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ABSTRACT 

In this paper, the sticker based DNA computing was 
used for solving the independent set problem. At first, 
solution space was constructed by using appropriate 
DNA memory complexes. We defined a new opera- 
tion called “divide” and applied it in construction of 
solution space. Then, by application of a sticker based 
parallel algorithm using biological operations, inde- 
pendent set problem was resolved in polynomial time. 
 
Keywords: Parallel Computing; Sticker Based DNA 
Computers; Independent Set Problem; NP-Complete 
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1. INTRODUCTION 

DNA encodes the genetic information of cellular organ- 
isms. The unique and specific structure of DNA makes it 
one of the favorite candidates for computing purposes. In 
comparison with conventional silicon-based computers, 
DNA computers have massive degrees of miniaturization 
and parallelism. By recent technology, about 1018 DNA 
molecules can be produced and placed in a test tube. 
Each of these DNA molecules could act as a small pro- 
cessor. Biological operations such as hybridization, sepa- 
ration, setting and clearing can be performed simultane- 
ously on all of these DNA strands. Thus, in an in vitro 
assay we could handle about 1018 DNA molecules or, we 
can say that 1018 data processors can be executed in par-
allel. 

DNA computing was initially developed by Leonard 
Adleman in 1994 [1]. Adleman succeeded in solving 
seven-point Hamiltonian path problem solely by mani- 
pulating DNA molecules and suggested that DNA could 
be used to solve complex mathematical problems. 

In 1996, a new model of DNA computing (sticker 
model) was introduced by Roweis et al. [2]. This model  

has a random access memory that requires no strand ex- 
tension, uses no enzymes, and its materials are reusable. 
Sticker based DNA computing has potential capability 
for being a universal method in DNA computing. Roweis 
et al. also proposed specific machine architecture for 
implementing the sticker model as a microprocessor- 
controlled parallel robotic workstation [2]. Thus, the ope- 
rations used in sticker model can be performed on fully 
automated devices, which is helpful in reducing the error 
rates of operations. 

In this paper, we applied sticker model for solving the 
independent set problem which is one of the NP-com- 
plete problems.  

The paper is organized as follows. Section 2 intro- 
duces the DNA structure and various DNA computing 
models and discuss about Sticker based DNA computing 
and biological operations which are used in sticker mo- 
del. Section 3 introduces a DNA based algorithm for 
solving the independent set problem in sticker model. 

2. BASICS OF DNA COMPUTING 

2.1. Structure of DNA and DNA Computing 
Models 

DNA is a polymeric molecule which is composed of mo- 
nomers called Deoxyriboneucleotides. Deoxyriboneucle- 
otides are building blocks of DNA and each of them 
contains three components: sugar, phosphate group and 
nitrogenous base. The sugar (deoxyribose) has five car- 
bon atoms (1’ - 5’). The phosphate group is attached to 
the 5’ carbon of sugar and nitrogenous base is attached to 
the 1’ carbon. There are four different nitrogenous bases 
which contribute in DNA structure: Thymine (T) and 
Cytosine (C) which are called pyrimidines; Adenine (A) 
and Guanine (G) which are called purines. Because ni- 
trogenous bases are variable components of neucleotides, 
different neucleotides are distinguished by nitrogenous 
bases which contribute in their structure. For this reason 
the name of the bases are used to refer to the neucleo- *Corresponding author. 
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tides, and the neucleotides are simply represented as A, 
G, C, and T. The neucleotides are link together by phos- 
phodiester bonds and form single stranded DNA (ss- 
DNA). A ssDNA molecule can be likened to a string 
consisting of a combination of four different symbols, A, 
G, C, T. Mathematically, this means we have a four letter 
alphabet ∑ = {A, G, C, T} to encode information. Two 
ssDNA molecules join together to form double stranded 
DNA (DsDNA) based on complementary rule: “A” from 
one strand bond to “T” from opposite strand, and “C” 
bond to “G”. In Figure 1, a schematic picture of neu- 
cleotide is shown. 

DNA computing was initially developed by Leonard 
Adleman in 1994 [1]. Adleman resolved an instance of 
Hamiltonian path problem just by handling the DNA mo- 
lecules. In 1995, Lipton [3] presented a method for solv- 
ing the satisfiability (SAT) problem. Adleman-Lipton 
model can be used to solve different NP-complete prob- 
lems. In Adleman-Lipton model, DNA splints are used 
for construction of solution space. Adleman [4,5] also 
presented a molecular algorithm for solving the 3-color- 
ing problem. Chang and Guo [6-8] showed that the DNA 
operations in Adelman-Lipton model could be used for 
developing DNA algorithms to resolve the dominating 
set problem, the vertex cover problem, the maximal cli- 
que problem and independent set problem. 

In 1996, Roweis et al. [2] introduced the Sticker based 
DNA computing model and applied it in solving the Mi- 
nimal Set Cover problem. Perez-Jimenez and Sancho- 
caparrini [9] used Sticker based DNA computing to re- 
solve knapsack problem, and this model also were ap- 
plied for breaking the Data Encryption Standard (DES) 
[10,11]. DES encrypts 64 bit texts by using 56 bit key. 
Breaking DES means that given one (plain-text, cipher- 
text) pair, we can find a key which maps the plain-text to 
the cipher text. A conventional attack on DES would 
need to perform an exhaustive search through all of the  
 

 

Figure 1. A neucleotide. 

256 keys, which, at a rate of 100,000 operations per se- 
cond, would take 10,000 years. In contrast, it was esti- 
mated that DES could be broken by using sticker based 
DNA computing in about 4 months. 

Other than Adleman-Lipton and Sticker based models, 
other various models are also proposed in DNA comput- 
ing by researchers. Quyang et al. [12] solved the maxi- 
mal clique problem using DNA molecules and Restric- 
tion endonuclease enzymes. Amos et al. [13,14] described 
a DNA computation model using restriction endonucle- 
ase enzymes instead of successive cycles of separation 
by DNA hybridization, which can reduce the error-rate 
of computation. Hagiya et al. [15] proposed a new me- 
thod of DNA computing that involves a self-acting DNA 
molecule containing both the input, program, and work- 
ing memory. In this method, a single-stranded DNA mo- 
lecule consists of an input segment on the 5’-end, fol- 
lowed by a formula (program) segment, followed by a 
spacer, and finally with a “head” on the 3’-end that 
moves and performs the computation. Another method 
for DNA computation is “computation by self-assembly”. 
Eric Winfree et al. [16-18] introduced a linear and 2-di- 
mentional self-assembly model.  

The surface-based model was introduced by Liu et al. 
[19]. This model uses DNA molecules attached to a solid 
surface, instead of DNA molecules floating in a solution. 
The computing by blocking was introduced by Rozen- 
berg et al. [20,21]. This model uses a novel approach to 
filter the DNA molecules: Instead of separating the DNA 
strands to distinct tubes, or destroy and removing the 
DNA molecules that does not contribute to finding a so- 
lution, it blocks (inactivates) them in a way that the 
blocked strands can be considered as non-existent during 
the subsequent steps of computation. 

2.2. Sticker Based DNA Computation 

The sticker model was introduced by S. Roweis et al. [2]. 
In this model, there is a memory strand with N bases in 
length subdivided into K non-overlapping regions each 
M bases long (N  MK). M can be for example 20. The 
substrands (bit regions) are significantly different from 
each other. One sticker is designed for each subregion; 
each sticker has M bases long and is complementary to 
one and only one of the K memory regions. If a sticker is 
annealed to its corresponding region on memory strand, 
then the particular region is said to be on. If no sticker is 
annealed to a region then the corresponding bit is off. 
Each memory strand along with its annealed stickers is 
called memory complex. In sticker model, a tube is a co- 
llection of memory complexes, composed of large num- 
ber of identical memory strands each of which has stick- 
ers annealed only at the required bit positions. This me- 
thod of representation of information differs from other  
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methods in which the presence or absence of a particular 
subsequence in a strand corresponded to a particular bit 
being on or off. In sticker model, each possible bit string 
is represented by a unique association of memory strands 
and stickers. This model has a random access memory 
that requires no strand extension and uses no enzymes 
[2]. 

Another conception in sticker model is (K, L) library. 
Each (K, L) library contains memory complexes with K 
bit regions, the first L bit regions are either on or off, in 
all possible ways, whereas the remaining K-L bit regions 
are off. The last K-L bit regions can be used for inter- 
mediate data storage. In every (K, L) library there are at 
least 2L memory complexes. In Figure 2, a memory 
complex with 7 bit regions representing the binary num- 
ber 1100101 is shown. 

2.3. Biological Operations in Sticker Model 

There are four principal operations in sticker model: com-
bination, separation, setting and clearing [2]. We also de- 
fined a new operation called “divide” which is used in con- 
struction of solution space. Here we briefly discuss about 
these operations. 

1) Combine (T0, T1, T2): the memory complexes from 
the tubes T1 and T2 are combined to form a new tube T0, 
simply the contents of T1 and T2 are poured into tube T0. 

(T0 = T1  T2). 
2) Separate (T0, i)  (T1, T2), this operation creates 

two new tubes T1 and T2, T1 contains the memory com- 
plexes having the ith bit on (T1 = +(T0, i)) and T2 con- 
tains the memory complexes having the ith bit off (T2 = 
–(T0, i)). 

3) Set (T0, i): the ith bit region on every memory com- 
plex in tube T0 set to 1 or turned on, or we can say the 
sticker for that bit is annealed to corresponded bit region 
on every memory complex. 

4) Clear (T0, i): the ith bit region on every memory 
complex in tube T0 set to 0 or turned off, or we can say 
the stickers of that bit region must be removed (if present) 
from every memory complex in tube T0. 

5) Divide (T0, T1, T2): by this operation, the contents 
of tube T0 is divided into two equal portions and poured 
into the tubes T1 and T2. 

3. SOLVING THE INDEPENDENT SET 
PROBLEM IN STICKER BASED DNA 
COMPUTERS 

3.1. Definition of the Independent Set Problem 

In graph theory, an independent set of a graph G = (V, E),  
 

 

Figure 2. A memory complex representing 1100101. 

where V is the set of the vertices and E is the set of the 
edges, is a subset V1  V such that no two vertices in V1 
are joined by an edge in E. On the other hand, the inde- 
pendent set is a set of vertices such that for every two 
vertices, there is no edge connecting the two. The size of 
an independent set is the number of vertices it contains. 
A maximum independent set is a largest independent set 
for a given graph G and the problem of finding such a set 
is called the maximum independent set problem. The ma- 
ximum independent set problem has been proved to be a 
NP-complete problem [22]. For example, the graph in 
Figure 3 includes 5 vertices and 4 edges. 

All of the independent sets for our graph are as fol- 
lows: {V1}, {V2}, {V3}, {V4}, {V5}, {V1, V2}, {V1, V3}, 
{V1, V4}, {V2, V3}, {V3, V5}, {V4, V5}, {V1, V2, V3} 

It is clear that the independent set of the maximum 
size is {V1, V2, V3}, furthermore, the size of the inde- 
pendent set problem in our graph is 3. 

3.2. Construction of Sticker Based DNA Solution 
Space for Independent Set Problem 

First of all, it is essential to generate the sticker based 
DNA solution space of our problem. Then, basic bio- 
logical operations are used to select legal strands and 
remove illegal strands from the solution space. It is ob- 
vious that a graph with N vertices has 2N subset of verti- 
ces or 2N possible independent sets. Furthermore, each 
possible independent set can be represented by an N- 
digit binary number. If the ith bit in an N-digit binary 
number is set to 1, it represents that the ith vertex is in the 
independent set. If the ith bit in an N-digit binary number 
is set to 0, it represents that the ith vertex is not in the 
independent set. 

Our graph has 5 vertices and 32 possible independent 
sets. All of these possible independent sets can be repre- 
sented by a 5-digit binary number. For example the bi- 
nary number 11100 represent the {V1, V2, V3} or the bi- 
nary number 11111 represent the {V1, V2, V3, V4, V5}. 

To represent all possible independent sets by appro- 
priate DNA memory complexes, we introduce two me- 
thods for construction of solution space. 

Method One:  
In this method which is proposed by Roweis et al., [2] 

 

 

Figure 3. The graph of our problem. 
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first we provide enough amounts of memory strands with 
at least 5 bit regions. Then, the strands are split into two 
tubes A and B. To one tube (tube A) is added an excess 
amounts of all stickers and set all bits on. The unused 
stickers are then removed. The contents of tubes A and B 
are then mixed together and by rising temperature all 
annealed stickers dissociate from memory strands. Fi- 
nally the mixture is cooled again, causing the stickers to 
randomly anneal to the memory strands. By this method, 
it is expected that approximately 63% of memory com- 
plexes will be produced. Of course, this percentage can 
obviously be increased by starting with more memory 
strands. The advantage of this method is that the solution 
space is produced at single step, but its main disadvan- 
tage is that some memory complexes may not be pro- 
duced by above method. 

Method Two: 
1) Input (T0), where T0 contains large amounts of me- 

mory strands with at least N (number of vertices in graph) 
bit regions. 

2) For i = 1 to N, where N is number of vertices in 
graph 

a) Divide (T0, T1, T2) 
b) Set (T1, i) 
c) Combine (T0, T1, T2) 
End for 
Note: Method two has N divide, N set and N combine 

operations. At the end of procedure, tube T0 contains all 
of the memory complexes which each of them represent 
one of the possible independent sets. The main advantage 
of this new method is that the memory complexes repre- 
senting all possible independent sets will be produced 
definitely. In our example, tube T0 contains 32 different 
memory complexes. The 32 memory complexes which 
are produced during construction of solution space are 
shown in Table 1. 

3.3. DNA Algorithm for Solving the Independent 
Set Problem 

The following algorithm is proposed for solving the in- 
dependent set problem: 

1) For k = 1 to m, where m is the number of edges in 
the graph G  

a) Let ek = (vi, vj), where ek is one edge and vi, vj are 
vertices which are connected to each other by ek 

b) Bit regions i and j represents vi and vj, respectively. 
c) Separate (T0, i) → (T1, T2) 
d) Separate (T1, j) → (T3, T4)  
e) Discard T3  
f) Combine (T0, T2, T4) 
2) For i = 0 to n – 1 
For j = i down to 0 
Separate (Tj, I + 1) → (T(j+1)’, Tj)  

Table 1. Memory complexes which are produced during con-
struction of solution space. 

 
 00000   or      10000   or   {V1} 

 00001   or   {V5}  10001   or   {V1, V5} 

 00010  or   {V4}  10010  or   {V1, V4} 

 00011   or   {V4, V5}  10011   or  {V1, V4, V5} 

 
 00100   or     {V3}  10100   or   {V1, V3 } 

 
 00101   or   {V3,V5}  10101  or   {V1, V3, V5} 

 
 00110  or   {V3,V4}  10110  or   {V1, V3, V4} 

 
 00111   or   {V3, V4, V5}  10111  or {V1, V3, V4, V5} 

 
 01000   or   {V2}  11000   or   {V1, V2 } 

 
 01001   or   {V2,V5}  11001   or   {V1, V2, V5} 

 
 01010   or   {V2, V4}  11010   or  {V1, V2, V4} 

 
 01011   or   {V2,V4, V5}  11011  or {V1, V2, V4, V5} 

 
 01100   or   {V2, V3}  11100   or   {V1, V2, V3} 

 
 01101   or   {V2, V3, V5}  11101  or {V1, V2, V3, V5} 

 
 01110   or   {V2, V3, V4}  11110 or {V1, V2, V3, V4} 

 
 01111  or {V2, V3, V4, V5} 11111  or {V1, V2, V3, V4, V5} 

 
Combine (Tj+1, Tj+1, T(j+1)’) 
3) Read Tn; else if it was empty then: 
Read Tn–1; else if it was empty then:  
Read Tn–2; else if it was empty then:  
Read T2; else if it was empty then:  
Read T1; 
According to the steps in the algorithm, the indepen- 

dent set problem can be resolved by sticker based DNA 
computation in polynomial time. Any two vertices con-
nected in the graph G cannot be the members of the same 
independent set; hence their corresponding bit regions 
cannot be set to 1. For example, we have four edges in 
our graph: (v1, v5), (v2, v5), (v2, v4), (v3, v4), therefore 
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“1xxx1”, “x1xx1”, “x1x1x” and “xx11x” (x can be either 
1 or 0) cannot be independent set and memory com- 
plexes representing them should be removed from solu- 
tion space. 

Step 1 of the algorithm is executed m times (m is 4 in 
our graph) and at each round of execution the memory 
complexes representing the subsets “1xxx1”, “x1xx1”, 
“x1x1x” and “xx11x” are removed from tube T0. At the 
end of step 1, illegal memory complexes are removed 
from solution space and tube T0 only contains the me- 
mory complexes which represent legal independent sets. 
({V1}, {V2}, {V3}, {V4}, {V5}, {V1, V2}, {V1, V3}, {V1, 
V4}, {V2, V3}, {V3, V5}, {V4, V5}, {V1, V2, V3}). 

By the execution of step 2, the memory complexes 
without any annealed stickers are placed in tube T0, the 
memory complexes with only one annealed sticker are 
placed in tube T1, the memory complexes with 2 an- 
nealed stickers are placed in tubes T2, the memory com- 
plexes with 3 annealed stickers are placed in tube T3, and 
so on. Note, that the numbers of annealed stickers in 
every memory complex represent the number of vertices 
in corresponding independent set. For example, in Graph 
of our problem, the legal independent sets with one ver- 
tex ({V1}, {V2}, {V3}, {V4}, {V5}) are placed in tube T1 , 
and those with 2 vertices ({V1,V2}, {V1,V3}, {V1,V4}, 
{V2,V3}, {V3,V5}, {V4,V5}) are placed in tube T2 and 
finally the independent set with 3 vertices ({V1,V2,V3}) 
is placed in tube T3.  

The legal memory complexes which remain in tube T0 

at the end of step 1 of the algorithm and their final places 
at the end of step 2 are shown in Table 2. 

In step 3, all of the tubes (from Tn to T1) are evaluated 
for presence of memory complexes, and the first tube 
which is not empty and contains memory complexes 
represent maximum independent set. In our example, 
tubes T5 and T4 are empty and devoid of any memory 
complexes. The first tube which contains DNA mole- 
cules is tube T3. As mentioned before, the memory com- 
plexes in tube T3 have 3 annealed stickers; therefore, the 
maximum independent set in our graph is 3. 

4. CONCLUSIONS 

In this paper, the sticker based DNA computing was used 
for solving the independent set problem. This method 
could be used for solving other NP-complete problems. 
There are four principal operations in sticker model: 
Combination, Separation, Setting and Clearing. We also 
defined a new operation called “divide” and applied it in 
construction of solution space. This new method of con- 
struction of solution space has some advantages over 
other methods. The main advantage of this new method 
is that the memory complexes representing all possible 
independent sets will be produced definitely. 

Table 2. The legal memory complexes which remain in tube T0 

at the end of step 1 of algorithm and their final places at the end 
of step 2. 

Legal memory complex Final place 

 
    00000   or     T0 

 
    10000   or   {V1}  T1 

 
    01000   or   {V2}  T1 

 
    00100   or   {V3} T1 

 
    00010  or   {V4} T1 

 
    00001   or   {V5} T1 

 
    11000   or   {V1, V2 }  T2 

 
    10100   or   {V1, V3 }  T2 

 
    10010  or   {V1, V4}  T2 

 
    01100   or   {V2, V3}  T2 

 
    00101   or   {V3,V5} T2 

 
    00011   or   {V4, V5} T2 

 
    11100   or   {V1, V2, V3}   T3 

 
Among the four principal operations in sticker model, 

“Clearing” operation is the most problematic and there 
are some difficulties and limitations in perfect execution 
of that. For this reason, we have not used this operation 
in our algorithm. 
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