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ABSTRACT 

The paper describes a method for measuring the thermal diffusivity of materials having a high thermal conductivity. 
The apparatus is rather simple and low-cost, being therefore suitable in a laboratory for undergraduate students of engi-
neering schools, where several set-ups are often required. A recurrence numerical approach solves the thermal field in 
the specimen, which is depending on the thermal diffusivity of its material. The numerical method requires the tem-
perature data from two different positions in the specimen, measured by two thermocouples connected to a temperature 
logger. 
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1. Introduction 

The evaluation of thermal properties of new materials is 
quite important. For several of their engineering applica- 
tions in microscopic or macroscopic structures for instance, 
we need to know how they are able to dissipate heat. The 
same is true for those systems suitable for the recover or 
storage of energy [1]. Besides this necessity of measuring 
the thermal properties of new component materials, the 
study and development of relevant experimental methods 
is quite important for researchers and students of engi-
neering schools too. Here then, we propose a method that 
allows the students to have an experimental approach to 
the problem of thermal transport. 

Years ago, the author [2-12] has published some papers 
on new methods to measure the thermal diffusivity. 
Some measures reported in the references were based on 
modelling the thermal field inside a specimen after the 
measure of its thermal expansion. This dilatometric 
method is able to reduce strongly the experimental errors, 
which are derived from thermal leaks, but requires a ca-
pacitive system to record the thermal expansion. It is 
therefore not suitable to be used in a laboratory for un-
dergraduate students. Moreover, the instruments are quite 
expensive. 

Other methods, known as the flash methods, to deter-
mine the thermal diffusivity exist. They are based on the 
use of a laser for heating the specimen. A high-intensity 
short-duration light pulse is absorbed in the front surface 
of the specimen and the resulting temperature history of 
the rear surface is measured, usually by a thermocouple. 
To cancel the problem of the thermal leaks through the 
thermocouple wires, the thermal diffusivity can be meas- 

ured using a non-contact experimental configuration 
based on infrared photothermal radiometry [15]. This tech- 
nique reduces the thermal leaks, but, as in the case of 
dilatometric methods, requires a sophisticate set-up. 

Aiming to improve a laboratory for students with a 
measure of the thermal diffusivity, without increasing the 
overalls cost of the structure, we describe here an ex-
perimental procedure based on the use of thermocouples, 
adapting the numerical methods of determining the ther-
mal field developed in Ref. [2-12]. The method of solu-
tion is simplified for undergraduate students.  

The paper is structures in the following manner. At 
first, we describe the experimental set-up. Then the paper 
proposes the method for evaluating the thermal diffusiv-
ity, based on the temperature data obtained by means of 
two thermocouples. A thermocouple is placed at the 
lower base of a cylindrical sample and allows calculating 
the temperature field in the specimen, according to an 
assumed value of its thermal diffusivity. In such a way, 
the temperature at the top of the specimen is calculated. 
The actual value of the thermal diffusivity is obtained by 
searching, in a certain range of assumed values, for that 
giving the best agreement of the theoretical temperature 
with the data recorded by the second thermocouple, 
placed at the top of the cylinder. Other methods, known 
as the flash methods, to determine the thermal diffusivity 
exist [13,14]. In the discussion, we will see that the 
method provides good results in agreement with previous 
measurements. 

2. Experimental Set-Up 

The instrumentation to be used is very simple. We need 
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two thermocouples and a two-channel temperature logger. 
I used for students an old device having two large displays, 
quite useful during room demonstrations, because eve- 
rybody can see directly the variations of temperature. A 
cylindrical specimen of commercial aluminium, 16 cm 
long, is placed on a metal grid, as shown in Figure 1. 
Around the cylinder, a layer a few millimetres thick of 
grey plasticine is used to avoid convective flows. The 
heat source is applied at the lower base. The heater is an 
electric resistive coil under an insulating disk. Some stu- 
dents simply used a lighter during the experiments. 

For what concerns the specimen, to reduce the disper- 
sion of heat from its lateral surface, a thermal guard is 
used of the same material (Figure 2). The temperature is 
measured at two different positions in the specimen. One 
thermocouple is placed at two millimetres from the lower 
base, in a small diameter hole drilled parallel to the base, 
through the thermal guard to the axis of the specimen. 
Since the wires of thermocouple are heated, as the specimen 
and the thermal guard are, we can consider negligible 
any thermal leak due to their presence. We can see from 
Figure 3 how the lower part of the specimen/thermal 
guard cylinder had been properly shaped. 

The proposed set-up is suitable for measurements with 
materials possessing a high thermal conductivity (for 
low-conducting materials, an arrangement as in Ref. [4]  
 

 

Figure 1. Experimental set-up for measuring the thermal 
diffusivity. We see the cylinder on the left, which is com-
posed by the specimen and its thermal guard, placed on a 
metallic grid. Near the base of the cylinder, a small amount 
of insulating material (grey plasticine) is used to avoid con-
vective currents about the cylinder, when the specimen is 
heated at its lower base. We can simply use a lighter to heat 
it. On the right, we see the data logger for thermocouples, 
having two displays to visualize the temperatures. We can 
also see the wires of thermocouples. 

 
(a) 

 
(b) 

Figure 2. Panel (a) shows the upper base of cylinder and 
thermal guard. We can see a very small hole for the ther-
mocouple. Panel (b) shows the profile of the specimen (dark 
grey) and of the thermal guard at the lower base of the cyl-
inder. We see also the hole for the thermocouple, drilled in 
the cylinder. 
 

 

Figure 3. Sketch of specimen and thermal guard. 
 

is more suitable). Due to the high thermal transport, we 
can assume that the thermal field does not depend on the 
radial coordinate. The actual length of the specimen that 
we will consider in the calculation of the thermal field is 
the distance from the drilled hole in the lower base to the 
upper base, which is equal to 15.7 cm. 

The second thermocouple is placed at the top of the 
specimen. Of course, a computer could record the tem-
peratures. In the case that we use the device in Figure 1, 
a stopwatch allows to directly read and record the tem-
peratures with a suitable time interval (we used an inter-
val of 10 seconds). The data analysis is done with a nu-
merical program, which is quite simple, as we discuss in 
the next section. 

3. Theoretical Model 

An approach that we can use to solve the thermal trans-
port in the cylindrical specimen is numerical. It is based 
on a recurrence relation, which uses the temperature 
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measured by the thermocouple at the lower base. After 
imposing a value of the thermal diffusivity, the tempera-
ture field in the cylinder is obtained. Evaluating with the 
recurrence relation the field at the upper base, we can 
compare its time behaviour with the temperature re-
corded by the second thermocouple. The actual thermal 
diffusivity of the sample is that providing the best 
agreement between theoretical and experimental values. 

Let us remember that the thermal diffusivity  is the 
physical quantity which appears in the equation of heat: 

α

21 T
T

α t


  


                 (1) 

To determine the thermal diffusivity, we measure the 
temperature as a function of time, using at least two ther- 
mocouples, as shown in the sketch (Figure 3) of the cy- 
lindrical specimen. As previously discussed, the lower 
base is heated by means of a suitable heat source: we as- 
sume that this base is uniformly heated. 

Using the two thermocouples, the temperature is 
measured at two different positions. As previously told, 
one of the thermocouples is inserted laterally at the lower 
base, passing through the thermal guard. The wires of 
this thermocouple, having practically the same tempera- 
ture of the specimen and of the thermal guard, have a 
negligible perturbation effects on the temperature field. 
The other thermocouple is inserted on the upper base of 
the specimen. 

The thermal guard is a hollow cylinder made of the 
same material of the specimen, a commercial aluminium 
alloy. The radial distance between the points AB and DE 
is of a millimetre. The outer diameter of 4 cm. That of the 
inner cylinder of 2 cm. The total length is 16 cm. The dis- 
tance of the two thermocouples is 15.7 cm (see Figure 3). 

Since the material under measurement has a high 
thermal conductivity, we consider its thermal field de- 
pending only on z, not on the radial coordinate. Consi- 
dering only a dependence on the z-coordinate, this means 
that each section of the cylinder is reached in a uniform 
manner by the heat coming from below, and that there is 
not radial propagations of heat. If the two cylinders are of 
the same material, positions at the same distance from 
the base (for example, A, B, C, D, E in Figure 3) will 
have the same temperature. We assume that this is true, 
because of the presence of the thermal guard. 

Admitting that the heat spreads along the longitudinal 
axis z, and calling T the thermal field in the specimen: 

0
T T

x y

 
 

 
              (2) 

Therefore, the thermal Equation (1) can be written as: 
2

2

T
α

t z

 




where, α K cρ  is the thermal diffusivity, K the ther-
mal conductivity, c the specific heat and ρ  the density. 
To solve this last equation it is necessary to have the 
thermal field at the initial time of measurements and the 
boundary conditions. At the initial time condition, we 
imagine that all the cylinder is at the same temperature, 
the room temperature, T(t = 0) = T0. 

Since the problem is one-dimensional, we need two 
conditions: one at the lower base, z = 0, and at the top of 
the cylinder, z = L, where L is the length of the specimen. 
At the lower base, the temperature is known, because 
measured by the lower thermocouple. At the top of the 
specimen we assume a non dispersive boundary condi- 
tion. From the lateral surfaces, the irradiation of heat is 
negligible. The thermal exchange with the environment 
exists for sure, but it can be neglected because air is not 
flowing between the sample and the thermal guard and 
the difference between the temperatures of specimen and 
environment is quite small [9]. In any case, the aim of 
this method is the use of it for students, and therefore, 
with some suitable remarks, a non-dispersive condition 
can be assumed. 

Setting equal to zero the thermal flow between the 
surface and the environment, we have: 

0
L

T
K

z





                (4) 

Let us consider a solution of Equation (3), for bound-
ary condition (4), in the following form:  

   2sin expω z αω t             (5) 

According to (4), we have: 

   2

cos 0 cos 0αω te ωL ωL          (6) 

Therefore: 

  π
2 1

2nω L n                (7) 

where n is an integer ranging from 0 to infinite. Let us 
use the notation: 

  sinnφ z ω z n

1

              (8) 

The solution of the thermal transport is obtained as in 
Refs [2-12]. Let us consider a time interval τ small 
enough. In fact, we suppose that the time is discretized 
according to the used data recording of the temperature:  

1 1 2o i i i iτ t t t t t t                (9) 

Assume a time , at which temperature is recorded, 
and call: 

it

  11 , , ,i i
i iθ z t θ z t
 

1

             (10) 

T


               (3) the temperature field in the specimen during the two 

time intervals . We can write: 1( , ), ( , )i i i it t t t
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   
21 1

1 1
0

nαω ti i
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


 


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   
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0

nαω ti i
i i n n

n

θ T C φ z e





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(1)

       (12) 

When z = 0,  is given by T T , the temperature 
measured by the lower thermocouple. Imposing the con-
tinuity of the temperature function with respect to time, 
we have: 

θ 

  1
1,i i

i i iθ z t θ z t
 , i

2

2

           (13) 

This condition gives us the possibility to evaluate the 
coefficients  in the following manner. i

nC
From the continuity condition (13), we have: 

       
21 1 1

1
0 0

n i n iαω t αω ti i
i n n i n n

n n

T C φ z e T C φ z e
 

 
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(15) 
It is necessary to use the fact that:  

               1 1 1 1 1 1
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0
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n
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
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and: 
2nF ω L n

2

2

2



                 (17) 

Then: 
     1 11

1 expi i
n n i i n n iC C T T F αω t
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The following recurrence relation can be use in the 
numeric calculation: 
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For index i: 
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In general, the temperature field of the specimen at the 
time , is therefore written as: it i τ 

     
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We can write this last equation for z = L, the upper 
base. This theoretical value is a function of the chosen 
thermal diffusivity.  

  1i
iθ α θ  i                (24) 

We can compare it with the temperature recorded 
by the thermocouple at the upper base of the specimen, 
by means of the following function:  

(2)T

      2
2

i i
i

I α θ α T           (25) 

Minimizing (25), the value of the thermal diffusivity is 
obtained, giving the best agreement between the model 
and the experimental measured temperature. 

4. Discussion 

As told in the introduction, the method for evaluating the 
thermal diffusivity is based on the temperature data ob-
tained by means of two thermocouples. A thermocouple 
is placed at the lower base of a cylindrical specimen, and, 
as we have seen theoretically, allows calculating the 
temperature field in the specimen, after a certain value of 
the thermal diffusivity is assumed. The plot in Figure 4 
is giving the value of the temperature recorded by the 
thermocouple at the base of the specimen as the data T(1) 
as a function of time. From data T(1), as previously shown, 
we can calculate the temperature at the top of the speci-
men and compare with the experimental behaviour T(2) 
recorder by the second thermocouple. 

In Figure 4, it is shown an experiment during which 
the specimen was heated for three minutes approximately. 
The two temperatures were recorded each ten seconds.  

The thermal diffusivity of the material under investi-
gation is obtained by searching, in a certain range of as-
sumed values of this physical quantity, for that value 
giving the best agreement of the theoretical temperature 
with that recorded by the second thermocouple, placed at 
the top of the cylinder. Applying the numerical procedure 
described in the previous section, I() as a function of 
the thermal diffusivity is obtained. The behaviour of this 
function for the data of Figure 4 is given in Figure 5. 
This function has a well-defined minimum. 

The value of the thermal diffusivity giving the best 
agreement with experimental data of Figure 4 is there-
fore 0.79 cm2/s. Repeating some measurements on the 
same specimen, we obtained a value of the thermal diffu-
sivity of (0.75  0.07) cm2/s. This measure is in good 
agreement with the values obtained in a more controlled 
environment [2,7-9,15]. The dispersion of the values is 
larger, but this is not surprising, because it is difficult to 
repeat the measures in the same conditions. Moreover, 
there is the possibility that convective heat flows exist 
during the heating of the specimen. 
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Figure 4. The plot is giving the values of the temperatures 
recorded by the two thermocouples in the experimental 
set-up of Figure 1. Thermocouple giving T(1) is placed at the 
lower base of a cylindrical specimen and allows calculating 
the temperature field in the specimen, according to an as-
sumed value of thermal diffusivity. We can therefore calcu-
late the temperature at the top of it and compare with the 
experimental behaviour T(2) recorded by the second ther-
mocouple. 
 

 

Figure 5. The plot is giving the values of I = I(α), defined by 
Equation (25), as a function of the assumed thermal diffu-
sivity. This function is showing the difference between the 
theoretical temperature and the temperature T(2) recorder 
by the thermocouple at the top of the specimen. The actual 
value of the thermal diffusivity is obtained by searching for 
that value giving the best agreement between theoretical 
and experimental data. The best agreement is represented 
by the minimum in the figure. 

5. Conclusion 

As we have shown, the method gives measures of the 
thermal diffusivity in good agreement with previous 
measurements. Of course, the accuracy of the method 
can be improved preparing a small box for the set-up and 
create the vacuum in it with a rotative pump, but this is 
beyond the aim of the proposed approach, which is the 
use of it in a student laboratory. For what concerns the 
calculation, the numerical recurrence is quite simple to 
be implemented by an undergraduate student on a per-
sonal computer. Moreover, the apparatus has a low-cost, 
and therefore several replicas can be prepared without 
being their cost exceedingly large for the financial sup-
port of the laboratory. 
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