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ABSTRACT 

In Kronecker products works, matrices are some times regarded as vectors and vectors are some times made in to ma-
trices. To be precise about these reshaping we use the vector and diagonal extraction operators. In the present paper, the 
results are organized in the following ways. First, we formulate the coupled matrix linear least-squares problem and 
present the efficient solutions of this problem that arises in multistatic antenna array processing problem. Second, we 
extend the use of connection between the Hadamard (Kronecker) product and diagonal extraction (vector) operator in 
order to construct a computationally-efficient solution of non-homogeneous coupled matrix differential equations that 
useful in various applications. Finally, the analysis indicates that the Kronecker (Khatri-Rao) structure method can 
achieve good efficient while the Hadamard structure method achieve more efficient when the unknown matrices are 
diagonal. 
 
Keywords: Matrix Products; Least-Squares Problem; Coupled Matrix and Matrix Differential Equations; Diagonal  

Extraction Operator 

1. Introduction 

Linear matrix and matrix differential equations show up 
in various fields including engineering, mathematics, 
physics, statistics, control, optimization, economic, linear 
system and linear differential system problems. For in- 
stance, the Lyapunov equations  and 0XA Q  A X

X A XA Q 

T T

 (where A* is the conjugate transpose of 
A) are used to analyze of the stability of continuous-time 
and discrete-time systems, respectively [1]. The general- 
ized Lyapunov equation: 

AXB CXD Q 

TB

.             (1) 

(where  is the transpose of B) has been used to char- 
acterize structured covariance matrices [2]. Most of the 
existing results, however, are connected with particular 
systems of such matrix and matrix differential equations. 

Coupled matrix and matrix differential equations have 
also been widely used in stability theory of differential 
equations, control theory, communication systems, per- 
turbation analysis of linear and non-linear matrix equa- 
tions and other fields of pure and applied mathematics 
and also recently in the context of the analysis and nu- 
merical simulation of descriptor systems. For instance, 
the canonical system  

     
     

,

.T

X t AX t BY t

Y t CX t A Y t

  

  

  0Y b 

     

           (2) 

With the boundary conditions and  has been 
used to the solution of optimal control problem with the 
performance index [3]. In addition, many interesting prob- 
lems lead to coupled Riccati matrix differential equations 
[4]:  

 

            
                 

                 
                 

   

1 1 1 1 1 1 1 11 1

1 22 2 2 22 1 2 12 2

2 2 2 2 2 2 2 22 2

2 11 1 1 11 2 1 21 1

1 1 2 2

;

.

, ,f f f f

X t Q t B t X t X t A t X t S t X t

X t S t X t X t S t X t X t S t X t

X t Q t B t X t X t A t X t S t X t

X t S t X t X t S t X t X t S t X t

X t X X t X

    

  

    

  

 

                 (3) 
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and the general class of non-homogeneous coupled matrix differential equations: 

         
 

  

1

2 2

.

p

p

p pp p

U t

       

      

1 11 1 11 12 2 12 1 1

2 21 1 21 22 2 22 2

1 1 1 2 2 2

p p

p p

p p p p p pp

X t A X t B A X t B A X t B

X t A X t B A X t B A X t B U t

X t A X t B A X t B A X

    

    

    






 t B U t







,

                   (4) 

 
where ij ij nA B M  are given scalar matrices, U t Mi n 

is a given matrix function,  i nX t M  are the unknown 
diagonal matrix functions to be solved and  0i iX C ; 
and where  iX t  denotes the derivative of matrix func-
tion  iX t

m n
. . (where ,m n  is the set 

of all  matrices over the complex number field  
and when , we write 

 , p, 1, 2,i j  

m n

M


mM  instead of ).  ,m n

Examples of such situation are singular [5] and hybrid 
system control [6] and nonzero sum differential games 
[7]. Depending on the problem considered, different 
coupling terms may appear. However, in all the above 
mentioned cases the systems are difficult to solve.  

M

ijA a   ijB b

Let us recall some concepts that will be used below.  

Given two matrices  and ,m nM        

,p q , then the Kronecker product of A and B is defined 
by (e.g. [8-12]) 
M

,mp nqij
B M   ijA B a  .         (5) 

While if ,m n , ,A M p n , and let iB M  :1a i n 


 
and i  be the columns of A and B, respec-
tively, namely 

 :1b i n 

 1 2 nA a a a  , 1 2 nb bB b . 

The columns of the Kronecker product A B  are 

i j  for all i, j combinations in lexicographic order 
namely,  
 a b

 1 1 1 n n 1 n nA B a b a b a     b a b    (6) 

Thus, the Khatri-Rao product of A and B is defined by 
[13,14]:  

 1 1 2 2 n nA B a b a b    a b      (7) 

consists of a subset of the columns of A B . Notice 
that A B is of order mp and 2n A B
mp n

  n

 is of order 
. This observation can be expressed in the fol-

lowing form [15]: 

A B S A B  

S 2n n

22 3n n
e e 


2 1  

ij

,            (8) 

where the selection matrix  is of order  and n

1 2n nS e e         (9) 

and k  is an n  column vector with a unity element 

in the k-th position and zeros elsewhere  21 k n  . 

e

Additionally, if both matrices A a    and  

B size, then amard 
product of A and

      (10) 

This product is much simpler th
K

,ij m nb M     have the same the Had
 B is defined by [8-11,16]:  

,ij ij m nA B a b M    .     

an Kronecker and 
hatri-Rao products and it can be connected with iso- 

morphic diagonal matrix representations that can have a 
certain interest in many fields of pure and applied mathe- 
matics, for example, Tauber [16] applied the Hadamard 
product to solving a partial differential equation coming 
from an air pollution problem. The Hadamard product is 
clearly commutative, associative, and distributive with 
respect to addition. It has been known that A B  is a 
(principal) submatrix of A B  if A and B ar (s uare) 
of the same size. This can be found in Visick [12] and 
even in Zhang’s book [17]. Liv-Ari [13, Theorem 3.1, p. 
128] gave the following new relations related to Kro-
necker, Khatri-Rao and Hadamard products:  

e q

 T
nS A B A B   ;              (11) 

 T
n nS A B S A 

The Kronecker product and vector 
th

B .           (12) 

operator affirming 
eir capability of solving some matrix and matrix dif-

ferential equations. Such equations can be readily con-
verted into the standard linear equation form by using the 
well-known identity (e.g. [17,18]):  

   TVec AXB B A Ve  cX ,        (13) 

Where  .Vec  denotes a vectorization
a The n A

 by columns of 
matrix. eed to compute the e ,  cosh A  and 

 sinh A  are due its appearance in the solutions o  cou-
pled ma rix differential equations. Here  

 f
t

 

 

0

;
! 2

e e
cosh .

2

A

k

A A

k

A





 




       (14) 

For any matrix m

e e
; sinh

k A
A A

e A
   

  

A M , the spectral representation of 
eA res that 

0 0

e e e ,itT
i i i i

i i

x y 

 

       (15) 

w

 and eAt  assu [9,18]: 

; ei
n n

A T Atx y   

here  1 n, ,  1, , nx  and x  are the
and the corresponding eigenvectors of A, and 

 eigenvalues 
 1, , ny  y
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TAis the eigenvectors of matrix . 
, we shal

 properties of the Kro-
ne are use

Finally, for any matrices A, B, C, nD M l 
make a frequent use the follo ngwi

cker product (e.g. [9,18-20]) which d to estab-
lish our results. 

1)     ;A B C D AC BD A B A B
          

(1
   nA I A

ne e I   ; 

A
ne I e           (17) 

3)  n n

6) 

2) n nA I I B 

 

A Be e e  ; 

 nI B     

sinh sinhA I  A I ; 

 sinhn n sinh I B I  B              (18) 

 coshn

  

4) cosh   nA I A I

 coshn n

  ;   

 cosh I B I  B           (19) 

present the eff
uares problem and extend the 

us

upled trix Linear Least-Squares 
Problem  

n be 
wr otation as [13]  

.    

In this pape
pled ma

r, we 
trix linear least-sq

Ma

n

,m n , 

icient solution of cou-

e of diagonal extraction (vector) operator in order to 
construct a computationally-efficient solution of non- 
homogeneous coupled matrix linear differential equa-
tions. 

2. Co

The multistatic antenna array processing problem ca
itten in matrix 

 ; ;1T
iQ AXB X diag i n    .     (20) 

where A M ,p nB M  and 
(complex valued) matrices; and 

,m pQ M
where the 

 are given 
unknown 

matrix nX M  is dia o that n < mp, 
so that we suggest using a least-squares approach, viz., 

gonal. We als  assume 

2
min T

FX
Q AXB ,            (21) 

where 
F

A  is called Frobenius no
identity in Equation (13) we can transform (21) into the 

SP f

rm of A. Using the 

vector L orm:  

  2
min

FX
VecQ B A VecX  .       (22) 

which has the well-known solution:  

 VecQ
 ,  (23) 

nvertible.  
rmation in Equation 

 results icient least- 

 an al

     
1

VecX B A B A B A
  

provided  B A   is i
Applying the direct vector transfo

 B A


TAXB

tern

(13) to Q in a highly ineff
square problem, because VecX is very sparse. Liv-Ari [13] 
described ative approach based on:  

     TVec AXB B A Vecd X  , X is diagonal   (24) 

which involves the so-called Khatri-Rao product  , as 
rator well as the diagonal extraction ope  vecd X :  

   11 22

T

nnVecd X x x x        (25)  

which forms a column vector consisting of the dia
elements of the n n

gonal 
 square matrix X, instead of the 

much longer column vector VecX. In addition, if Y is any 
matrix of order m p , then             

   TTVecd A YB B A VecY  .        (26) 

As we have observed earlier, when the
trix X is diagonal, solving for VecX is hig
si

 unknown ma-
hly inefficient, 

nce most of the elements of X vanish. Instead Liv-Ari 
[13] used the more compact vectorization identity to re-
write matrix LSP (21) in the vector form:  

    2
min

FX
VecQ B A Vecd X  .       (27) 

Notice that Vecd X  consists of only 
(i.e., diagonal) elements of the matrix X.
so  is  

the nontrivial 
 The explicit 

lution of (27)

        
1

Vecd X B A B A B A VecQ
     .  (28) 

provided    B A B A
   is invertible. 

It turns out that this expression can also be
ing Hadamard ng in a signifi- 

 imple- 
mented us product, resulti
cant reduction in computational cost, as implied the fol- 
lowing result [13]:  

       A B A B A A B B
      ,       (29) 

where ,m nA M  and , p nB M .  
When  min ,n m p , we observe that

ression i ion (29) ires  
 the left-hand 

side exp n Equat  requ
 m 1 2n   mupn mpn ltiplications, while forming the 

equivalent right-hand side expression requires only 
   1 1m p n n  

1mp m p

2  multiplications. Thus the latter 
offers significant computational savings, especially when 

  . 

:  
Now, using (26) we can rewrite (28) in the more com- 

pact form

         1

Vecd X B B A A Vecd A Qconj B


    . (30) 

This expression which requires     3 2O n O m 
(multiply and add) operations is much more ef
th
It means that the com

n 

p n  
ficient 

an (28), which requires    3 2O n O mpn  operations. 
putational advantage of using the 

Hadamard product expression is particularly evident 
whe  p , which implies that  
mp m p n

min ,n m
  . In order to be able to use (30) we must 

ascertain that the matrix    B B A A  . 
This will hold, for instance, when both A

 is invertible
 and B have full 
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As for the dia
column rank. 

gonal extraction operator  .vecd , we 

observe that for any square 

sider the coupled matrix linear least-squares problem 
(CLSP):   

ijY y    , n n  matrix 2

,
min

T T

T TX Y

E AXC BYC

F BXC AYC

  
 .        (36)       TY S VecY .            (31) 

 nS Vecd Y , Y is diagonal.      (32) 

2  selection matrix 

nS
T
n nS S 

be agonal extraction 
rator  .vecd  which is give

Vecd  n

lso h

F

If Y is diagonal, then we a ave  The solution procedure presented here may be consid-
ered as a continuation of the method proposed to solve 
least-squares problem in (21).  VecY

Using the identity (13) we can transform (36) into the 
vector CLSP form [10]:  

Moreover, the columns of the n n
 are mutually orthonormal, viz.,   

2

,
min
X Y

VecE C A C B VecX

VecF C B C A VecY

      
nI .                (33) 

Copyright © 2012 SciRes.    

Using (32) and (11), we get the fundamental relation 
tween the Hadamard product and di

ope n by  

   

 and X
 will discuss ore efficient 

least-squares solutions of coupled
tions:  

 TVecd AXB B A Vecd X  , X is diagonal  (34) 

where A, B  is n n  diagonal matrix. 
Now we  the efficient and m

 matrix linear equa- 

T TAXC BYC E  , BXC AYC F     (35) 

where A, ,m nB M  ,

T T

p nC M , E, ,m pF M  are given 
scalar matrices and 

d. We 
X are unknown matrices to 

n mp , so that
pled matrix linear Equations (35) is over-dete

gests usin  a least s  approac

, nY M  
ume at be solve also ass th  the cou- 

rmined, 
which sug g quares h. We con-  

F

           

1

.

VecX C A C B C A C B

VecY C B C A C B C A

C A C B VecE

C B C A VecF

   (37) 

which has the following solution  




                         

    
        

 
 
0

0
TC A BC A C B

U U
C A BC B C A

 (38) 

One can easily show that  

     
         

 

(39) 

I
where 

1

2

I
U


I I


  

 

 
 

 

     
     

0 0

0

0

0

T T

T

C A B
U U U

C A BC A B

C A B C A B
U U

C A B C A B









 is a unitary matrix. So 

 

  
 0

C A BC A C B C A C B
U

C B C A C B C A

        
                         

    
 
     

(40) 

Suppose that  



 W C A B   , we then have 

      
      

H C A B    and 

 
 

       
       

1
1

1

1 1 1 1 1

1 1 1 1 1

0

01 1
.

2 20

T
C A B C A B

C A B C A B

H H H H W W H H W WI I I I

I I I IW W H H W W H H W W





        

        

     
 
      

                            

(41) 

Now the least—squares solutions (38) can be rewrite into the form: 

0

U U
C B C A

    

C A C B C A C B

C B C A

              

           
   

1 1 1 1

1 H H W W H H W W C A C BVecX VecE

VecFC B C A

        

 

                    
.         (42) 

       1 1 1 12VecY H H W W H H W W
            
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This gives 

            
            

            
           

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

2
1

2
1

2
1

2

VecX H H W W C A H H W W C

  

B VecE

H H W W C B H H W W C

VecY H H W W C A H H W W C B

A VecF

VecE

H H W W C B H H W W C

      

      

      

      

      

     

    

     A VecF

 

 

 

 



 

 

 

            (43) 

 
where  H C A B  and 

 be able to use (38) an
   W C A B   . 

o d (43) we must ascer- 
tain that the matrix:  

A C B  
 

e    

  

In order t

C A C
  B C
C B C A C B C A        

is invertible if and only on

  H H C A B
    C A B   

and  

  C A B   

are invertible matrices. 

As we observed, when the unknown matrices X and 

nY M  are diagonal, solving for VecX and VecY are 
highly inefficient, since most of the elements of X and Y 
vanish. Instead we can use the more compact vectoriza- 
tio
least-sq

  W W C A B
   

n identity (24) to rewrite the coupled matrix linear 
uares problem (37) in the reduced-order vector 

form:  

 
 

2

,
min
X Y

F

Vecd XVecE C A C B

Vecd YVecF C B C A

     
           

.  (44) 

Notice  that Vecd X  and  Vecd Y  consists of 
only the nontrivial (i.e., diagonal) elements of ma
and Y. The explicit efficient solution of (44) is 

 

trices X 

 

           
        

 

    
            
            

1 1 1

1 1

1 1 1 1

1 1 1 1

1

2
1

2
1

2
1

2

Vecd X R R S S C A

R R S S C B R R S S C A VecF

Vecd Y R R S S C A R R S S C B VecE

R R S S C B R R S S C A VecF

    

    

       

       

   

      

      

      

            (45) 

 
w A   S C A B   . 

 be (45), we must ascertain that 
the matrix 

     R R C C A B
    

an

pl
ni

 here may be considered 

as a continuation of the method proposed to solve the 
homogenous coupled matrix differential equations in 
[18]. We will use our knowledge of the solution of the of 
simplest homogeneous matrix differential equation:  



1

1 1

R R S S C B VecE
  

  

  

here R C
In order to

 B  and 
able to use 

A B  

d  

     S S C A B C A B
       

are invertible matrices. 
rns out that the expression (45) can also be im- 

emented using Hadamard product by the same tech- 
que in the expression (30). Note that the least squares 

ard product is more efficient 

It tu

solutions in term of Hadam
than (45) and (43).  

3. Non-Homogeneous Matrix Differential 
Equations 

The solution procedure presented

   X t AX t  ,  0X C          (

ere m

46) 

 are given scalar matrices, wh A M , ,m nC M
and   ,m nX t M  is the unknown matrix function to be 
solved. In fact the unique solution of (46) is given by: 

  eAtX t C .              (47) 

Theorem 3.1 Let mA M , ,m nC M  are given sca- 
lar matrices,  U t M
and 

,m n  ven is a gi matrix function 
  ,m nX t M  is the unk wn matrix
tion of e non-hom

tion:  

no . Then the gen- 
eral solu th ogeneous matrix differential 
equa

     X t AX t U t   ,  0X C        (48) 
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is given by 

 e e *

   e AtG t U t 

   
0

e d
t

AsG t U s s

  AtAtX t          (49) 

W    

C U t  . 

here e
t

At U t    

es the convolution product of two matrices 
 and  U t . 

Proof:    eAt

0

e dA t s U s s   is well-defined, 

which involv
Ate

 Suppose that pX t G t  is
oduct rule of differentiation 

gives  

   e eAt

  the particu- 
lar solution of (48). The pr

  At
pX t G t A G t  . 

ting these in (48) we obtain 

   G t U t  .             (50) 

Multiplying both sid  1
e eAt At

Substitu   

       e e eAt At AtG t A G t A G t U t     

Thus  

eAt

es of (50) by 

              (51) 

Integrating both sides of (51) between 0 and t gives 

   gives 

 

         
0

e e d e
t

A t sAt At
p

           (52) 

Hence, by assumption, we conclude that the particular 
solution of equation (48) is  

t G t U s s U t   

ij

X . (53) 

Now from (47) and (53) we get (49). 

Theorem 3.2 Let A a   ijB b    nC M, ,   are  
given scalar matrices, U t M n  is a given matrix func- 

tion and   nX t M  is unknown diagonal matrix func- 
tion. Then the general solution of non-homogeneous ma- 
trix differential equation  

         , 0t AX t X t B U t X CX    

 
          

   (54) 

is given by 

      11 11 11 11e , , e e , , enn nn nn nna b t a b ta b t a b tdiag C diag Vecd U t      .          (55) 

tity (34) we can transform (54) into the vector form:  

  

Vecd X t Vecd

Proof: Using the iden

                 
    , .

T T
n n n

nn nn

A B U t A B I Vecd X t Vecd U t

a b V Vecd U t

   

 

  
    (56) 

 solution of (56) is  

   

 11 11,diag a b ecd X t  

Vecd X t I  I Vecd X t Vecd

Now, applying (49), then the unique

       
     

11 11 , ,e e

e .

nn nn

nn nn

t diag a b a b t

a b t

Vecd C Vecd U t

Vecd U t

 



  



 

 

 
If we 2 we obtain the 

        11 11 11 11e , , e e , ,nn nna b ta b t a b tdiag Vecd C diag   

11 11 , , nn nndiag a b a bVecd X t  

 put U t  0  in Theorem 3.
following result. 

Corollary 3.3 Let A, B, nC M  are given scalar ma- 
ces. Then general solution of the homogeneous matrix tri

differential equation:  

       
 

, 0 ,

 is diagonal.

X t AX t X t B   X C

X t


    (57) 

is given by  

         11 11e , , e nn nna b ta b tVecd X t diag Vecd C  (58) 

Now we will discuss the general class of non-homo- 
geneous coupled matrix differential equations which de- 
fined in (4): By using the  .Vecd -no tion of (4), we 
have  

ta

 

    
  

  

 1
Td X t Vecd X tB A B A B A       

  
  
  

  

1 111 1 1

2 22 2

p p
T T

p p

p p

Vecd U t

Vecd X t Vecd U tB A

t


   
     


 









.        (59) 

  1 1 2 2
T T T
p p p p pp ppp

B A B A B AVecd X t Vecd X t Vecd U


    
          


   

Let 

11 12 12

2 21 21 22 22
TVecd X t B A B A

 
    




  
  

T TVec 
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 

  
  

 

  

  
 

  
 

1 1

22 2

11 11 12 12 1 1

21 21 22

, ,

pp p

T T T
p p

T T

Vecd X t Vecd X t

Vecd X t Vecd
x t x t u t

Vecd C

B A B A B A

B A B A
H

   
   

           
     

      



 

   
  22 2 2

1 1 2 2

.
T

p p

T T T
p p p p pp pp

B A

B A B A B A

 
 
 

 
  

 
   
   

 

 X t

 

 
 

  


11
Vecd U tVecd C

Vecd C Vecd t
c

Vecd X t Vecd X t

  
  
 

  



  

2
,

p

U

Vecd U t

  
 
 
 





          (60) 

 (59) can be written as          T T T TD C B A B A D C     ; Now

   , nU t V t M  

are given matrix functions and  

       , 0x t Hx t   u t x c  

and the general solution is given by: 

 e eHt

X t ,   nY t M  are 
the unknown diagonal matrices. Then the general solu- 
tion of non-homogeneous coupled matrix differential equa- 
tions: 

  Htx t c u t   .          (61) 

Note that there is many special cases can be consid- 
ered from the above general class coupled matrix differ- 
ential equations; now we will discuss some important 
special cases in the next results.   

Theorem 3.4 Let A , E, n

       
       

   

,

,

0 , 0

X

, B, C, D F M  are given 
scalar matrices such that  

t AX t B CY t D U t

Y t CX t D AY t B V t

X E Y F

   

   

 

     (62) 

is given by 
 

             
 

e c

T

B A t

B A t

Vecd X t


     

    
  

osh sinh

* (

co

( ) cosh

T T

T T

T

T

D C t Vecd E D C t Vecd F

D C t Vecd U Vec Y t

Vecd Y t

t D C t

       




 
 

   

 

 

   *Vecd V t

 the vector form: 

  

       

   

) sinh *

sh T

t D C t Vecd V t d

D C t Vecd F

   




    (63) 
 e cosh  

 e sinh
B A t

D   C t Vecd E  

    e sinh *
TB A t TD C t Vecd U   



Proof: Using the identity (34) we can transform (62) into

T

T 

     
  

  
  

T T

T T

Ve Vecd U tB

D C B AVecd Y t Vecd Y t Vecd V t

  
                


 

                    (64) 

From (61), this system has the following solution: 





           

Vecd X t A D C  


 cd X t 


  
  

 
 

  
  

e e *

T T T T

T T T T

B A D C B A D C
t t

D C B A D C B A
Vecd X t Vecd U tVecd E

Vec FVecd Y t Vecd V t

   
   
      

   
     

     

   

    .  

 
Now we will deal with   

e

T T

    (65) 

T T

B A D C

D C B A

 
 
  

 

 

0

.               (66) 

0 0
T T

T T

B A

B A D

D C B

Since       T T T TD C B A B A D C     , then we 

have  

0

0 0
.

0

T T

T T

D C

C

A

D C 0 B A

   
   
   
   

    
   

 

 

 
 

 

Then 
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0 0T T T TB A D C B A D C     
     

   

0 0

0 0

0 0e .

T

T T

T T

D C

D C

D Ce

    

 
 
  



 

 

 

ut 

e 0

0 e
T

A 
 
 


; 

e e
T T TD C B A B A

B A

B A

    

 
 
  



 

  

B

 0T TB A B 
   

 B A




0e
TB A   

       

       

0

T

T

D C

D C



 



 0

e e e e

2 2e

e e e e

2 2

T T T

T

T T T T

D C D C D C

D C

D C D C D C D C

 




 

   
   
  
  

  



   
. 

So 

 



   



   

       

       
       

e 0
e

0 e

e e e

2 2

e e e e

2 2

e cosh e sinh

e sinh e cosh

T T T

T T

T T T T

T T T T

T T

T T

B A D C B A

D C B A

D C D C D C D C

D C D C D C D C

B A B AT T

B A B AT T

e

D C D C

D C D C

 
 
  

 

 

 
 

  

   
   
  
  

TB A 

 
   
  

  
 

   

   

 

 

 

 

 (67) 

Due to (67) we have 
 

   




 
 

  
       

 
 

e cosh e sinh

e sinh e cosh

T TT T

T T

B A t B A tB A D C T T

B A t B A tT T

D C t D C t Vecd E

Vecd F
D C t D C t

 



 
     
   

  



 

 
;          (68) 

 
 

   

e
T T

t
D C B A Vecd E

Vecd F

 
  

 
  
 

 

 
 

 B A t  
       

  
  

e cosh e sinh

e sinh e cosh

T T

T T

B A t T T

B A t B A tT T

D C t D C t Vecd U t

Vecd V tD C t D C t

 
          
        

 

 

 
.     (69) 

, we get (63). 
Theorem 3.4 we obtain 

n

e

T T

T T

B A D C
t

D C B A
Vecd U t

Vecd V t

 
 
  

 

 

 
Now substitute (68) and (69) in (65)
If we put     0U t V t   in 

the following result. 
Corollary 3.5 Let A, B, C, D, E, 



trices. Then the general solution of homogeneous cou- 
pled matrix differential equations:  

     
     

   

,

,

0 , 0

XF M  are given 

      T T T TD C B A B A D C     , 

scalar matrices such that  

and  X t ,   nY t M  are the unknown diagonal ma-  

t AX t B CY t D

Y t CX t D AY t B

X E Y F

  

  

 

        (70) 

 

is given by   
 

           
          e sinh coshT TVecd Y t D C t Vecd E D C t Vecd F        

 

Corollary 3.6 Let ijB b    , ijD d    , E, n

 

e cosh sinh
T

T

B A t T T

B A t

Vecd X t D C t Vecd E D C t V     




 

 
;

.

ecd F


             (71) 

F M  

are given scalar matrices and  X t ,  Y t M  are the  n

unknown diagonal matrices. Then the general solution of 
ho ogeneous coupled matrix differential equations:  m

     
 

   

,

,

0 , 0

   
X t X t B

Y t X t D

Y t D

Y t B

X E Y F

  

  

 

     

is given by  

     

      (72) 

 

    

     

11

11

11

11

(e sinh ,.., e sinh ) ;

,e si (e cosh ,.., e cosh ) .

nn

nn nn

b t b t
nn

b t b tb t
nn

t diag E diag d t d t Vecd F

E diag d t d t Vecd F

 


 (73) 

n

     11
11e sinh , nhb t

nnVecd Y t diag d t d t Vecd 

11e c 11osh , ,e coshnnb t
nnVecd X d t d t Vecd b t

Proof: For any matrix ijA a M  , it is easily to show that  

 
  

     11 22cosh cosh ,cosh , ,coshT
nnA I t diag a t a t a t  ;                     (74) 
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       h nn11sinh sinhT
22inh , ,sin,sA I t diag a t a t  a t .                      (75) 

t nC I   in Corollary 3.5 we have ANow pu

             
      

      

    

11

11

11 11

11

11

11

e cosh sinh

e , ,e cosh , ,cosh

e , ,e sinh , ,sinh

e cosh , ,e cosh e sinh

T
n

nn

nn

nn
nn

B I t T T
n n

b tb t
nn

b tb t
nn

b tb t b t

Vecd X t D I D I t Vecd F

diag diag d t d t Vecd E

diag diag d t d t Vecd F

diag d t d t Vecd E diag

       

 

 

 

 

 

 



t Vecd E 

    d t Vecd F11 ,..., e sinhnn
nn

b td t

 

imilarly,  S

            t Vecd F . 

e same technique in the proof of Theorem 3.4 we ob-
tain  n

11 11
11 11e sin , ,e e cosh , ,e coshnn nnb b tb t b t

nn nng d t d t Vecd E diag d t d h sinhtVecd Y t dia

 
While if we applying the fundamental relation between 
 .Vec  and Kronecker product defined in (13) and using 

th
 (for any matrix X M ) the following result. 

 Let A , E, nTheorem 3.7 , B, C, D F M  are given 
scalar matrices such that AC CA , BD DB ,  U t , 
  nV t M  and  are given matrix functions  X t , 

Y

solution of non-homogeneous coupled matrix differential 

  nt M  are the unkno hen the general  wn matrices. T

equations:  

       
       

   0 , 0

X t AX t B CY t D U t

Y t CX t D AY t B V t

X E Y F

   

   

 

  

n by 
 

 

 (76) 

is give

     

          
    

          

e cosh sinh

e cosh sinh

e sinh cosh

e sinh cosh

TB A t T T

B A t T T

B A t T T

VecX t D C t VecE D C t VecF

D C t VecU t D C t VecV t

D C t VecE D C t VecF

D C t VecU t D C t VecV t

          

         

         

           

             (77) 

 
If we put     0U t V t   and 

 

T

T

VecY t





 TB A t T T

 

nA C I   in Theo- 

lo
rem 3.7 and using properties (16)-(19) we obtain the fol- 

wing results. 
Corollary 3.8 Let B, D, E, nF M  are given scalar 

that BD DB  and  matrices such X t ,   nY t M  
e the unknown matrices. Then the general solution of 
mogeneous coupled matrix differential equations:  

      ,

ar
ho

     
   

,

0 , 0

X t X t B Y t D

Y t X t D Y t B

X E Y F

  

 

          (78) 

  

is given by  

      
      

cosh sinh e ,

sinh cosh e .

Bt

Bt

X t E Dt F Dt

Y t E Dt F Dt

 

 
   (79) 

Corollary 3.9 Let A, C, E, nF M  are given scalar 
matrices such that AC CA  and   X t ,   nY t M  

are the unknown matrices .Then the general solution of 
atrix differential equations:  homogeneous coupled m

     
   

 

,

,

0 , 0

 
 

X t AX t CY t

CX t AY tY t

X E Y F

 

 

 

          (80) 





is given by  

      e cosh sinh ,At

      e sinh cosh .At

X t Ct E Ct F   

Y t Ct E Ct F   
   (81) 

4. Concluding Remarks 

We have studied an explicit characterization of the map- 
pings  

A B A B A B      

in terms of the selection matrix nS  as in (11) and (12). 
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We have also observed that the same matrix relates the 
rato  and  .Vecd  as in (31) and (32). 
 th al relation between the Hadamard 
er) ct and diagonal extraction (vector) 

 in ( (13) to derive our main results in 
2 an bsequently, to construct a compu- 
-effici on of coupled matrix least-squares 

 and ogeneous coupled matrix differen-
tions e Kronecker (Hadamard) product 

Vecd rming the

of apply
oducts, e e to solve,

2) 

give n

two ope
We used
(Kroneck
operator
Section 
tationally
problem

al equa

where A

rs  .Vec
e fundament

produ
34) and 

d 3 and, su
ent soluti

non-hom
. In fact, th
  .Vec  (

pr

nB M  are 

ti
and operator . ) affi ir capabil-
ity of solving matrix and matrix differential equations 
fast (more fast when the unknown matrices are diagonal). 
To demonstrate the usefulness ing some proper-
ties of the Kronecker suppos we hav  
for example, the following system: 

TBXA C ,                (8

, n scalar matrices and X M  
be solved. 

n to estab he following 
is unkno
using th
equivale

wn matrix to 
 .Vec -notatio

  

Then 
lish t

it is not hard by 
e 
nce:

 A B VecX VecC  ,           (83) 

he  .Vecd -notation product to 
 equivalence:  



and th
establish

us al

 

so by usi
 the following



ng t

 A B

C

Y can
ops) 

stitu

Vecd X

o

         

 be ob
by using 
tion). 

Vecd C , X is diagonal.   (84) 

necker (Hadamard) 

                        (85) 

ed in  3O n  
 factorization of matrix B (For- 



If we ignore the Kr product struc- 
ture, then we need to solve the following both matrix 
equations:  

 BY 

Here, 
tions (fl
ward Sub

tain
LU

arithmetic opera- 

                    (86) 

so in  3O n  operations 
n of matrix A (B

stitution).  
Now without exploiting the Kronecker product struc- 

ture, an 2 2n n  system defined in (82) would normally 
(by Gaussian elimination) require 6O
solve. But when we use Kronecke

 TXA Y             

Here 
(flops) by

X
 usi
 can be obt

ng LU 
ained al

factorizatio ack Sub-  

 n  operations to 
r product structure: 

 A B VecX VecC  , the calculations shows that VecX  
can be obtained only in  3O n  operations by using LU 
factorization of matrices A and B [20, pp. 87]. We can 
say that the system of the form:  A B VecX VecC   
can be solved fast and the Kronecker structure also a 
voids the formation of 2 2n n  matrices, only the smaller 
lower and upper triangular matrices LA, LB, UA, UB are 
needed. While s n n if X i   diagonal matrix and use the 
Hadamard product structure:      A B Vecd X Vecd C , 
the calculations shows that  Vecd X  can be obtained 
only in  O n  operations by using LU factorization of 
A B .  

We can say that the system of the form:  
     A B Vecd X Vecd C  can be solved more fast 
than Kronecker structure, only

angular m A B  are 

eck
stem problem  

 the very smaller lower 
and upper tri atrices A BL   and U
needed. For example, consider A, B are 3 × 3 matrices 
and C is 9 × 1 vector. To demonstrate the usefulness of 
applying Kron er product and  .Vec -notation, we 
return to the sy A B VecX VecC  . If 
A B  is non-singular and regarding with LU factorize- 

tions of A AA L U  and B BU , thB L en a solution of 
system exists and can be written as: 

   ,A B AU U VecX z L L  

1 10 0 0 0
z c

b

b

   
  

11 11

11 31 11 32 11 33

21 11 22 11

21 22 22

22 32 22 33

33 11

32 22

0 0 0

0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0

a b

a b

a b a b

b a b

a b a b

a b

a b 33 21 33 22

32 32 32 33 33 31 33 32 33 33

0a b a b

a b a b a b a b a b

B z VecC .    (87) 

First, the lower triangular system  A BL L z VecC   
can be solved by forward substitution as the following: 

a  11 11
2 2

21 22 21 220 0
z c

a a b b
   

               

31 32 33 31 32 33
9 9

a a a b b
z c

               
   

 

i.e.,  
 

11 21 11 22

0a b a b a b

21 21 22 22 21

21 21 32 21 33 22 31

31 11 32 11

31 21 31 22 32 21

0

0 0

0

A BL L a a b a b

a b a b a b a b

a b a b

a b a b a b

 

31 31 31 32 31 33 32 31a b a b a b a b

31

0 0 0 0 0

0 0 0 0 0



0

a b


 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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which can be solved in    2 9O n O  operations. The 
first three equations are: 

 1
11 11 1 1 1

11 11

c
a b z c z

a b
   .              (88) 

 

    

11 2 21 1
11 21 1 11 22 2 2

11 11 22

b c b c
a b z a b z c z

a b b


    .     (89) 

 11 31 1 11 32 2 11 33 3 3a b z a b z a b z c    

2

11 22 3 11 32 2 22 31 1 32 21 1
3

11 11 22 33

b b c b b c b b c b b c
z

b b b

  
    (90) 

Now the next three e ions are: 

 22 11 4 4a b z c 21 11 1a b z .  ) 

 22 21 4 22 22 5 5a b z a b z c  21 21 21 12 2a b b z .     (92) 

b z

a

quat

                   (91

z b z

puted as 

1z a

  a a b z a b z  21 31 1 21 32 2 21 33 3

5 22 33 6 6a a b z c  .      (93) 

The first boldface expression 21 11 1a b z  in (91) can be  

22 31a b 4 22 32

com 21

11

a c

a
. The second boldface expression 

 21 12 2a b z  in (92) can be puted as 

1

21 21 1a b z  also com 21 2

11

a c

a
.  

While the third boldface expression 
 32 2 21 33 3a b z a b z a b z  in (93) can be also com-  

 

21 31 1 21

puted as 21a c3

11a
. 

We use the previous expressions for obtaining 1z , 2z  
and 3z  in the first set of equation plify the sec- 
ond set of three equations. The si f d second set of 
equations becomes  

s
mpli

 to sim
ie

21 1
4

11

a c
z c

a
  .             (94) 22 11 4a b

21 2
5 5

a c
c

a
  .        (95) 22 21 4 22 22 z

11

a b z a b

21 3
22 31 4 22 32 5 22 33 6 6

11

a c
a b z a b z a b z c

a
    .    (96) 

Solving the second set of equatio kes ns ta  O n  op- 
erations and the forward solve era- 

so obtaining z4, z5 and z6 takes  2O n  time. This 
simplifica using th rom the previous so- 
lution step continuous so that solvin

step takes  2O n  op
tions, 

tion and e work f
g each of n-sets of 

n-equations takes  2O n  time, resulting in a

solution time of 

n overall  

 2O n . Exploiting the Kroneck  

 4 e

er struc- 

ture reduce the usual, expected O n  time to solv  
 A BL L z VecC   to  2O n . 

One final note regarding the exploitation of the Kro- 
necker structure of the system remains. Suppose the ma- 
trices A and B are different sizes. Then, the time req  
to solve the system 

uired
 A B VecX VecC   is 2

A BO n n , 
where An  is the size of A and Bn  is the size of B. In 
our work, the modeler has some choice for the size of the 

B matrices. Thus, a wise choice would make A and Bn  
small, reducing the effect of the 2  Bn  term in the 2

A BO n n  
computation time. 

While when X is n n  diagonal matrix and applying 
 .Vecd -notation, we return to the system problem: 

      AA B Vecd X Vecd C . If B  is non-singular 
matrix and regarding with LU factorizations of A B   

A B A BL U  , then a solution of system exists and can be 
written as:  

   ,A B A BU Vecd X y L y Vecd C   .    (97) 

First, the lower triangular system  A BL y Vecd C  
can be solved by forward substitution as the following:  

11 11 1 11

21 21 22 22 2 22

3

0 0

0

a b y c

a b a b y c

y

     
     

31 31 32 32 33 33 33a b a b a b c
     
        

, 

lvedwhich can be so  in    3O n O  operations as fol- 
lows:  

 

 11
11 11 1 11 1

11 11

c
a b y c y

a b
   .                                                 (98                   ) 

 11 11 22 21 21 11
21 21 1 22 22 2

11 11 22 22

c a b c
a b y a b y c

a b a b


   .                           

 

22 2

a b
y                      (99) 

 11 11 22 22 33 32 21 21 11 32 32 11 11 22
31 31 1 32 32 2 3

a b a a b c a b a b c
a b y a b y y

  
     .      (100) 

lu ix linear least-sq
 m tial equations is studied 

and some important special cases are dis
analysis indicates that solving for  .Vec  is efficient  

31 31 22 22 32a b a b b
33 33a b 3 33y c

11 11 22 22 33 33a b a b a b

and solving for 

a b c

 
5. Conclusion 

The so
s an

tion of cou
d coupled

pled matr
atrix di

uares prob- 
lem fferen

cussed. The 

 .Vecd  is more efficient when the un- 
known matrices are diagonal. Although the algorithms 
are presented for non-homogeneous c
matrix linear differential equations,
be easily extended to study coupled matrix nonlinear 
differential equations, e.g., the coupled matrix Riccati 

oupled matrix and 
 the idea adopted can 
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differential equations.  
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