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ABSTRACT 

The rigid body motion can be represented by a motor in geometric algebra, and the motor can be rewritten as a tri-
nometric function of the screw blade. In this paper, a screw blade strapdown inertial navigation system (SDINS) algo- 
rithm is developed. The trigonometric function form of the motor is derived and utilized to deduce the Bortz equation of 
the screw blade. The screw blade SDINS algorithm is proposed by using the procedure similar to that of the conven- 
tional rotation vector attitude updating algorithm. The superiority of the screw blade algorithm over the conventional 
ones in precision is analyzed. Simulation results reveal that the screw blade algorithm is more suitable for the high-pre- 
cision SDINS than the conventional ones.  
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1. Introduction 

The strapdown inertial navigation system (SDINS) algo- 
rithm comprises attitude updating, velocity updating, and 
position updating, among which attitude updating usually 
utilizes the rotation vector algorithm [1-7]. The procedure 
of the rotation vector algorithm is: first, divide the attitude 
updating time interval equally into several segments and 
calculate the angular increment of each segment respec- 
tively; then, compute the total angular increment during 
the entire updating interval; finally, figure out the direc- 
tion cosine matrix/quaternion of the updating time inter- 
val from the total angular increment. The theoretical 
foundation of the rotation vector algorithm is the Euler 
theorem, i.e., multiple rotations about axes passing through 
the origin is equivalent to a single rotation about some 
axis passing through the origin. Recently, a translation 
vector method, which is similar to the rotation vector 
algorithm, is proposed for the velocity/position updating 
[8]. 

According to the Chasles theorem, the rigid body mo- 
tion can be represented by a rotation about an axis and a 
translation along that axis, and on this basis a SDINS 
algorithm based on dual quaternion (DQ) is presented [9]. 
The rotation vector and the translation vector are com- 
bined to construct the screw vector, which is utilized to 
calculate the DQs representing the vehicle’s motions. All 
navigation parameters can be extracted from these DQs. 
The velocity/position updating algorithms in both [8,9] 

are related to the rotation vector algorithm which has 
been commonly used in modern SDINS algorithms. How- 
ever, the attitude updating is combined with the velocity 
and position updating in [9], which is different from in [8] 
or other references, where the attitude updating is gener- 
ally manipulated separately from the velocity and posi- 
tion updating. The benefit of the DQ-based SDINS algo- 
rithm is that the structure of the navigation algorithm can 
be simplified, and the precision can be promoted.  

Geometric algebra (GA), as well as DQ, is a unitary 
representational tool for the rigid body motion, but it is 
more general than the latter. Rotations and translations of 
any dimension can be depicted in GA.  

Motivated by [9], recently we have proposed another 
SDINS model using GA [10]. The navigation equations 
were recast into three alike motor kinematic equations. 
As a test of the GA-based SDINS model, the fourth-order 
Runge-Kutta (RK) method was chosen to solve the motor 
kinematic equations. The results revealed that the preci- 
sion of the RK-based SDINS algorithm was quite high. 
However, the RK method is computationally costly, and 
it requires a good smoothness of the integral function. To 
meet the real-time requirement and the unavoidable meas- 
urement error in the SDINS, this paper is about to de- 
velop a GA-based screw algorithm that is similar to the 
conventional rotation vector attitude updating algorithm.  

The Contents of this paper are organized as follows. 
Section 2 reviews the GA SDINS model presented in 
[10]. Section 3 derives the trigonometric function form of 
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the motor and the Bortz equation of the screw blade. A 
screw blade algorithm is developed in Section 4, and 
error analyses of the new algorithm and the conventional 
ones are presented in Section 5. In Section 6, a variety of 
simulations are carried out to testify the screw blade al- 
gorithm. Finally, concluding remarks are provided in 
Section 7.  

2. Geometric Algebra Strapdown Inertial 
Navigation System Model 

This section reviews the GA SDINS model, for detailed 
mathematical background please refer to [10] and refer- 
ences therein.  

The purpose of inertial navigation is to provide navi- 
gation parameters through the integration of the angular 
rate and the total acceleration. The total acceleration con- 
sists of the specific force acceleration and the gravita- 
tional acceleration, which can be integrated into the 
thrust velocity and the gravitational velocity, respectively. 
Define the thrust velocity frame with its axes aligned 
with the body frame’s. The difference between the thrust 
velocity frame and the body frame is that the vector from 
the origin of the inertial frame to that of the thrust veloc- 
ity frame is the thrust velocity, rather than the ordinary 
translation (See Figure 1). Similarly, we can define the 
gravitational velocity frame and the position frame. The 
axes of the gravitational velocity frame are aligned with 
those of the Earth-fixed frame. And the vector from the 
origin of the inertial frame to that of the gravitational 
velocity frame is the gravitational velocity. The position 
frame is attached to the centroid of the vehicle, and its 
axes are aligned with the Earth-fixed frame’s. 

The kinematic equation of the motor that transforms 
the inertial frame I  to the thrust velocity frame  can 
be formulated as  

T

T
IT IT IM M  T ,              (1) 

where 

Ix

Iy

 T Bx x

 T By y
v

 T Bz z

 G Ex x

 G Ey y G Ez z

Iz

gv

tv

 

Figure 1. Velocity frames. 

 * *T T I B B
IT IT IT t IT IBR R     s    ,     (2) 

in which T
IT  and B

IB  denote the angular rates of the 
thrust velocity frame T  and the body frame  with 
respect to the inertial frame 

B
I , respectively; I

t  de- 
notes the thrust velocity; IT  represents the rotor that 
transforms frame 

R
I  to frame ; T Bs  is the specific 

force acceleration; * is the dual operator; ~ is the reverse 
operator.  

Similarly, the kinematic equation of the motor that 
transforms the inertial frame I  to the gravitational ve- 
locity frame  can be formulated as  G

2 G
IG IG IM M  G ,              (3) 

where 

 * *G G I E E
IG IG IG g IG IER R     g     ,     (4) 

in which G
IG  and E

IE  denote the angular rates of the 
gravitational velocity frame  and the Earth-fixed frame 

 with respect to the inertial frame 
G

E I , respectively; 
I
g  denotes the gravitational velocity; IG  represents 

the rotor that transforms frame 
R

I  to frame G ; Eg  is 
the gravitational acceleration.  

The kinematic equation of the motor that transforms 
the inertial frame I  to the position frame  can be 
formulated as 

P

2 P
IP IPM M IP ,              (5) 

where 

    * *P P I E I I
IP IP IP IP IE IG t g IGR R R R     vr v     , 

(6) 

in which P
IP  denotes the angular rate of frame  

with respect to frame 
P

I ; Ir  denotes the position vector 
from the origin of frame I  to that of frame ; P IP  
represents the rotor that transforms frame 

R
I  to frame 

. The mechanism of the GA SDINS model is shown in 
Figure 2.  
P

3. Screw Blade Bortz Equation 

As shown in the last section, the kinematic equation of 
the motor has the unitary form 

1

2
M M  ,                (7) 

where *      denotes the screw velocity which 
consists of the angular rate   and the velocity  . It 
can be solved by traditional numerical integral algo- 
rithms. However, in order to meet the real-time require- 
ments of the SDINS, a high-efficiency algorithm, which 
is similar to the rotation vector algorithm that has been 
widely used in the modern SDINS algorithm, needs to be 
developed. The rotation vector algorithm is based on the  
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Figure 2. Mechanism of the GA SDINS model.  

Define the screw blade to be  T     vw N , we 
have 

Bortz equation; therefore, we will build the GA-formed 
Bortz equation first.  

A general rigid body motion can be constructed by a 
rotation in a plane around the origin, followed by a trans- 
lation. As shown in Figure 3, the motor which represents 
the general rigid body motion, can be decomposed into 
the screw parameters as [11] 

 
    

1

* *

T

              ,

T T

d

  

 

         

         

v v vw N w N N

N nv vw I n


 (9) 

where  is the pseudoscalar; I * 1  n N N I
d   w n wn

*

 denotes 
the direction of the screw axis;  denotes 
the magnitude of . It can be seen that w *  nn v

l
 is 

the right dual representation of the screw axis . Define 
d  I , it can be shown that  

 
 2 T 2

TM T R T R e 
 

     v
v

w N
t N w N ,     (8) 

where  
  2T e  

   and  
  2R e 

   represent the trans-  

   1 21 2 2       .       (10) lation versor and the rotation versor (or rotor), respec-  

tively;  represents the versor product;      1T T      T Therefore, Equation (9) can be simplified as l  , 
or, l   . Considering that  to the power of two 
or more equals zero, the motor can be rewritten as [12] 

t  denotes the translation;  denotes the plane in 
which the rotation is resident, and ; 

N
2 1 N   is the 

rotation angle;   w t N N  is the translation along  
2 2 cos sin

2

cos sin ,
2 2

lM e e l   
   

 
 




the rotation (or screw) axis;    
12 

1 R   Nv t N N  is  2           (11) 
the translation of the rotation axis. 

o

t




v
v

u

n

N

l

w

 

where  

2 4 2

4 3

2 d
cos 1 1

2! 4! 2!

4 d
                  cos d sin ,

4!

 

   

   
      

 
    





I

I I
 (12) 

3 5

sin sin d cos
3! 5!

  
        I .      (13) 

It is seen that the motor M  is determined by the 
screw blade  ; therefore, M  can be obtained if   is 
known. Differentiating Equation (11) with respect to 
time gives  Figure 3. Screw decomposition of the motor. 
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2
sin sin 2sin cos

2 2 2 2 22
M

           

     



. (14) 

Substituting Equation (11) into the right side of Equa- 
tion (7), yields 

1 1
cos sin

2 2 2 4
1

        sin cos sin ,
4 2 2 2 2

M
     

 


   
   

 

   
 

  

 
2

2


 (15) 

where  

2


 





  

is the cross product of two blades [11-13]. 
With Equations (7), (14), and (15), considering that 

terms of the same grade on one side of the equation 
should equal to those on the other side, it gives 

2


  


  

,             (16) 

2

1
sin 2sin cos cos

2 2 2 22

                                                          sin .
2 2

           
 




  



2  (17) 

Substituting Equations (10) and (16) into Equation (17) 
gives 

 
2

1
1 cot

2

          


 


2 2
.  (18) 

In fact, when  and 0t 0 , it follows that  

0d  , , *l  n   , *  .      (19) 

Define  n , we have 

*l    n * .            (20) 

Introducing Equations (19) and (20) into Equation (18), 
and multiplying the resultant equation with the pseudo- 
scalar , Equation (18) can be simplified as I

 
2

1
1 cot

2 2 2

 


        
 

   
    ,   (21) 

which is the Bortz equation of the rotation vector [1]. 
Therefore, Equation (18) can be considered as an exten- 
sion of the Bortz equation, i.e., the Bortz equation of the 
screw blade. 

4. Screw Blade Algorithm 

Since the updating time interval is very short,   and 
 are small. Neglecting the second and higher orders of 
 and  , Equation (18) can be simplified as 




1

2
   

Therefore, the screw blade increment of a time interval 
 can be computed as h

 
0

d
h

ct t    .           (23) 

in which c  is the integral of the cross product, and it 
can be approximated as a noncommutative rate vector of 
the rotation vector [2,6]: 

   
0

1
d

2

h

c t t      t ,        (24) 

where  

   
0

d
t

t      . 

On the other hand, the solution of Equation (22) in 
Taylor series is given by 

     0 0h h      .        (25) 

Assume that the screw velocity can be represented by 
a third-order polynomial 

    2

0
d

t
t A    t Bt 0 t h , ,   (26) 

where A  and  are constant blades. The 2-sample screw 
blade formula can be acquired by the following proce- 
dure: 

B

1) Compute the differentiations of , and substi- 
tute them into Equation (25); 

 0

2) Divide the time interval evenly into 2 sub-intervals, 
and calculate the screw blade increment of each sub- 
interval by integral of the screw velocity; 

3) Compute the coefficients of the polynomial using 
the screw blade increments of the sub-intervals, and then 
substitute them into Equation (25). 

It is found that 

1

2

3c 2      ,           (27) 

where 1  and 2  denote the screw blade incre- 
ments of the sub-intervals. Other multiple samples screw 
blade formulae can be set up similarly. A general N- 
sample screw blade algorithm can be formulated as 

1 1

K
N N

c ij i
i j i  

     j   ,        (28) 

where the constant coefficients  are the same as 
those in the rotation vector algorithms.  

Kij

The motor of the updating interval can thus be calcu- 
lated as 

cos sin
2 2

M
 

  



,          (29) 

where    . The total motor can be updated as 
 .             (22) 

1n nM M M   ,             (30) 
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in which nM  and 1n  represent the previous and 
current motors, respectively. 

M 

5. Algorithm Error Analysis 

Since  is the integral of , we can assume  
, where 


*  s


dt     , dt s  . It follows that 

    1 2 1 22 2 2 d         s I I   , (31) 

where  1 22    is the magnitude of the rotation angle,  

and d  s   is the magnitude of the translation along 
the screw axis. Therefore, Equation (11) can be expanded 
as 

* *

2

cos sin cos sin
2 2 2 2 2

sin cos cos sin
d 2 2 2 2

2 2d
d sin sin cos sin .

2 2 2 2

d
M

d

d

 

2

2

  
 

   
  

 
    


           



      
 

I

s I
I

sI



 

 

 (32) 

On the other hand, the motor increment of the interval 
can be formulated as [11,12] 

2M R R   t .             (33) 

Therefore, the translation increment of the updating 
interval can be calculated as 

   

   

   

2

*

2

*

2

*

2

2 d 2d
d sin sin cos sin

2 2 2

sin
     cos sin sin

2 2 2

d d d
     1 cos sin 1 cos

2 2

     1 cos sin 1 cos
2

d sin sin
  1

d

d d

2

1 cos .

  
  

  


  
 

  


 






   

      
 

 
     
 

    

    

      
 



st I

I s

s I I

s
s

 



  





 (34) 

The relationship  

       ** d          s s I s I s I I s      

is utilized in the above derivation.  
Approximating the trigonometric functions by second- 

order Taylor expansion, Equation (34) can be reduced to 
be 

 *1 1

2 2
     t s s s s  .       (35) 

With Equations (22) and (28), the screw blade incre- 
ment of the updating interval can be computed as 

 

1 1 1

*

1 1 1

*

1 1 1

K

   K

     K ,

N N N

i ij i j
i i j i

N N N

i ij i j
i i j i

N N N

i ij i j i j
i i j i

   

   

   

  

  

 
     
 

  

  

  s s s

   

  

 

*



 (36) 

where i i i  s   is the screw blade increment of the 
sub-interval. Substituting (36) into (35) gives 

 

 

 

*

1 1 1

*

*

1 1 1

*

1 1 1

1 1 1

1 1 1

K

1
     K

2

     K

  K

1
     K

2

N N N

i ij i j i j
i i j i

N N N

i ij i j
i i j i

N N N

i ij i j i
i i j i

N N N

i ij i j i j
i i j i

N N

i ij i j
i i j i

   



   

   

   

   

    

 
   

 
 

     
 

    

  

  

  

  

  

 

t s s s

s s s

s s s

 

  

 

 

  

 
1 1 1

    K .

N

N N N

i ij i j i
i i j i   

 
 
 

 
     
 



  s s s 

j

j

  (37) 

Its second-order approximation is 

 
1 1 1 1 1

1
K

2

N N N N N

i ij i j i j i
i i j i i i     

       i    t s s s   s . 

(38) 

The last two terms in the above Equation are the scull- 
ing and rotation compensation terms in the conventional 
velocity integration [14,15]. Therefore, the error for the 
conventional algorithm includes: 1) approximation of the 
screw blade during the updating time interval in Equation 
(36); 2) truncation of trigonometric series to the second 
order in Equation (35); 3) approximation to second-order 
accuracy in Equation (38). On the other hand, the error 
for the screw blade algorithm comes from: 1) approxima- 
tion of the screw blade in Equation (36); and 2) trunca- 
tion of trigonometric functions in calculating Equation 
(34). Therefore, if the error in Equation (36) is small 
enough, the precision of the screw blade algorithm will 
be higher than that of the conventional ones. The error 
arisen from the approximation of the screw blade can be 
reduced by choosing high-precision inertial sensors to 
decrease measurement error, or by using big sample 
screw blade algorithms, or by shortening updating time 
intervals, etc.  

6. Numerical Simulation 

To testify the performance of the screw blade algorithm 
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presented in this paper, a variety of experiments are car- 
ried out. 

The navigation parameters and the gyro/accelerometer 
outputs are produced by an ideal trace generator. The 
inputs of the generator are the ground speed rate and the 
Euler angle rate, and the inputs for each channel are the 
same, which are 20sin 2πft  (m/s2) for the former, and 

2π cos 2π f ft  (rad/s) for the latter. The frequencies are 
f = 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6 and 0.8 
(Hz). At the beginning, the vehicle stands still on the 
ground of the Earth at latitude 30˚ and longitude 110˚, 
and the attitude angles are all 0. The runtime is set to be 
300 (s). 

The coordinate transformation between the Earth fixed 
frame coordinate and the geodetic coordinate is achieved 
by an iterative algorithm proposed in [16]. To increase 
the precision, the gravitational acceleration is computed 
using the information of real time position of the vehicle. 
Since the position is calculated only once per updating 

interval, a third-order algorithm [17] is utilized in com- 
puting the screw blades of the gravitational velocity frame 
motor and the position frame motor. 

In this test, the 2-sample screw blade algorithm is cho- 
sen to solve the GA SDINS model. For the conventional 
algorithm, 2-sample formulae are applied in attitude/ve- 
locity updating [4,18], and the trapezoidal integration is 
utilized in position updating. 

Here the measurement errors of the inertial sensors are 
simplified as a compound effect of the fixed bias and the 
Gaussian random noise. Four typical SDINS configura- 
tions used in the test are listed in Table 1. The maximum 
absolute errors (MAE) of both algorithms are illustrated 
in Figure 4 as a function of the varying input signal fre- 
quency. “CA” and “GA” stand for the conventional algo- 
rithm and the geometric algebra screw blade algorithm, 
respectively. The updating time interval is 0.02 (s). 

It can be seen that: 
1) The attitude errors of both algorithms are the same,  

 

  
(a)                                                         (b) 

  
(c)                                                         (d) 

Figure 4. MAEs of algorithms with variant measurement errors as a function of varying input signal frequency. (a) Test 1; (b) 
est 2; (c) Test 3; (d) Test 4. T   



Strapdown Navigation Using Geometric Algebra: Screw Blade Algorithm 19

  
Table 1. Inertial sensor configuration. 

Gyro Accelerometer 

 Fixed bias 
(˚/h) 

Gaussian noise 
(˚/h1σ)  

Fixed bias  
(μg) 

Gaussian noise 
(μg1σ) 

Test 1 0 0 0 0 

Test 2 10–4 10–5 1 10–1 

Test 3 10–2 10–3 102 10 

Test 4 1 10–1 103 102 

 
but the velocity and position errors have been remarkably 
reduced due to the combination of the attitude updating 
and the velocity/position updating, which utilizes the high- 
precision attitude updating algorithm. 

2) When there is no measurement error (Figure 4(a)), 
or the measurement error is minor (Figure 4(b)), the su- 
periority of the GA over the CA is quite obvious. How- 
ever, as the measurement error grows, the superiority 
loses gradually, as shown in Figure 4(d), in which the 
MAEs of both algorithms are almost the same. This is 
because the measurement error becomes the main error 
source of the algorithms as it grows. 

3) There are some turning frequency points around 
which the MAEs of the CA are smaller than those of the 
GA. However, in most cases, the precision of the GA is 
better than that of the CA. 

7. Conclusions 

A screw blade algorithm is proposed to solve the GA 
SDINS model. At first, the trigonometric function form 
of the motor is derived by using the screw decomposition. 
The Bortz equation of the screw blade is deduced in 
succession. And then, the screw blade SDINS algorithm 
is developed similar to the conventional rotation vector 
attitude updating algorithm. The errors of the screw blade 
algorithm and the conventional ones are analyzed as 
well.  

The performances of the screw blade algorithm are 
testified by a variety of simulations. The results reveal 
that the screw blade algorithm is a better choice than the 
conventional ones when the measurement error is small, 
and it is more suitable for the SDINS with high-precision 
requirement. 
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