etc., are traditionally 
thought of having natural monopoly characteristics. With 
the development of technology, economy and society, in 
recent years these industries have been undergoing a 
market reformation tide of deregulation and competition, 
in order to reduce the cost and price of monopoly indus-
try and promote the enhancement of social economy 
benefit. All these industries have the natural monopoly 
network with the complex inherent physical property, by 
which the market participants can provide commodity 
services. The complex monopoly network causes the ref-
ormation and operation of market to be more complicated 
and difficult than that of general commodity market, es-
pecially for the reformation of electric power industry. 

In the process of reformation and operation of market, 
how to effectively master and supervise the dynamic 
market behaviors is an important research topic, espe-
cially for the power market whose reformation is carried 
out in its infancy stage. Taking an extreme example of 
California power market, the neglected study of the dy-
namic market behaviors led to a severe situation causing 
the electric power wholesale price to rise sharply and thus 
affecting the power supply to a lot of customers. This 
happened in less than three years of market operation, 
which has made a great impact on the economy of Cali-
fornia and even the USA [1]. 

The system of market economy is essentially a dy-
namic system, which is mathematically represented by 
the differential or difference equations. In the dynamic 

theory of economics, there are a lot of differential or dif-
ference dynamic models, such as the classical cobweb 
model describing the variation of the supply and demand, 
the Cournot dynamic model reflecting the oligopoly 
market, the Haavelmo model describing the economic 
growth problem, and so on [2,3]. Based on these models, 
the analysis and control of the stable, periodic and cha-
otic dynamic evolution of the market economy system 
are investigated, and a series of results have been yielded 
[4,5]. However, the complex inherent physical property 
of network and the particularity of market transaction in 
the market with the monopoly network are not taken into 
account in these models and methods. Therefore, in view 
of the characteristics of power market, the research on the 
dynamic evolution of power market is carried out by 
some scholars. 

The research on the dynamics of power market was 
first launched by F. L. Alvarado et al., via a set of 
one-order differential equations of power generations and 
consumptions. This work provides insights to the condi-
tions for the evolving process converging to the market 
equilibrium, i.e., the stability condition of power market 
[6,7]. With the same dynamic model, a series of suffi-
cient conditions are given to determine the stability of 
power market in Reference [8]. Reference [9] establishes 
the difference equations by taking the electricity price as 
a variable, and analyzes the stability condition needed for 
the electricity price converging to the equilibrium. Al-
though the results achieved are interesting, these models 
are established based on a perfect competitive model. It 
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neglects the game behaviors of generation companies as 
well as their impacts on the electricity price, and thus it 
can not rationally describe the actual power market. 

In order to accurately simulate the game behaviors of 
the market participants, the oligopolistic game models in 
economics are further introduced to research the dynam-
ics of power market. References [10,11] adopt the Cour-
not model to establish the differential equations of the 
dynamic power market. Then, the market equilibrium of 
the generation quantities is calculated under the given 
demand function, and the varying curve of electricity 
price converging to the equilibrium is numerically simu-
lated. In References [12,13], the dynamic differential or 
difference equations are established based on the perfect 
competitive model, the Stackelberg game model and the 
Cournot game model, respectively. However, the con-
straints of power network and their impacts on the elec-
tricity price are not taken into account, nor are the stabil-
ity analysis of the market equilibrium involved. In Ref-
erence [14], the evolutionary game is introduced to estab-
lish the dynamic evolutionary differential equations by 
taking the generation bids as variables. However, the 
constraints of power network are not taken into account, 
too. 

Consequently, not only the rational game behaviors of 
market participants but also the inherent physical proper-
ties of power network need to be considered in the dy-
namic modeling of power market. In addition, due to the 
complex dynamic characteristics of the actual power 
market, in some cases there exists no market equilibrium 
at all, or even if there is, it might lie in the non-stability 
region of the market equilibrium. It is significant for the 
market operators to study the dynamic behaviors of the 
power market associated with these cases. 

Therefore, the aim of this paper is to make a thorough 
study concerning the dynamic Cournot game behaviors of 
the power market with bounded rationality under the 
consideration of the power network constraints. The fol-
lowing aspects are focused:  

1) A new dynamic Cournot game model of power 
market, represented by the difference equations embed-
ded with the maximization problem, is proposed. The 
remarkable characteristic of the model is twofold: it 
adopts a dynamic adjustment where the limit point is the 
Nash equilibrium of power market; and the system of 
discrete difference equations embedded with the maxi-
mization problem considers the constraints of power 
network. 

2) The existence and stability of Nash equilibrium for a 
duopoly game are quantitatively analyzed with different 
market parameters under different operating conditions of 
power network; 

3) The dynamic behaviors of power market, especially 
the periodic and chaotic dynamic behaviors when the 
market parameters are beyond the stability region of 
equilibrium, are numerically simulated. 

2. Dynamic Cournot Game Model of Power 
Market with Bounded Rationality Con-
sidering Network Constraints 

2.1 Dynamic Cournot Game Model with Bounded 
Rationality 

Power market is different from general competitive 
commodity market, in which the production of power 
energy needs very high cost and technology, and there 
are finite electric power producers. This nature of electric 
power industry implies that power market does not have 
the characteristic of perfect competitive market, but 
should belong to an oligopolistic market. In economics, 
several kinds of game models have been proposed to 
simulate the oligopolistic behaviors of market partici-
pants. The Cournot game model is most commonly used 
which simulates the competition of output quantities be-
tween the oligopolists [15]. 

Recently, the static Cournot models are applied to ana-
lyze the Nash equilibrium of power market [16,17]. In 
this case, the game of market participants is done based 
on a fully rationality. Each participant has complete 
market information (including the competitors’ profit 
functions) when he makes his optimal production deci-
sion. If there is a Nash equilibrium in the market, the 
oligopolists can move straight (in one shot) to the Nash 
equilibrium. The process is independent of the initial 
condition and does not relate to any dynamic adjustment 
of power market. 

However, in the actual power market, the market par-
ticipants are not fully rational and unable to know the 
competitors’ production decision and profit functions. 
They are unable to reach the equilibrium condition at 
once. In fact, each participant is bounded rational and can 
only decide the production strategy according to his ex-
pected marginal profit at each period. For each market 
participant, the evaluation of his own marginal profit is 
more accurate than the prediction of the competitors’ 
outputs [18,19]. Therefore, the market participants play a 
Cournot game with bounded rationality in a dynamic 
adjustment process described as follows. 

In the market operation, a generation producer decides 
the optimal production strategy according to its own gen-
eration cost and market information in order to obtain 
maximum profit. The optimal decision problem can be 
mathematically written as 

( )iiiii
q

qCqP
i

−=πmax                 (1) 

where ( )ii qC  is the generation cost of generation com-

pany at node i ; iP  is the electricity price at node i , which 

is decided by the Independent System Operator (ISO). By 
applying the marginal profit function of a generation com-
pany, the optimal generation quantities can be obtained. 
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Due to the lack of global information of power market, 
each generation company adjusts its supply quantities for 
obtaining more benefit according to the local estimate of 
its own marginal profit. The mathematical model of the 
adjustment mechanism of the generation quantities, i.e., 
the dynamic Cournot game model with bounded rational-
ity is 

( ) ( )( ) ( ) ( )( ) ( )tq
tqtqtqFtq
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iiiiii ∂
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( )Ni ,,1L=                            (3) 

where ( )tqi , ( )1+tqi  are the generation quantities of 

the generation company at node i  at time t  and 1+t ; 
( )( )tqiiα  is a positive function which gives the extent of 

the production variation of the thi  generation company 
following a given profit signal. If ( )( )tqiiα  is assumed 

to be a linear function, then ( )( ) iiii qtq α＝α  can be ob-

tained, where the positive constant iα  is called the 

speed of adjustment. 
From (3) it can be seen that in order to cause the gen-

eration company to obtain a more economical profit in 
the power market, if its marginal profit is greater than 0, 
the generation company will increase iq  in the next 

time; otherwise, the generation company will decrease 

iq  in the next time. 

2.2 ISO Optimization Model 

In the power market, the decision behaviors of market 
participants should be checked by the ISO to satisfy the 
inherent physical characteristics of power network and 
ensure the security of power system operation. In the 
centralized market clearing, on the premise that the sup-
ply quantities of the generation companies are known 
(which can be determined by the dynamic Cournot game 
model of the market participants in (3)), the ISO allocates 
the market demand to maximize the total market benefit 
with satisfying the power network constraints, such as the 
power balance constraint and the line flow constraints. 
The mathematical model based on the DC power flow 
can be expressed as follows: 

( ) ( )NN
T dBdBe +max              (4) 

..ts N
T

N
T qqedde +=+  

( ) KdqH ≤−  

where N is the total number of nodes ( where node N is 
assumed to be the slack node), L is the total number of 

lines; 1−∈ NRd,q  are the nodal demand and generation 

power vectors excluding the slack node N, NN qd ,  are 

the demand and generation power at the slack node N; 
( )1−×∈ NLRH  denotes the transfer admittance matrix that 

represents the sensitivity of the nodal power injection to 

line power flow; 1−∈ NRe  is a vector of all ones; 
LRK ∈  is the vector of maximum power flow on the 

transmission line; ( ) 1−∈ NRdB  is the vector of the nodal 

benefit of consumer excluding the slack node N, ( )NN dB  

is the benefit of consumer at the slack node N, and as-
sumed as 

( ) 25.0 iiiii dbdadB −=   ( )Ni ,,1L=          (5) 

where ii ba ,  are the linear and quadratic coefficients of 

the consumer benefit function. 
The Lagrange function for the optimization problem in 

(4) can be set up (in the constraints of line power flow, 
only the equality constraints are taken into account): 

( ) ( ) ( )
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qqeddeλdBdBeL
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where µ,λ  are the Lagrange multipliers for the power 

balance constraint and the line flow constraints; K,H &&&&&&  
are the matrices H,K  excluding the terms correspond-
ing to the non-congestion lines. 

By 00 =∂∂=∂∂ NdL,dL , the function relationship 

between the electricity price and the generation quantities 
can be obtained as follows: 

1) When the congestion occurs in the power network, 
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2) When the congestion does not occur in the power 
network, 
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where 1−∈ NRP  is the nodal price vector excluding the 
slack node N, NP  is the nodal price at the slack node N. 

From (7) and (8), it can be concluded that when there 
is no congestion in the power network, all nodal prices 
are identical; while during congestion, the nodal prices 
are different and related to the congestion conditions of 
power network. With the change of congested lines, the 

matrices K,H &&&&&&  is varied, and then the function relation-
ship between the nodal price and generation quantities is 
changed. 

A further analysis is performed with an example of 
simple power market as shown in Figure 1. There are two 
zonal markets connected by a transmission line with ca-
pacity k . The electricity prices of the two zonal markets 
are 21,PP , with the demand quantities being 21,dd  and 

the generation quantities as 21,qq . 



Complex Dynamics Analysis for Cournot Game with Bounded Rationality in Power Market             51 

Copyright © 2009 SciRes                                                                               JEMAA 

Zonal 
Market 1 

Transmission line 

Zonal 
Market 2 

q2+2k q1/(MWh) q2-2k q2 

P1/($/MWh) 

Line is not congested 

 
 
 
 

Figure 1. Structure of power market 
 

For simplicity, the benefit of consumers is identical in 
these two zonal markets. In the calculation, suppose node 
2 is the slack node, the positive direction of line power 
flow denoted by the arrow in Figure 1. 

By establishing the optimization model in (6), the 
function relation between the zonal prices and the gen-
eration quantities are deduced from (7) and (8). When the 
transmission line is not congested, the zonal prices are 

( )2121 2
qq

b
aPP +−=＝                 (9) 

In this case, the power flow on the transmission line 
satisfies: 

( )
k

qq
dqk ≤−=−≤−

2
21

11  

i.e., kqqk 22 21 ≤−≤− . 

When the transmission line is congested and its power 
flow is k , the zonal prices are 

( ) ( )kqbaPkqbaP +−=−−= 2211 ,        (10) 

Similarly, when the line power flow is k− , the zonal 
prices are 

( ) ( )kqbaPkqbaP −−=+−= 2211 ,        (11) 

Therefore, under the consideration of power network 
constraints, the price function of power market exhibits 
the following piecewise form: 
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Figure 2 shows the piecewise continuous curve of elec-
tricity price function in the zonal market 1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Curve of electricity price of zonal market 1 

2.3 Dynamic Model of Power Market 

The dynamic model of power market is an integration of 
the dynamic Cournot game model with bounded rational-
ity, i.e., the discrete difference equations in (3), and the 
maximization model of market benefit considering the 
power network constraints, i.e., the optimization model in 
(4). Therefore, the dynamic model of power market is 
represented by the discrete difference equations embed-
ded with the optimization problem. Compared with the 
existing dynamic models, the remarkable characteristics 
of the proposed one are 

1) The market participants need not have global market 
information, such as the market demand and the com-
petitors’ cost. They decide their generation quantities by 
estimating their own marginal profit. This decision proc-
ess reflects the actual situation of the economic system to 
a certain extent, indicating some feasible and rational 
features. 

2) If the dynamic system is finally able to converge to 
the equilibrium condition, i.e. ( ) 0=∂∂ tqiiπ , each gen-

eration company reaches its own maximum profit and is 
unable to improve the profit only by changing its own 
generation strategies. In this situation, the market reaches 
the condition of Nash equilibrium. 

3) ( )tqii ∂∂π  is the marginal profit function. From 

(3), it can be observed that if ( ) 0>∂∂ tqiiπ , the genera-

tion company will increase iq  in the next time; other-

wise, the generation company will decrease iq . 

4) The system of discrete difference equations embed-
ded with the optimization problem considers the impact 
of the power network constraints on the behaviors of the 
market participants. It can indicate that the dynamic 
model of power market is more complex than that of 
general commodity market. 

For a duopoly Cournot game as shown in Figure 1, the 
dynamic Cournot model of power market with bounded 
rationality considering the power network constraints is 
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if ( ) ( ) ktqtq 221 >−                          (16) 

3. Nash Equilibrium and Local Stability of 
Power Market 
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3.1 Nash Equilibrium of Power Market 

Definition 1: A Nash equilibrium for (1) is a vector 

( )∗∗∗∗∗ = Ni qqqqq ,,,,, 21 LL  such that for each participanti , 

given all other participants’ output * iq− , *
iq  maximizes 

the ith  participant’s profit, that is 

),(maxarg **
iiii qqq −∈ π . 

In the dynamic model (3), if )()1( tqtq ii =+ , the mar-

ket arrives at a fixed point. It is called the equilibrium 
point in economics, where the fixed point 0)( =tqi  is 

the boundary equilibrium point. It is easy to verify that 
the nonzero fixed point is the Nash equilibrium point. 

For the duopoly dynamic game in the simple power 
market as shown in Figure 1, represented by (14), (15), 
(16), the equilibrium points of the market are analyzed 
under the different operating conditions of power net-
work, i.e., congestion or non-congestion. In the model, 
suppose the generation cost function is in linear form, 
i.e., 

( ) ( ) 22221111 , qcqCqcqC ==            (17) 

where 21,cc  are the marginal generation costs. 

If k2− ≤ 21 qq − ≤ k2 , the transmission line is not 

congested. By solving the fixed points in (15), we can 
have at most 4 equilibrium points: 
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where 210 ,, qqq  are the boundary equilibriums, and *q  

is the Nash equilibrium. Due to the satisfaction of the 
conditions -2k≤q1-q2≤2k, q1, q2≥0, only the equilib-

rium points q1, q2 and *q  are effective if 0＜a-c1≤2bk, 

0＜a-c2≤2bk, a+c2-2c1≥0, a+c1-2c1≥0, -bk＜c1-c2≥
bk. 

If q1-q2＜-2k or q1-q2＜2k, the transmission line is 
congested. By solving the fixed points in (14), we can 
have at most 4 equilibrium points: 

)0,0(0 =q , 






 −−= 0,
2
11

b

bkca
q , 







 +−=
b

bkca
q

2
0 22 ， , 








 +−−−=
b

bkca

b

bkca
q

22
21* ，  

Due to the satisfaction of the conditions q1-q2＜-2k, 
q1,q2≥0, only the equilibrium points q2 and q* are effec-
tive if a-c1＞bk, c1-c2＞2bk. By solving the fixed points 
in (16), we can have at most 4 equilibrium points: 

)0,0(0 =q , 
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Due to the satisfaction of the conditions q1-q2＞2k, 
q1,q2≥0, only the equilibrium points q1 and q* are effec-
tive if a-c2＞bk, c2-c1＞2bk. 

From the above analysis, it is found that there are dif-
ferent Nash equilibriums in the power market under dif-
ferent operational conditions of power network, such as 
congestion and non-congestion, while in some cases there 
is no Nash equilibrium at all if the market parameters 
satisfy bk ＜ 21 cc − ＜ bk2 . 

3.2 Local Stability of Nash Equilibrium 

The local stability of equilibrium point is studied based 
on the complex plane of the eigenvalues of the Jacobian 
matrix of the mapping 

))(()1( tqFtq =+  

Definition 2: For a dynamic system )).(()1( txFtx =+  

)( NRx ∈ , with a fixed point q, if all the eigenvalues of 
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here, q is called the local stable fixed point [20]. 
If k2− ≤q1-q2≤2k, the transmission line is not con-

gested, the Jacobian matrix )(qF∇  is denoted as 
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The stability condition of Nash equilibrium point is 1λ
＜1, 2λ ＜1, and thus the market parameters should sat-

isfy: 
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when the market equilibrium point is 
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the two eigenvalues of the Jacobian matrix )( 1qF∇  are 

)(1 111 ca −−= αλ ＜1 
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)2(
2

1
1 2122 cca −++= αλ ＞1 

Thus, the boundary equilibrium point 1q  is unstable. 

Similarly, it is easy to prove that the boundary equilib-

rium point 2q  is unstable too. 

If 21 qq − ＜-2k, the transmission line is congested, the 

Jacobian matrix )(qF∇  is denoted as 
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2
,0 22 , one of the eigenvalues of the Jaco-

bian matrix )( 2qF∆  is greater than 1. Thus, the bound-

ary equilibrium point 2q  is unstable. 

If q1-q2＞2k, it is easy to prove similarly that the 
boundary equilibrium point q1 is unstable, and while the 

Nash equilibrium point q* is stable if *
11bqα ＜1, *

22bqα ＜1. 

Therefore, in the dynamic Cournot game, whether the 
market can finally converge to a certain Nash equilibrium 
point is decided by the market parameters and the line 
flow limits, i.e.,  

1) When the difference between the marginal cost of 
generation companies is less than bk , i.e., bk− ＜c1-c2

＜bk (the other market parameters satisfy 12 2cca −+ ≥

0, 21 2cca −+ ≥0) and the market parameters satisfy the 

condition in (18), the generation quantities of generation 
companies do not greatly differ in different zonal markets. 
Thus, the transmission line can not be congested. In this 
situation, if the generation quantities fall inside the stabil-
ity region of Nash equilibrium, the market will be able to 
gradually converge to the Nash equilibrium point 
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2) When the difference between the marginal cost of 
generation companies is greater than 2bk, i.e., 21 cc − ＞

2bk (the other market parameters satisfy a-c1＞bk or a-c2

＞bk) and the market parameters satisfy the condition in 
(19), the generation quantities of generation companies 
greatly differ in different zonal markets. Thus, the trans-
mission line is congested. In this situation, if the genera-
tion quantities fall inside the stability region of Nash 

equilibrium, the market will be able to gradually con-
verge to the Nash equilibrium point 
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3.3 Effect of Market Parameters on Stability 

The equation in (18) gives the stability condition of Nash 
equilibrium if the line is not congested. Figure 3 shows 
the corresponding stability region of Nash equilibrium 
point in the plane of the adjustment speeds ),( 21 αα , 

which is bounded by the portion of hyperbola, i.e., 

016883 *
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For the values ( )21,αα  inside the stability region, the 
Nash equilibrium is stable. From Figure 3, the increment 
of the adjustment speeds will reduce the stability margin 
when the other parameters are fixed. If the adjustment 
speeds go beyond the stability region, the Nash equilib-
rium point loses its stability through a period-doubling 
bifurcation. 

If the parameter a , the maximum electricity price of 
electric power, is increased and the other parameters 

2121 ,,, ccαα  are fixed, the stability region becomes 

smaller, as can be easily deduced from (22). Otherwise, if 
the parameter a  is reduced, the stability of Nash equi-
librium can be reinforced. 

If the other parameters are fixed, an increment of the 
marginal generation cost 1c  causes a displacement of 
the point 1A  to the right and of 2A  downwards. Instead, 
an increment of the marginal generation cost 2c  causes 
a displacement of the point 1A  to the left and of 2A  
upwards. In both cases, the effect on the stability of Nash 
equilibrium point depends on the position of the point 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Stability region of Nash equilibrium under non- 
congestion 
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Figure 4. Stability region of Nash equilibrium under 
congestion 
 
( )21,αα . In fact, if the point ( )21,αα  is above the di-

agonal 21 αα＝ , i.e., 21 αα < , an increment of 1c  can 

destabilize the Nash equilibrium point, whereas an in-
crease of 2c  reinforces its stability. The situation is re-

versed if 21 αα > . 

The equation in (19) gives the stability condition of 
Nash equilibrium if the line is congested. Figure 4 shows 
the corresponding stability region of Nash equilibrium 
point in the plane of the adjustment speeds ( )21,αα . 
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From Figure 4, the increment of the adjustment 
speeds ( )21,αα  and the maximum price a  can cause 

a loss of stability of Nash equilibrium, and while the 
increment of the marginal cost 1c  and 2c  can rein-

force its stability. 
Therefore, the power market can be kept in the stable 

equilibrium condition by the following measures in the 
actual operation. 

1) The plentiful competition is introduced to reduce the 
difference between the generation marginal cost of gen-
eration companies in the power market; and the rational 
power network planning can improve the transfer capac-
ity of lines, in order to keep the market in the stable equi-
librium. 

2) The variation extent of the generation quantities is 
not too large; and the smooth operation of the generator 
has important effect not only on the stability of power 
system but on the stability of power market. 

3) The maximum price of market is not too high; and 
the restriction of the maximum value of electricity price 
can reinforce the stability of power market. 

4. Numerical Simulation of Dynamic Market 
Behaviors 

The dynamic behaviors of power market are demon-
strated with an example of two-node power market as 
shown in Figure 1. The evolving characteristics of market 
behaviors are analyzed when the parameters lie in differ-
ent ranges by using the bifurcation diagram, phase dia-
gram, Lyapunov exponent and fractal dimension. In the 
iterative process of the numerical simulation, the benefit of 
consumers is identical and assumed with MWha /$60=  

and 5.0=b 2/$ MWh ; the maximum production outputs 
of the two generation companies both are 200MWh; the 
flow limits of the line is 30MW. 

4.1 Case 1: Difference between Marginal Cost of 
Generation Companies is Less than bk 

Firstly, the dynamic behaviors of power market are nu-
merically simulated when the difference between the 
marginal cost of the two generation companies is less 
than bk , i.e., bkccbk <−<− 21 . The generation mar-

ginal costs are taken as MWhc $201 = , MWhc $302 = . 

If different values are selected, similar results can be ob-
tained. In this case, a Nash equilibrium point is obtained. 
By (20), the corresponding generation quantities of the 
two zones are (66.67MWh, 26.67MWh). 

Let $/03.01 MWh=α , the adjustment speed of the 

generation quantities of generation company 2 is changed. 
Figure 5 shows the bifurcation diagram of the stable so-
lutions of the generation quantities and electricity price 
with 2α . When the adjustment speed of generation 

company 1 is changed, similar results can be obtained. 
If the adjustment speed of the generation quantities of 

generation company 2 satisfies 2α ＜0.12, the market lie 

in the stability region of Nash equilibrium. The genera-
tion quantities will gradually converge to the unique sta-
ble solution, i.e., the Nash equilibrium point (66.67MWh, 
26.67MWh). In this case, the power flow on the line is 
20MW, that is, the line is not congested. Thus, the elec-
tricity price of the two zones is identical, both being 
36.67$/MWh. Figure 6 shows the evolving curve of the 
market converging to the Nash equilibrium if 1.02 =α . 

With the increment of the adjustment speed 2α , when 

0.122 >α , the market will go beyond the stability region 

of Nash equilibrium and thus loses stability. If 
175.00.12 2 << α , the dynamic evolution of the genera-

tion quantities and electricity price will converge to the 
two periodic points and the two-period variation is exhibited. 
Sequentially, with the increment of 2α , the more complex 

dynamic behaviors are exhibited, such as four periods, eight 
periods, sixteen periods, etc. Figure 7 shows the periodic 
evolving curve of the market if 16.02 =α . 

With the continuous increment of the adjustment speed 
2α , when 175.02 >α , the market converges to many 
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infinite points inside the bounded range and the seem-
ingly random chaotic variation is exhibited. When 2α  is 
in the neighborhood of 0.18, the stable solutions of the 
market lie within a smaller range. In this case, the power 
flow on the line is less than 30MW, that is, the line is not 

congested. Thus, the electricity price of zonal market 1 
and 2 is identical. Figure 8 shows the chaotic evolving 
curve of the generation quantities and electricity price if 

18.02＝α ; and the corresponding chaotic attractors as 
shown in Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5. Bifurcation diagram of stable solutions of power market with α2 if difference between marginal cost of generation 
companies is less than bk 

 

 

 

 

 

 

 

 

 

Figure 6. Dynamic market behaviors converging to Nash equilibrium if α2=0.1 

 

 

 

 

 

 

 

 

 

Figure 7. Periodic dynamic market behaviors if α2=0.16    
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However, when the adjustment speed 2α  lies in the 

other chaos area, the stable solutions of the market fall 
within a greater range. In this case, it is found that the 
line sometimes is congested to cause different electricity 
price in the zonal market 1 and 2; the chaotic attractors of 
market include not only the invariable manifold under 

non-congestion condition (as shown in Figure 9), but the 
invariable manifold under congestion condition. Figure 
10 shows the chaotic attractors of the generation quanti-
ties and electricity price if 202.02＝α , their maximum 
Lyapunov exponents and fractal dimensions being 0.34 
and 1.10, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Chaotic dynamic market behaviors if α2=0.18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Chaotic attractors of generation quantities and electricity price if α2=0.18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Chaotic attractors of generation quantities and electricity price if α2=0.22      
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4.2 Case 2: Difference between Marginal Cost of 

Generation Companies is Greater than 2bk 

The dynamic behaviors of the power market are numeri-
cally simulated when the difference between the marginal 
cost of the generation companies is greater thanbk2 , i.e., 

bkcc 221 >− . The generation marginal costs are taken as 

MWhc $401＝ , MWhc $52＝ . If different values are 

selected, similar results can be obtained. In this case, a 
Nash equilibrium point is obtained. By (21), the corre-
sponding generation quantities of the two zones are 
(5MWh, 70MWh). 

Let $/1.01 MWh=α , the adjustment speed of the 

generation quantities of generation company 2 is 
changed. Figure 11 shows the bifurcation diagram of the 
stable solutions of the generation quantities and elec-
tricity price with 2α . When the adjustment speed of 

generation company 1 is changed, similar results can be 
obtained. 
 
 

If the adjustment speed of the generation quantities of 
generation company 2 satisfies 0.0282 <α , the market 

lie in the stability region of Nash equilibrium. The gen-
eration quantities will gradually converge to the unique 
stable solution, i.e., the Nash equilibrium point (5MWh, 
70MWh). In this case, the power flow on the line is 
30MW, that is, the line is congested. Thus, the electricity 
price of the two zonal markets is not identical, being 
42.5$/MWh and 40$/MWh, respectively. 

With the increment of the adjustment speed 2α , when 

0.0282 >α , the market will go beyond the stability re-

gion of Nash equilibrium and thus loses stability. The 
dynamic market behaviors exhibit the periodic and cha-
otic variation. The constraint of transmission line change 
the route of period-doubling bifurcation to chaos, exhib-
iting intermittency. Figure 12 shows the chaotic evolving 
behaviors if 03.02＝α . The corresponding chaotic attrac-

tors are shown in Figure 13, their maximum Lyapunov 
exponents and fractal dimensions being 0.53 and 0.60. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Bifurcation diagram of stable solutions of power market with α2=0.22 if difference between marginal 
cost of generation companies is greater than 2bk 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Chaotic dynamic market behaviors if α2=0.03 
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Figure 13. Chaotic attractors of generation quantities and electricity price if α2=0.03 
 
4.3 Case 3: Difference between Marginal Cost of 

Generation Companies Lies in [bk, 2bk] 

The dynamic behaviors of the power market are numeri-
cally simulated when the difference between the marginal 
cost of the generation companies lies in [ ]bkbk 2, , i.e., 

bkccbk 221 <−< . The generation marginal costs are 

taken as MWhc $451＝ , MWhc $251＝ . Similar results 

can be obtained for other selected values. By the analysis 
of Section 3.1, there is no Nash equilibrium point in this 
case, that is, no matter how large the adjustment speeds 
are, the market cannot converge to a stable Nash equilib-
rium at all. Figure 14 shows the bifurcation diagram of 
the stable solutions of the generation quantities and elec-
tricity price with 2α  (where $/1.01 MWh=α ). 

From Figure 14, it is found that the dynamic market 
behaviors exhibit the periodic and chaotic variation; and 
the chaotic and periodic windows appear in turn. Figure 
15 shows the chaotic attractors of the generation quanti-
ties and electricity price if 052.02＝α , their maximum 

Lyapunov exponents and fractal dimensions being 0.23 
 
 

and 0.80, respectively. 
Whether the transmission lines is congested or not, if 

the market participants with bounded rationality con-
tinuously adjust their production strategies, the market 
will finally converge to the Nash equilibrium under the 
satisfaction of its stability condition. Sequentially, a state 
that the market participants simultaneously maximize 
their respective profit is achieved. 

In the complex dynamic power market, the equilibrium 
condition is short-term and temporary. In the equilibrium 
condition, many uncertain factors, such as the adjustment 
speeds and marginal cost of generation companies, the 
maximum electricity price of market, are changing the 
operating condition of market and pushing it towards 
chaos. The appearance of market chaos is very sensitive 
to the market parameters. The change of parameters can 
lead to a great difference between the long-term evolving 
trajectories of the dynamic market. Once the market en-
ters the chaotic condition, it will be unpredictable, in 
which the generation companies are unable to effectively 
determine the adjustment of output quantities in the long 
term. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Bifurcation diagram of stable solutions of power market with α2 if difference between marginal cost of generation 
companies lies in [bk,2bk] 
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Figure 15. Chaotic attractors of generation quantities and electricity price if α2=0.052 
 

However, when the market lies in the chaotic condition, 
it is still possible to effectively predict the short-term 
dynamics and change the chaotic market attractors to 
control the chaos. Therefore, in the case, the generation 
companies with bounded rationality should continuously 
survey their own surroundings and adjust their operation 
objectives. The market managers should timely modify 
the operation rules in order to change the chaotic market 
attractors and adapt the variation of the market environ-
ment. 

5. Conclusions 

This paper proposes the dynamic Cournot game model 
with bounded rationality considering the power network 
constraints, i.e., the difference equations embedded with 
the optimization problem. By using the theory of nonlin-
ear discrete dynamic system, the Nash equilibrium and its 
stability for a duopoly market are quantitatively analyzed. 
It is found that the power market has different Nash equi-
libriums with different market parameters corresponding 
to different operating conditions, i.e., congestion and 
non-congestion, while in some cases it has no Nash equi-
librium at all. The effect of market parameters is investi-
gated on the stability of Nash equilibrium. It is also re-
vealed that the smooth adjustment of the generation 
quantities and the restriction of the maximum value of 
electricity price can reinforce the stability of the power 
market. In the dynamic evolution, the market exhibits a 
variety of dynamic behaviors, i.e., converging to the 
Nash equilibrium, period and chaos. 

Based on the above work, there are the following is-
sues need to be explained and discussed. 

(a) For descriptive simplicity, the generation marginal 
cost is assumed to be a linear form in this paper. If it is a 
quadratic function, the Nash equilibriums of market and 
their stability conditions may be similarly obtained, as 
well as the periodic and even chaotic dynamic behaviors 
when the market go beyond the stability region. 

(b) In the dynamic Cournot game, the generation quan-
tities are regarded as the decision variables of generation 
companies, which may be sold to the users through the 

contract transaction, also to the Power Exchange through 
the Pool transaction. So long as the relationship between 
the demand and electricity price is identical in the two 
transaction models, the similar results, such as the same 
market equilibrium points and dynamic behaviors, can be 
obtained. 
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