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ABSTRACT

In Kronecker products works, matrices are some times regarded as vectors and vectors are some times made in to ma-
trices. To be precise about these reshaping we use the vector and diagonal extraction operators. In the present paper, the
results are organized in the following ways. First, we formulate the coupled matrix linear least-squares problem and
present the efficient solutions of this problem that arises in multistatic antenna array processing problem. Second, we
extend the use of connection between the Hadamard (Kronecker) product and diagonal extraction (vector) operator in
order to construct a computationally-efficient solution of non-homogeneous coupled matrix differential equations that
useful in various applications. Finally, the analysis indicates that the Kronecker (Khatri-Rao) structure method can
achieve good efficient while the Hadamard structure method achieve more efficient when the unknown matrices are
diagonal.

Keywords: Matrix Products; Least-Squares Problem; Coupled Matrix and Matrix Differential Equations; Diagonal
Extraction Operator

1. Introduction Coupled matrix and matrix differential equations have
also been widely used in stability theory of differential
equations, control theory, communication systems, per-
turbation analysis of linear and non-linear matrix equa-
tions and other fields of pure and applied mathematics
and also recently in the context of the analysis and nu-
merical simulation of descriptor systems. For instance,
the canonical system

Linear matrix and matrix differential equations show up
in various fields including engineering, mathematics,
physics, statistics, control, optimization, economic, linear
system and linear differential system problems. For in-
stance, the Lyapunov equations A*X + XA+Q =0 and
X —A"XA=Q (where A" is the conjugate transpose of
A) are used to analyze of the stability of continuous-time

and discrete-time systems, respectively [1]. The general- X '(t) = AX (t)+ BY (t) 2
ized Lyapunov equation: Y’(t) _ex (t)— ATY (t)
AXB" +CXD' =Q. 1) . -

With the boundary conditions and Y (b)=0 has been
(where B' is the transpose of B) has been used to char- used to the solution of optimal control problem with the
acterize structured covariance matrices [2]. Most of the performance index [3]. In addition, many interesting prob-
existing results, however, are connected with particular lems lead to coupled Riccati matrix differential equations
systems of such matrix and matrix differential equations. [4]:

Xé(t):{Qz(t)+Bz(t xz(t)+xz(t)Az(t)"'xz(t)szz(t)xz(t 3
X, (1) Sy (£) X, (£)+ X4 (1) Sy (1) X, (1) + X, (1) S5 (1) X, (1))
Xl(tf):xlf’ Xz(tf): Xots
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and the general class of hon-homogeneous coupled matrix differential equations:
Xy (t)= A, X, (t) By + A, X, (t) By, +---+ A X, (1) By, +U, (1)

X5 (1) = A Xy (1) By + Ay X, (1) By -+ Ay X, (1) By, +U, (1)

p

where A;, B, €M are given scalar matrices, U, (t)e M,
is a given matrix function, X;(t)e M, are the unknown
diagonal matrix functions to be solved and X;(0)=C;;
and where X, (t) denotes the derivative of matrix func-
tion X;(t). (i,j=12,---,p). (where M is the set
of all mxn matrices over the complex number field C
and when m=n,wewrite M, instead of M ).

Examples of such situation are singular [5] and hybrid
system control [6] and nonzero sum differential games
[7]. Depending on the problem considered, different
coupling terms may appear. However, in all the above
mentioned cases the systems are difficult to solve.

Let us recall some concepts that will be used below.

Given two matrices A=[a; |eM,, and B=[b;]e

M, then the Kronecker product of A and B is defined
by (e.g. [8-12])

m,n

A®B= [aijB]” eM g - (5)

While if AeM,_ ., BeM_ , andlet {a :1<i<n}
and {b :1<i<n} be the columns of A and B, respec-
tively, namely

A=[a, a, a,], B=[b, b, -+ b,].

The columns of the Kronecker product A®B are
{ai ®bj} for all i, j combinations in lexicographic order
namely,

A®B=[a ®b--a ®b ---a ®b--a ®b ] (6)

Thus, the Khatri-Rao product of A and B is defined by
[13,14]:
AGB =[a, ®b, a,®h, a, ®b, | ©)

consists of a subset of the columns of A®B. Notice
that A®Bis of order mpxn?and A®B is of order
mpxn. This observation can be expressed in the fol-
lowing form [15]:

(A®B)S, = AGB, 8)
where the selection matrix S, is of order n*xn and
Sn = |:%. €2 iz en2 :| (9)

and e isan n°x1 column vector with a unity element
in the k-th position and zeros elsewhere (1<k <n”).

Additionally, if both matrices A=a; | and

Copyright © 2012 SciRes.

(4)

X, (t)= Aplxl(t)Bpl+Ap2X2(t)Bp2 oot Appxp(t)Bpp +U, (t).

B=[b;]eM,,, have the same size, then the Hadamard
product of A and B is defined by [8-11,16]:

AoB=[ab;]eM,,. (10)

This product is much simpler than Kronecker and
Khatri-Rao products and it can be connected with iso-
morphic diagonal matrix representations that can have a
certain interest in many fields of pure and applied mathe-
matics, for example, Tauber [16] applied the Hadamard
product to solving a partial differential equation coming
from an air pollution problem. The Hadamard product is
clearly commutative, associative, and distributive with
respect to addition. It has been known that AoB is a
(principal) submatrix of A®B if A and B are (square)
of the same size. This can be found in Visick [12] and
even in Zhang’s book [17]. Liv-Ari [13, Theorem 3.1, p.
128] gave the following new relations related to Kro-
necker, Khatri-Rao and Hadamard products:

S, (A®B)= AcB; (11)
S, (A®B)S, = AcB. (12)

The Kronecker product and vector operator affirming
their capability of solving some matrix and matrix dif-
ferential equations. Such equations can be readily con-
verted into the standard linear equation form by using the
well-known identity (e.g. [17,18]):

Vec(AXB" ) =(B® A)VecX , (13)

Where Vec(.) denotes a vectorization by columns of
a matrix. The need to compute the e”, cosh(A) and
sinh(A) are due its appearance in the solutions of cou-
pled matrix differential equations. Here

) Ak . eA_e—A
A=%"| —|sinh(A)= ;
e ;}(k!jsm (A) 5

e e

(14)
cosh(A) =

For any matrix Ae M, , the spectral representation of
e* and e™ assures that [9,18]:

et =Y xylet et = Yy, (15)
i=0 i=0
where {4,---,4,} and {x,--,x,} are the eigenvalues

and the corresponding eigenvectors of A, and {yl, yn}
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is the eigenvectors of matrix A'.

Finally, for any matrices A, B, C, DeM,, we shall
make a frequent use the following properties of the Kro-
necker product (e.g. [9,18-20]) which are used to estab-
lish our results.

1) (A®B)(C®D)=AC®BD;(A®B) = A" ®B’

(16)
2) @B _ph el g4 —eh @ ;
e®® = ®e* (17)
3) sinh(A®1,)=(sinhA)®1;
sinh(1, ®B) =1, ®(sinhB) (18)
4) cosh(A®1, )=(coshA)®1;
cosh(l,®B)=1, ®(coshB). (19)

In this paper, we present the efficient solution of cou-
pled matrix linear least-squares problem and extend the
use of diagonal extraction (vector) operator in order to
construct a computationally-efficient solution of non-
homogeneous coupled matrix linear differential equa-
tions.

2. Coupled Matrix Linear Least-Squares
Problem

The multistatic antenna array processing problem can be
written in matrix notation as [13]

Q=AXB'; X =diag(r;;1<i<n). (20)
where AeM, ., BeM & and QeM, are given
(complex valued) matrices; and where the unknown

matrix X € M, is diagonal. We also assume that n < mp,
so that we suggest using a least-squares approach, viz.,

min|[Q - AXB" Ik 1)

where ||A| is called Frobenius norm of A. Using the
identity in Equation (13) we can transform (21) into the
vector LSP form:

- 2
min [VecQ — (B ® A)VecX||_ . (22)
which has the well-known solution:
VecX =((B®A) (B® A))_l (B®A) VecQ, (23)

provided (B®A)" (B®A) is invertible.

Applying the direct vector transformation in Equation
(13) to Q—AXB' results in a highly inefficient least-
square problem, because VecX is very sparse. Liv-Ari [13]
described an alternative approach based on:

Copyright © 2012 SciRes.

Vec(AXB" ) = (BOA)Vecd (X ), X is diagonal  (24)

which involves the so-called Khatri-Rao product ©, as
well as the diagonal extraction operator vecd (X ):

Veed (X)=(X; Xy - )T (25)

which forms a column vector consisting of the diagonal
elements of the nxn square matrix X, instead of the
much longer column vector VecX. In addition, if Y is any
matrix of order mx p , then

Vecd (ATYB) = (BOA)' VecY . (26)

As we have observed earlier, when the unknown ma-
trix X is diagonal, solving for VecX is highly inefficient,
since most of the elements of X vanish. Instead Liv-Ari
[13] used the more compact vectorization identity to re-
write matrix LSP (21) in the vector form:

min [VecQ - (BOA)Vecd (X ) @7)

Notice that Vecd (X ) consists of only the nontrivial
(i.e., diagonal) elements of the matrix X. The explicit
solution of (27) is

Vecd (X ) =((BOA) (B@A))il (BOA) VecQ. (28)

provided (B®A) (BOA) is invertible.

It turns out that this expression can also be imple-
mented using Hadamard product, resulting in a signifi-
cant reduction in computational cost, as implied the fol-
lowing result [13]:

(A®B)" (AGB)=(A"A)o(B'B), (29)

where AeM, and BeM, .

When n<min{m, p}, we observe that the left-hand
side expression in Equation (29) requires
mpn+mpn(n+1)/2 multiplications, while forming the
equivalent right-hand side expression requires only
(m+p+1)n(n+1)/2 multiplications. Thus the latter
offers significant computational savings, especially when
mp>m+p+1.

Now, using (26) we can rewrite (28) in the more com-
pact form:

Vecd (X ) = ((B'B)o(A"A)) " Vecd {A'Qeonj(B)! . (30)

This expression which requires O(n32l+0([m+ p]nz)
(multiply and add) operations is much more efficient
than (28), which requires O(n3?+o(mpn2) operations.
It means that the computational advantage of using the
Hadamard product expression is particularly evident
when n<min{m, p}, which implies that

mp > m+ p>>n. In order to be able to use (30) we must
ascertain that the matrix (B'B)o(A’A) is invertible.
This will hold, for instance, when both A and B have full
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column rank.
As for the diagonal extraction operator vecd () we

observe that for any square nxn matrix Y = [yij] ,

Vecd (Y) =S, VecY . (31)
If Y is diagonal, then we also have
VecY =S Vecd (Y), Y is diagonal. (32)

Moreover, the columns of the n?xn selection matrix
S, are mutually orthonormal, viz.,

518, =1,. (33)

Using (32) and (11), we get the fundamental relation
between the Hadamard product and diagonal extraction
operator vecd (.) which is given by

Vecd (AXB' ) = (B A)Vecd (X ), X is diagonal ~ (34)

where A, B and X is nxn diagonal matrix.

Now we will discuss the efficient and more efficient
least-squares solutions of coupled matrix linear equa-
tions:

179

sider the coupled matrix linear least-squares problem

(CLSP):
. E] AXC'" +BYC'
F BXCT + AYCT

2

(36)

m
XY

=

The solution procedure presented here may be consid-
ered as a continuation of the method proposed to solve
least-squares problem in (21).

Using the identity (13) we can transform (36) into the
vector CLSP form [10]:

VecE C®A C®B||VecX
VecF C®B C®A]|| VecY
which has the following solution
. -1
VecX | [|[C®A C®B||C®A C®B
VecY | ||C®B C®A||C®B C®A
(38)

C®A C®BT [VecE
X .
C®B C®A| |VecF

2

@37)

min
XY

=

One can easily show that

AXCT +BYCT =E, BXCT +AYCT =F (35) |:C®A C®B:|_U C®(A+B) 0 T
where A, BeM,, CeM, ,E FeM,  are given C®B C®A| 0 C®(A-B)
scalar matrices and X, Y € M, are unknown matrices to (39)
be solved. We also assume that n <mp, so that the cou-
pled matrix linear Equations (35) is over-determined, where U :i{l _I} is a unitary matrix. So
which suggests using a least squares approach. We con- NI

coA CoBl[C®A CoB]  [(CO®(A+B)) 0 U | CB(A+B) 0y
C®B C®A||C®B C®A| 0 (C®(A-B)) 0 C®(A-B)
- . (40)
y (C®(A+B)) (C®(A+B)) 0 "
I 0 (C®(A-B)) (C®(A-B))
Suppose that H =C®(A+B) and W =C ®(A-B), we then have
N -1
HC@)A C®BHC®A C®B_]_1_U (co(a+B)) (co(A+B))) 0 T
= * B
C®B C®A| |C®B C®A] 0 (C®(A—B)) (C@(A—B)))
(41)
v \-1 . -1 -1 w1 -1
_1[| _I} (HH) 0 I |}_l (HH) +(Ww)" (HH) ~(Www)
2l o (ww) LN 2 ) o (ww) T (HH)  r(ww)
Now the least—squares solutions (38) can be rewrite into the form:
* -1 -1 * -1 -1 * *
[Vecx}_l (HH) +(Www)" (HH) -(ww) Jceny (cos) ]{VecE} w)
Ve | 2 (HH) —(ww)" (HH) +(ww)” | [(C®B) (C@A) |[VecF
Copyright © 2012 SciRes. ICA
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This gives
VecX:%x{(( *H) (
(o) ww) e oy + ((
VecY:%{(H*H (W*vv )C®A +(
s

where H=C®(A+B) and W =C®(A-B).
In order to be able to use (38) and (43) we must ascer-
tain that the matrix:

C®A C®BT[C®A C®B
C®B C®A||C®B C®A

is invertible if and only one

H'H =(C®(A+B)) (C®(A+B))
and

W'W =(C®(A-B)) (C®(A-B))

are invertible matrices.

Vecd{x}:%{((R*R)’l+(s*s)’l)(C®A)*+((R*R)’1—( C@B }

{((R*R)’H(s*s)’l)(ws)*+((R*R) ~(s* ) )(C@A)*}xVecF
(R*R)‘l—(s*s)'l)(C(aA)*+((R*R)'1 ( C®B }xVecE
{ )

where R=C®(A+B) and S=CO(A-B).
In order to be able to use (45), we must ascertain that
the matrix

R'R=(CO(A+B)) (CO(A+B))
and
$'S=(CO(A-B)) (CO(A-B))
are invertible matrices.
It turns out that the expression (45) can also be im-
plemented using Hadamard product by the same tech-
nique in the expression (30). Note that the least squares

solutions in term of Hadamard product is more efficient
than (45) and (43).

3. Non-Homogeneous Matrix Differential
Equations

The solution procedure presented here may be considered

Copyright © 2012 SciRes.

WwW ) )(C®B)*+((H*H)’ +(W*W)’1)(

w) )(C®A)* +((H*H)7l—(W*\N)71)(C® B)*}xVecE

) —(ww) )( A)*}xVeCF
(43)
ww) 1)(C® B)*}xvecE
C®A)*}><VecF

As we observed, when the unknown matrices X and
Y e M, are diagonal, solving for VecX and VecY are
highly inefficient, since most of the elements of X and Y
vanish. Instead we can use the more compact vectoriza-
tion identity (24) to rewrite the coupled matrix linear
least-squares problem (37) in the reduced-order vector

form:
[[vecE]_[coA coBVecd (X} i
XY | VecF COB COA || Vecd {Y} i
Notice that Vecd {X} and Vecd{Y} consists of

only the nontrivial (i.e., diagonal) elements of matrices X
and Y. The explicit efficient solution of (44) is

(44)

xVecE

(45)

as a continuation of the method proposed to solve the
homogenous coupled matrix differential equations in
[18]. We will use our knowledge of the solution of the of
simplest homogeneous matrix differential equation:

X'(t)=AX(t), X(0)=C (46)

where AeM_ , CeM, are given scalar matrices,
and X(t)eM, , isthe unknown matrix function to be
solved. In fact the unique solution of (46) is given by:
X (t)=e"C. (47)
Theorem 3.1 Let AeM_ , CeM, are given sca-
lar matrices, U (t)e M, is a given matrix function
and X(t)eM,, is the unknown matrix. Then the gen-
eral solution of the non-homogeneous matrix differential
equation:

X'(t)= AX (t)+U (1),

X (0)

C (48)
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is given by

X (t)=eMC+eM*U(t). (49)

t
Where e* xU (t):.[eA(t’s)U (s)ds is well-defined,
0
which involves the convolution product of two matrices
e™ and U(t).
Proof: Suppose that X (t)=e™G(t) is the particu-

lar solution of (48). The product rule of differentiation
gives

X, (t)=e"G'(t)+ Ae"G(t).
Substituting these in (48) we obtain
eMG'(t)+AeG(t) = Ae™G(t)+U (1)
Thus

eMG'(t)=U(t). (50)

Multiplying both sides of (50) by e * = (e )_1 gives

Vecd {X (t)} = diag (e(ambu)t,_..,e(annmnn)t )Vecd {C} +diag (e(a11+b11)t',..,e(ann+bnn)t ) «Vecd {U (t)} _

181

G'(t)=e"U(t) (51)

Integrating both sides of (51) between 0 and t gives

G(t)= [e*U(s)-ds 52)

Hence, by assumption, we conclude that the particular
solution of equation (48) is

X, (1) =e"G(t)= [P (s)ds=e* xU (t). (53)

Sy m——

Now from (47) and (53) we get (49).

Theorem 3.2 Let A=[a;], B=[h], CeM, are
given scalar matrices, U (t) e M, isagiven matrix func-
tion and X (t)e M, is unknown diagonal matrix func-

tion. Then the general solution of non-homogeneous ma-
trix differential equation

Proof: Using the identity (34) we can transform (54) into the vector form:

Vecd {X'(t)} = (1,0 A+BT o1, Vecd {X (t)} +Vecd {U (1)} = {( A+ BT )o 1, |Vecd {X (1)} +Vecd {U (1)}

X'(t)= AX (t)+ X (t)B+U(t), X(0)=C  (54)

is given by
(55)
(56)

= diag (ay, +by,+,a,,+b,, )Vecd { X (t)} +Vecd {U (t)}.

Now, applying (49), then the unique solution of (56) is

Vecd {X (t)} _ ediag(all+bll""’a""+b"")tVECd {C} +ediag(a11+bu,...,am+bnn)t *Vecd {U (t)}

=diag (e(a“*b“)t,---,e(a"“”’”")t )Vecd {C} +diag (e(a“*b“)t,---,e(é‘"““’“")t ) *Vecd {U (t)}.

If we put U(t)=0 in Theorem 3.2 we obtain the
following result.

Corollary 3.3 Let A, B, C e M, are given scalar ma-
trices. Then general solution of the homogeneous matrix
differential equation:

X'(t)=AX(t)+ X (t)B, X(0)=C,

57

X (t) is diagonal. &7
Vecd {Xl'(t)} BlTl oA, B1T2 °A,
Vecd {XZ, (t)} _ BzT1 oAy Bsz oA,
Vecd {X ;) (t)} B-;Ij-l ° Apl B-;IJ-Z ° Ap2

Let

Copyright © 2012 SciRes.

is given by
Vecd {X (t)} — dlag (e(ﬁll*bll)t , ...’e(ann*—bnn)t )VeCd {C} (58)

Now we will discuss the general class of non-homo-
geneous coupled matrix differential equations which de-
fined in (4): By using the Vecd (.)-notation of (4), we

have
Bl oA, | | Vecd {X,(t)} | |Vecd{u,(t)}
Bl, oA, § Vecd { X, (t)} N Vecd {U, (1)} )
Bo o Aw | | Vecd (X, (1)} | | Vecd {U, (1)}
ICA
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Vecd { X/ (t)} Vecd { X, (t)} Vecd {C, } Vecd {U, (t)}
Vecd { X, (t Vecd | X, (t Vecd {C Vecd U, (t
X/t {2()} ,X(t): {2()} ,C: { 2} ,U(t): {2()}
Vecd { X (1)} Vecd { X, (1)} Vecd {C, | Vecd {U,, (1)} (60)
BlTl°A11 BszoAiz BlTpoAip
H = BzT1°A21 Bsz"Azz B;pOAZp .
BhioAn BroA, o BioAy
Now (59) can be written as (DT OC)(BT o A) - (BT o A) :(DT oC);
X'(t) = Hx(t)+u(t), x(0)=c U(t),V(t)eM,
and the general solution is given by: are given matrix functions and X(t), Y(t)eM, are
the unknown diagonal matrices. Then the general solu-
x(t) =eMc+eMxuy (t) . (61) tion of non-homogeneous coupled matrix differential equa-
tions:
Note that there is many special cases can be consid-
ered from the above general class coupled matrix differ- X'(t)= AX(t)B+CY (t)D+U (1),
ential equations; now we will discuss some important Y'(t)=CX (t)D+AY (t)B+V (), (62)
special cases in the next results.
Theorem 3.4 Let A, B, C, D, E, FeM, are given X(0)=E,Y(0)=F
scalar matrices such that is given by
Vecd {X (1)} = &4 {[cosh(DT oC)tJVecd {E}+[sinh(DT oC)tJVecd {F}}
+e(BT°A)l x{[COSh(DT oC)tJ*Vecd U (t)}+[sinh(DT oC)t]*Vecd {v (t)}}Vecd {Y (1)}
(63)

Vecd {Y ‘{ smh DTOC Vecd{ b+ [cosh(DToC)t]Vecd{F}}
el {[smh(DT °C)t ]*Vecd u (t)}J{cosh(DT oC)t]*Vecd v (t)}}

Proof: Using the identity (34) we can transform (62) into the vector form:

{Vecd {X’(t)}} {BT oA D' oc}{Vecd {x (t)}}{VGCd u (t)}} (64)

Vecd {Y'(t)} | [D"oC BT oA]| Vecd{Y(t)} | |Vecd{V(t)}

From (61), this system has the following solution:

[Vecd {x (t)}] i J;Q o :ﬂt ){Vecd {E}}JS ne :ﬂt *[Vecd u (t)}} -
Vecd {Y (1)} Vec{F} Vecd {V (1)} |
Now we will deal with BT o A 0 0 D' oC
BTeA D'oC |: 0 BTOA:H:DTOC 0 :|
eL’T°° BT“‘] (66) { 0 D oCHBT A 0 }
Since (DToC)(BToA):(BToA)z(DToC), then we D'-C 0 0 B'oA|

have Then

Copyright © 2012 SciRes. ICA
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{BToA D' c} {BT A 0 }{ o D' c} So
eDToC BT -A —gl © B'.A| [DToC 0 {BT A DToC} (BToA)
{BTA o} {o DTC} eDTCBTA:e ?
—gl O BToA| [D'eCc 0 0 e(B °A)
But e(DToc) ve (DToc) e(DT cc) B (DT oc)
T T
[ o " 2 -
e = (BToA) (DTOC)_ (Dch) (DToC) (DTOC)
0
2 2
{ 0 DT(,C} e(D oc) +e—(D oc) e(D oC) _e—(D oc) e(BToA) COSh(DT OC) e(BTOA) sinh(DT OC)
pToc 0 | _ 2 2 = T, -
¢ B (DToC)_ —(DToC) (DToC) 7(DTOC) ' e(B A) Siﬂh(DT OC) e(B A) COSh(DT OC)
2 2 Due to (67) we have
BToA D'oC (BToA)t T (BTeA) . T
e{onc BTOA} {Vecd{E}}_ e cosh(D"=C)t e sinh(D" o C)t {Vecd{E}} )
Vecd {F} (B o) sinh(D" o C)t o2 cosh(D «C)t Vecd {F)
BT-A D'.C (BToA)t T (BToA)t . T
JDHC BTOJ‘{Vecd {u (t)}]: e cosh(D"«C)t e sinh (D <C)t {Vecd {u (t)}] )
T T, )
Vecd {V (t)} e(B A sinh(DT oC)t e(B g cosh(DT oC)t Vecd {V (t)}

Now substitute (68) and (69) in (65), we get (63).
If we put U (t)=V (t)=0 in Theorem 3.4 we obtain
the following result.

Corollary 35 Let A, B, C, D, E, FeM, are given

trices. Then the general solution of homogeneous cou-
pled matrix differential equations:

X'(t)= AX (t)B+CY (t)D,

scalar matrices such that Y'(t)=CX (t)D+AY (t)B, (70)
(D"-C)(B"<A)=(B"=A)=(D"-C), X(0)=E,Y(0)=F
and X(t), Y(t)eM, are the unknown diagonal ma- is given by
Vecd { l{[cosh DT oC)t Vecd {E} + [smh(DT oC)tJVecd {F}}
(71)
Vecd {Y {[smh DT oC tJVecd{ }+ |:COSh(DT oC t Vecd }
Corollary 3.6 Let B= [ ] [ ] E, FeM, X'(t)=X(t)B+Y(t)D
are given scalar matrices and X (t), Y (t)e M, are the Y'(t)= ( )D+Y(1)B, (72)
unknown diagonal matrices. Then the general solution of X (O) ( )=F
homogeneous coupled matrix differential equations: is given by
Vecd { X (t)} = {diag (eb“‘ coshd,t,---,e™" cosh dnnt)}Vecd {E}+ {diag (e™'sinhd,,t,..,e"" sinh dmt)}Vecd {F};
(73)
Vecd {Y (t)} = {diag (eblll sinhd,,t,---, e’ sinh dnnt)}Vecd {E}+ {diag(eb“‘ coshd,,t,..,e" cosh dnnt)}Vecd {F}.
Proof: For any matrix A=[a; |e M, itis easily to show that
cosh( A" o 1)t = diag (cosh (a,;t),cosh (a,,t),--,cosh (a,t)); (74)
Copyright © 2012 SciRes. ICA
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sinh (A" o 1)t = diag (sinh (a,t),sinh (ayt), -,

Now put A=C =1, in Corollary 3.5 we have

Vecd{X(t)}ze(BT@")t{[cosh(DToln)t]Vecd{ E}+ [smh

= {diag (eb“‘ oee, et ) diag (coshd,,t, -

+ {diag (eb“‘,m, "“‘) diag (sinhdy,t, -

= {diag (eb“‘ coshd,t, e
Similarly,
Vecd {Y ()} = {diag (e'sinhd,it, e

While if we applying the fundamental relation between
Vec(.) and Kronecker product defined in (13) and using
the same technique in the proof of Theorem 3.4 we ob-
tain (for any matrix X e M) the following result.

Theorem 3.7 Let A, B, C, D, E, FeM, are given
scalar matrices such that AC=CA, BD=DB, U(t),
V(t)eM, are given matrix functions and X(t),
Y (t)e M, are the unknown matrices. Then the general

-,coshd,t

-,sinhd

ot sinh dnnt)}Vecd {E}+ {diag (ebllt coshd,,t, -,

sinh(a,t)). (75)

) )t]Vecd }
Vecd {

)
t)tVecd

nn

bt cosh dmt)}VeCd (E}+ {dlag ebllt sinhd_t,...,e™" sinh dnnt)}Vecd (F}

™" cosh dnnt)}Vecd {F}.

solution of non-homogeneous coupled matrix differential
equations:

X'(t)= AX (t)B+CY (t)D+U (t)
Y'(t)=CX (t)D+AY (t)B+V(t)  (76)
X(0)=E,Y(0)=F

is given by

VecX (t)=e(BT® ) {[cosh DT ®C)t]VecE+[smh DT ®C VecF

+ e(BT oA {[cosh (D'® C)t} *VecU (

|
[smh DT®C)t}*VecV } -

|

)t]

VecY (t t{ smh DT ®C)t]VecE +[cosh DT ®C VecF
> )

{[smh(DT ®C t] *VecU (t

If we put U(t)=V(t)=0 and A=C=1, in Theo-
rem 3.7 and using properties (16)-(19) we obtain the fol-
lowing results.

Corollary 3.8 Let B, D, E, FeM, are given scalar
matrices such that BD=DB and X(t), Y(t)eM,
are the unknown matrices. Then the general solution of
homogeneous coupled matrix differential equations:

X'(t)=X(t)B+Y(t)D,
Y'(t)=X(t)D+Y(1)B, (78)
X (0)=E,Y(0)=F
is given by
X (t) = {E cosh(Dt)+ Fsinh(Dt)}e® 79)
Y (t) ={Esinh(Dt)+ F cosh(Dt)}e®

Corollary 39 Let A, C,E, FeM,
matrices such that AC=CA and X(t),

are given scalar
Y (t) eM,

Copyright © 2012 SciRes.

[cosh D" ®C)t |*VecV (t }

are the unknown matrices .Then the general solution of
homogeneous coupled matrix differential equations:

X'(t)= AX (t)+CY (t),
Y'(t)=CX (t)+AY(t), (80)
X(0)=E,Y(0)=F
is given by
X (t) =e" {cosh(Ct)-E +sinh(Ct)-F},
Y (t) =e” {sinh(Ct)-E +cosh(Ct)-F}.

4. Concluding Remarks

We have studied an explicit characterization of the map-
pings
A®B= ABGB = A-B

in terms of the selection matrix S, as in (11) and (12).
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We have also observed that the same matrix relates the
two operators Vec(.) and Vecd(.) as in (31) and (32).
We used the fundamental relation between the Hadamard
(Kronecker) product and diagonal extraction (vector)
operator in (34) and (13) to derive our main results in
Section 2 and 3 and, subsequently, to construct a compu-
tationally-efficient solution of coupled matrix least-squares
problem and non-homogeneous coupled matrix differen-
tial equations. In fact, the Kronecker (Hadamard) product
and operator Vec(.) (Vecd(.)) affirming their capabil-
ity of solving matrix and matrix differential equations
fast (more fast when the unknown matrices are diagonal).
To demonstrate the usefulness of applying some proper-
ties of the Kronecker products, suppose we have to solve,
for example, the following system:

BXAT =C, (82)

where A, B e M, are given scalar matricesand X e M,
is unknown matrix to be solved. Then it is not hard by
using the Vec(.)-notation to establish the following
equivalence:

(A®B)VecX =VecC, (83)

and thus also by using the Vecd (.)-notation product to
establish the following equivalence:

(AoB)Vecd (X )=Vecd(C), X is diagonal. ~ (84)
If we ignore the Kronecker (Hadamard) product struc-
ture, then we need to solve the following both matrix

equations:
e BY=C (85)

Here, Y can be obtained in O(n®) arithmetic opera-
tions (flops) by using LU factorization of matrix B (For-
ward Substitution).

o XA =Y (86)

Here X can be obtained also in O(n®) operations
(flops) by using LU factorization of matrix A (Back Sub-

a,b, 0 0 0
a,b,, a;b, 0 0
a,by, ayb, a,by, 0
a,b, 0 0 a0y,
L,®L; =|ayb,, a,b, 0 ayb,
by, ayb, a,b, ayby
aSlbll 0 0 a32bll
a31b21 a3lb22 0 a32b21
R P S
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stitution).

Now without exploiting the Kronecker product struc-
ture, an n®xn® system defined in (82) would normally
(by Gaussian elimination) require O(n6 operations to
solve. But when we use Kronecker product structure:
(A®B)VecX =VecC, the calculations shows that VecX
can be obtained only in O(n®) operations by using LU
factorization of matrices A and B [20, pp. 87]. We can
say that the system of the form: (A® B)VecX =VecC
can be solved fast and the Kronecker structure also a
voids the formation of n”xn? matrices, only the smaller
lower and upper triangular matrices La, Lg, Ua, Ug are
needed. While if X is nxn diagonal matrix and use the
Hadamard product structure: (Ao B)Vecd (X )=Vecd (C),
the calculations shows that Vecd (X ) can be obtained
only in O(n) operations by using LU factorization of
AoB.

We can say that the system of the form:
(AoB)Vecd (X )=Vecd(C) can be solved more fast
than Kronecker structure, only the very smaller lower
and upper triangular matrices L,, and U, are
needed. For example, consider A, B are 3 x 3 matrices
and C is 9 x 1 vector. To demonstrate the usefulness of
applying Kronecker product and Vec(.)-notation, we
return to the system problem (A®B)VecX =VecC. If
A®B is non-singular and regarding with LU factorize-
tions of A=L,U, and B=L,U,, then a solution of

system exists and can be written as:
(U,®Ug)VecX =z7,(L,®Ly)z=VecC.  (87)

First, the lower triangular system (L, ® L)z =VecC
can be solved by forward substitution as the following:

a, 0 0] b, o o) *||”
a, a, 0 |®b, b, 0| 7=7
A, 8y, a| |by by by z‘g ‘.

ie.,

0 0 0 0 0 |

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ayb, 0 0 0 0

a,b, a,b, 0 0 0

0 0 agh, O 0

a,,h,, 0 agb, ayb, 0

by, Ay Ay Agby, gy, |
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which can be solved in O(n2)=0(9) operations. The
first three equations are:

G
e bz =¢=17-= ab, . (88)
bucz — b21C1
e b,z +ayb,z,=c, =7, = W . (89)
o aybyz +a,by,7, +a,by,z, =,
=z, = bnbzzcs — blleZCZ _b22b3101+b32b21cl (90)
ay,by;b,,05
Now the next three equations are:
° a,b,z +ayh,z, =c,. (91)
o ayh, 7 +a,0,7, +8,,0,2, + 85,0, 2 = 5. (92)
o ayb;7 +a,by,7, +a, b7,
+89,b5 2, + 85,057 + 8,535 = C5 . (93)

The first boldface expression a,,b,,z, in (91) can be

a .
computed as 2G| The second boldface expression
1

. a,,C

ayb,,z, +a,,b,2, in (92) can be also computed as —2-=2.
8y

While the third boldface expression

a, bz, +a,b,,7, +a, bz, in (93) can be also com-

puted as Zais |
8y
We use the previous expressions for obtaining z,, z,
and z, in the first set of equations to simplify the sec-
ond set of three equations. The simplified second set of
equations becomes

axC
a22b1124 =C, - :

1

(94)

a21CZ
a,,b,,2, +a,,b,,2, =c, ——=. (95)

1

C
allbllyl =ChL=%= ailll;u :

anbllczz — a21b21011
a21b21Y1 + azzbzz Y, =Cp =Y, = b :
anbuazz 22

_ ailbuazzbzzcss - [aSlb31a22b22 - a32b32azlb21] c 11—332b32811b11022

a,,C
_ 2173
a'22b3lz4 + a22b32 ZS + a'22b3326 - CG - .

(96)

1

Solving the second set of equations takes O(n) op-
erations and the forward solve step takes O(n®) opera-
tions, so obtaining z,, zs and z takes O(n?) time. This
simplification and using the work from the previous so-
lution step continuous so that solving each of n-sets of
n-equations takes O(n’) time, resulting in an overall

solution time of O(nz). Exploiting the Kronecker struc-

ture reduce the usual, expected O(n*) time to solve
(Ly®Ly)z=VecC to O(n?).

One final note regarding the exploitation of the Kro-
necker structure of the system remains. Suppose the ma-
trices A and B are different sizes. Then, the time required
to solve the system (A® B)VecX =VecC is O(n,n3 ),
where n, is the size of A and n; is the size of B. In
our work, the modeler has some choice for the size of the
A and B matrices. Thus, a wise choice would make n
small, reducing the effect of the n term in the O(nAnéa)
computation time.

While when X is nxn diagonal matrix and applying
Vecd (.)-notation, we return to the system problem:
(AoB)Vecd (X )=Vecd(C). If AoB is non-singular
matrix and regarding with LU factorizations of AoB =
L,.gU g+ then a solution of system exists and can be
written as:

U,gVecd (X )=y, L,gy=Vecd(C). 97)

First, the lower triangular system L,y =Vecd (C)
can be solved by forward substitution as the following:

ay by 0 0 Y1 Ciy
auby  aby, 0 Y,

by Agphy, by || Ys Ca3

which can be solved in O(n)=0(3) operations as fol-
lows:

=] Cyp |

(98)

(99)

QD51 Yy + 85505, Y, + 85055y =Cg3 = Y5 =

5. Conclusion

The solution of coupled matrix linear least-squares prob-
lems and coupled matrix differential equations is studied
and some important special cases are discussed. The
analysis indicates that solving for Vec(.) is efficient

Copyright © 2012 SciRes.

(100)
ailbllaZZbZZ a33b33

and solving for Vecd () is more efficient when the un-
known matrices are diagonal. Although the algorithms
are presented for non-homogeneous coupled matrix and
matrix linear differential equations, the idea adopted can
be easily extended to study coupled matrix nonlinear
differential equations, e.g., the coupled matrix Riccati
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differential equations.
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