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ABSTRACT 

Given a graph , a set  is a resolving set if for each pair of distinct vertices  there is a 

vertex  such that . A resolving set containing a minimum number of vertices is called a 

minimum resolving set or a basis for . The cardinality of a minimum resolving set is called the resolving number or 

dimension of  and is denoted by . A resolving set  is said to be a star resolving set if it induces a star, 

and a path resolving set if it induces a path. The minimum cardinality of these sets, denoted respectively by 
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 are called the star resolving number and path resolving number. In this paper we investigate these resolving 

parameters for the hypercube networks. 
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1. Introduction 

A query at a vertex  discovers or verifies all edges and 
non-edges whose endpoints have different distance from 

 In the network verification problem [1], the graph is 
known in advance and the goal is to compute a minimum 
number of queries that verify all edges and non-edges. 
This problem has previously been studied as the problem 
of placing landmarks in graphs or determining the metric 
dimension of a graph [2]. Thus, a graph-theoretic inter- 
pretation of this problem is to provide representations for 
the vertices of a graph in such a way that distinct vertices 
have distinct representations. This is the subject of the 
papers [3-5]. 
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For an ordered set  of vertices and 
a vertex  in a connected graph , the code or repre- 
sentation of  with respect to W  is the -vector 
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where  is the distance between the vertices  ,d x y x  
and . The set  is a resolving set for  if distinct 
vertices of  have distinct codes with respect to . 
Equivalently, for each pair of distinct vertices  

 there is a vertex  such that 
 The minimum cardinality of a re- 

solving set for G  is called the resolving number or 
dimension and is denoted by . 

y



W

, w

G
G

 V G
  , w d v

W

,u v
d u

w W
.

 dim G

2. An Overview of the Paper 

The concept of resolvability in graphs has previously 
appeared in literature. Slater [4,5] introduced this concept, 
under the name locating sets, motivated by its application 
to the placement of a minimum number of sonar 
detecting devices in a network so that the position of 
every vertex in the network can be uniquely determined 
in terms of its distance from the set of devices. He 
referred to a minimum resolving set as a reference set 
and called the cardinality of a minimum resolving set as 
the location number. Independently, Harary and Melter 
[3] discovered this concept, but used the term metric 
dimension, rather than location number. Later, Khuller et 
al. [2] also discovered these concepts independently and 
used the term metric dimension. These concepts were 
rediscovered by Chartrand et al. [6] and also by Johnson 
[7] while attempting to develop a capability of large 
datasets of chemical graphs. 

It was noted in [8] that determining the metric 
dimension of a graph is NP-complete. It has been proved 
that the metric dimension problem is NP-hard [2] for 
general graphs. Manuel et al. [9] have shown that the 
problem remains NP-complete for bipartite graphs. There 
are many applications of resolving sets to problems of 
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network discovery and verification [1], pattern recogni- 
tion, image processing and robot navigation [2], geome- 
trical routing protocols [10], connected joins in graphs 
[11] and coin weighing problems [12]. This problem has 
been studied for trees, multi-dimensional grids [2], 
Petersen graphs [13], torus networks [14], Benes net- 
works [9], honeycomb networks [15], enhanced hyper- 
cubes [16] and Illiac networks [17]. 

Many resolving parameters are formed by combining 
resolving property with another common graph-theoretic 
property such as being connected, independent, or acyclic. 
The generic nature of conditional resolvability in graphs 
provides various ways of defining new resolving para- 
meters by considering different conditions. In general, a 
connected graph  can have many resolving sets. It is 
interesting to study those resolving set whose vertices are 
located close to one another. A resolving set  of  
is connected if the subgraph induced by W  is a 
nontrivial connected subgraph of . The minimum car- 
dinality of a connected resolving set is called connected 
resolving number and it is denoted by  [18]. In 
this paper we introduce a new resolving parameter called 
star resolving number. A resolving set  is said to be 
a star resolving set if the subgraph induced by  is a 
star and a path resolving set [19] if  induces a path. 
In this paper we show the existence of star and path 
resolving sets in hypercube networks. 
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3. Topological Properties of Hypercube 
Networks 

The hypercube is a very popular, versatile and vertex- 
transitive interconnection network. When the dimension 
of hypercube increases, the cardinality of its vertex set 
increases exponentially. The effectiveness of parallel 
computers is often determined by its communication 
network. The interconnection network is an important 
component of a parallel processing system. A good 
interconnection network should have less topological 
network cost and meanwhile keep the network diameter 
as shorter as possible [20]. 

Definition 3.1. Let  denote the graph of -di- 
mensional hypercube, . The vertex set 

rQ
1r 

r

  0 1 1( ) = : = 0 or 1r
r iV Q x x x x  Two vertices  

 0 r 1x x x   and  0 1 1r y y y   are adjacent if and only 

if they differ exactly in one position. See Figure 1. 
The hypercube  has  vertices and  edges. 

It is -regular and its diameter is  Further it is 
bipartite, Hamiltonian if 

rQ 2r

r

2rr
r .r

1  and Eulerian if  is 
even [21]. It has been proved in [22] that dim

r
 Q rr  . 

The bound is tight for , and it is not tight for . 
A laborious calculation verifies that  is resolved by 
the 4-vertex set {00000, 00011, 00101, 01001}. Caceres 

4r  = 5r
5Q

 

Figure 1. (a) Binary representation; (b) Decimal representa- 
tion. 
 
et al. [22] have determined dim  rQ  for small values of 

 by computer search; the values are shown in the 
following table: 
r

 
2 3 4 5 6 7 8 9 10

2 3 4 4 5 6 6 7 7r

r

dim Q
 

4. Star Resolving Number 

We begin this section by defining a star and a star 
resolving set. 

Definition 4.1. An -dimensional star, denoted by 

r  is a graph with one vertex of de  1r
r

S gree    
1r

and
  vertices of degree 1. The vertex of degree 1r   is 

called the hub of .rS  
Definition 4.2. A set W  is said to be a star 

resolving set if  resolves G  and if it induces a star. 
The minimum cardinality of W  is called the star 
resolving number and is denoted by 

V
W

 sr G
 

. 
Remark 1. It is clear that  1 1Gsr G    for 

any graph G . In a star resolving set the maximum 
distance between any two locations (vertices) is 2.  

We now proceed to identify a star resolving set in a 
hypercube network  It is clear that there are four 
copies of 

.rQ
2rQ   in  We denote them as .rQ 2

0
rQ  , 

2
1,1
rQ  , 2

21,
rQ   and 2

2
rQ  . Figure 2 exhibits the four 

copies of  in Q . 3Q 5

Let  2
0
rx V Q  . A vertex  or   2

1,1
rx V Q  

 2
1,2
rV Q   is called the im  of age x  if  , =d x x 1 .  

Note that vertices in 0
2rQ  , at distance 1 from x  are not 

considered as images of x . If x  is the image of x  in 
2

1,1
rQ   then x  is called the pre-image of x . 
The next result which we state as Lemma 1 is crucial 

to our work. We omit the proof as this result has been 
proved in [16] for enhanced hypercubes. 
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Figure 2. Four copies of Q3 in Q5. 
 

Lemma 4.1. Let  and let  2
0
rx V Q    2

1,1
rx V Q    

be the image of x . Let  be any vertex in w 2r
0Q  . Then 

.  , = 1 ,d x w d w   x 
 


Lemma 4.2. Let . Let 1 1,1  and 

 be the images of 
 2

0
rQ x V  2rQ x V

 2
2 1,2

rx V Q   x . Then 1x  and 2x  
are equidistant from every vertex of  2

0 .rQ 

Proof. Since the shortest paths from 1x  and 2x  to 
any vertex of  pass through 2

0
rQ  x , the conclusion 

follows. 
Lemma 4.3. Let   Then = ,rG Q 1.r    .sr G r

2r 
 

Proof. The subcube  of  is  regular 
and hence it contains 1r . Now there exist vertices 
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 are equidistant 
from every vertex of  and in particular from every 
vertex of  This implies  

2
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Lemma 4.4. Let . Then 
S    r> 1sr G .

sr G r .  
Proof. We prove the theorem by induction on . r
Base Case: Let  and  

where 0 1  and 2  It follows from the 
definition of hypercube edges that 0  is adjacent to 
both 1  and  It is easy to check that 1W  is a 
resolving set for  Figure 3 shows the distinct codes 
of vertices in  with respect to  
Since  induces  it is a star resolving set for . 
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y
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Figure 3. (a) Resolvingset W1 in Q3 ; (b) Codes of vertices of 
Q3 with respect to W1. 
 

either in 2
1,1
rQ   or 2

1,2 .rQ   Clearly  is adjacent to  1rw 

0.w  We claim that  is a resolving set for  W .rQ

Case 1:  2
0, rx y V Q

1=W W 2
1 = 2r
rw

  or  or  2
1,1
rV Q    2

1,2
rV Q   

Since  2
1 0

rW V Q 
2rQ

 and since 1  and 

0 1,2

2
0 1,
r rQ Q  2

2rQ  

W
  are isomorphic to  by induction 

hypothesis 1  resolves 

1,rQ
x  and  The same argu- 

ment applies to the following cases.  
.y

1)  2
0
rx V Q   and   2

1,1
ry V Q 

2)  2
0
rx V Q   and   2

1,2
ry V Q 

Case 2:  2
1,1
rx V Q   and   2

1,2
ry V Q 

We need to prove that  for some 
 in 

  ,d x w d y w ,
w    2 1 .r rw w 0 1 2= , ,w w W w  Let  

 2rV Q 
0, x y  be the images of x  and  respec- 

tively. 
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Case 2.1: x y   

In this case  

      
   

1 1

1 1

, = , , = 1 ,

= 1 1 , , .
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Case 2.2: x y   

Now x  and y  are resolved by some  in  
Hence 

w 1.W
   w y w, d ,d x   and consequently  

   w, , .w yd x d  

Case 3:  2
2
rx V Q   and    2

2
ry V Q 

The proof is similar to Case 2. 

Case 4:  2
2, rx y V Q    

Let x  and y  be the images of x  and  re-  y

spectively. There are three possibilities  2
1,1,x y V Q   r  

or  2
1,2
rV Q   or  2

1,1
rx V Q   and . The   2

1,2
ry V Q  

conclusion will follow by Case 1 and Case 2. 

Case 5:  2
1,1
rx V Q   and   2

2
ry V Q 
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Let  and  be the images   2
0
rx V Q    2

1,2
ry V Q 

of x  and  respectively. Since  is re-  y 2
0 1
r rQ Q  2

,2


,
solved by  there exist a  such that 

.
1,W


1w W

 ,d x w d  y w  This implies that    , , .d x w d y w  
Lemmas 3 and 4 imply the following result. 
Theorem 4.1. Let  Then = , 1rG Q r  .   = .sr G r   

5. Path Resolving Number 

In this section we determine a path resolving number for 
hypercube networks. 

Definition 5.1. [19] A resolving set W  of  is a 
path resolving set for  if the graph induced by  is 
a path. The minimum cardinality of  is called path 
resolving number and is denoted by   

G
W

  

G

G Q

W
pr  .G

prLemma 5.1. Let   Then   = ,r 1.r 
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.rG
PProof. Let  be the path in  Now  cannot 

resolve  as there are vertices 1

P 2
0 .

1,
rQ 2rx Q

2
0 ,r
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pr

 and  

1,2  such that they are equidistant from every 
vertex of 0  in particular from every vertex of P 
Since there exist a path  in Q   

2

Q

ry Q 
2r

rP
= ,rG Q

 G
pr

.r
 GLemma 5.2. Let   Then r  .r  

Proof. Proceeding as in Lemma 4 we conclude that  

= 2 1,1iW    i r

.

 is a path resolving set for  .rQ

Lemma 5 and Lemma 6 imply the following result. 
Theorem 5.1. Let  Then   = , 1rG Q r    = .pr G r

6. Conclusion 

In this paper we have introduced a new resolving 
parameter called a star resolving number. We have 
determined the star resolving number and path resolving 
number for hypercube networks. The problem is open for 
architectures like Benes and Butterfly networks. 
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