
American Journal of Molecular Biology, 2012, 2, 153-158 AJMB
http://dx.doi.org/10.4236/ajmb.2012.22017 Published Online April 2012 (http://www.SciRP.org/journal/ajmb/)

Solving the independent set problem by sticker based DNA
computers

Hassan Taghipour1*, Ahad Taghipour2, Mahdi Rezaei3, Heydar Ali Esmaili1

1Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
2Department of Computer Engineering, Faculty of Engineering, Isfahan University, Isfahan, Iran
3Department of Theoretical Physics and Astrophysics, Tabriz University, Tabriz, Iran
Email: *taghipourh@yahoo.com

Received 29 December 2011; revised 12 January 2012; accepted 25 January 2012

ABSTRACT

In this paper, the sticker based DNA computing was
used for solving the independent set problem. At first,
solution space was constructed by using appropriate
DNA memory complexes. We defined a new opera-
tion called “divide” and applied it in construction of
solution space. Then, by application of a sticker based
parallel algorithm using biological operations, inde-
pendent set problem was resolved in polynomial time.

Keywords: Parallel Computing; Sticker Based DNA
Computers; Independent Set Problem; NP-Complete
Problem

1. INTRODUCTION

DNA encodes the genetic information of cellular organ-
isms. The unique and specific structure of DNA makes it
one of the favorite candidates for computing purposes. In
comparison with conventional silicon-based computers,
DNA computers have massive degrees of miniaturization
and parallelism. By recent technology, about 1018 DNA
molecules can be produced and placed in a test tube.
Each of these DNA molecules could act as a small pro-
cessor. Biological operations such as hybridization, sepa-
ration, setting and clearing can be performed simultane-
ously on all of these DNA strands. Thus, in an in vitro
assay we could handle about 1018 DNA molecules or, we
can say that 1018 data processors can be executed in par-
allel.

DNA computing was initially developed by Leonard
Adleman in 1994 [1]. Adleman succeeded in solving
seven-point Hamiltonian path problem solely by mani-
pulating DNA molecules and suggested that DNA could
be used to solve complex mathematical problems.

In 1996, a new model of DNA computing (sticker
model) was introduced by Roweis et al. [2]. This model

has a random access memory that requires no strand ex-
tension, uses no enzymes, and its materials are reusable.
Sticker based DNA computing has potential capability
for being a universal method in DNA computing. Roweis
et al. also proposed specific machine architecture for
implementing the sticker model as a microprocessor-
controlled parallel robotic workstation [2]. Thus, the ope-
rations used in sticker model can be performed on fully
automated devices, which is helpful in reducing the error
rates of operations.

In this paper, we applied sticker model for solving the
independent set problem which is one of the NP-com-
plete problems.

The paper is organized as follows. Section 2 intro-
duces the DNA structure and various DNA computing
models and discuss about Sticker based DNA computing
and biological operations which are used in sticker mo-
del. Section 3 introduces a DNA based algorithm for
solving the independent set problem in sticker model.

2. BASICS OF DNA COMPUTING

2.1. Structure of DNA and DNA Computing
Models

DNA is a polymeric molecule which is composed of mo-
nomers called Deoxyriboneucleotides. Deoxyriboneucle-
otides are building blocks of DNA and each of them
contains three components: sugar, phosphate group and
nitrogenous base. The sugar (deoxyribose) has five car-
bon atoms (1’ - 5’). The phosphate group is attached to
the 5’ carbon of sugar and nitrogenous base is attached to
the 1’ carbon. There are four different nitrogenous bases
which contribute in DNA structure: Thymine (T) and
Cytosine (C) which are called pyrimidines; Adenine (A)
and Guanine (G) which are called purines. Because ni-
trogenous bases are variable components of neucleotides,
different neucleotides are distinguished by nitrogenous
bases which contribute in their structure. For this reason
the name of the bases are used to refer to the neucleo- *Corresponding author.

OPEN ACCESS

mailto:taghipourh@yahoo.com

H. Taghipour et al. / American Journal of Molecular Biology 2 (2012) 153-158 154

tides, and the neucleotides are simply represented as A,
G, C, and T. The neucleotides are link together by phos-
phodiester bonds and form single stranded DNA (ss-
DNA). A ssDNA molecule can be likened to a string
consisting of a combination of four different symbols, A,
G, C, T. Mathematically, this means we have a four letter
alphabet ∑ = {A, G, C, T} to encode information. Two
ssDNA molecules join together to form double stranded
DNA (DsDNA) based on complementary rule: “A” from
one strand bond to “T” from opposite strand, and “C”
bond to “G”. In Figure 1, a schematic picture of neu-
cleotide is shown.

DNA computing was initially developed by Leonard
Adleman in 1994 [1]. Adleman resolved an instance of
Hamiltonian path problem just by handling the DNA mo-
lecules. In 1995, Lipton [3] presented a method for solv-
ing the satisfiability (SAT) problem. Adleman-Lipton
model can be used to solve different NP-complete prob-
lems. In Adleman-Lipton model, DNA splints are used
for construction of solution space. Adleman [4,5] also
presented a molecular algorithm for solving the 3-color-
ing problem. Chang and Guo [6-8] showed that the DNA
operations in Adelman-Lipton model could be used for
developing DNA algorithms to resolve the dominating
set problem, the vertex cover problem, the maximal cli-
que problem and independent set problem.

In 1996, Roweis et al. [2] introduced the Sticker based
DNA computing model and applied it in solving the Mi-
nimal Set Cover problem. Perez-Jimenez and Sancho-
caparrini [9] used Sticker based DNA computing to re-
solve knapsack problem, and this model also were ap-
plied for breaking the Data Encryption Standard (DES)
[10,11]. DES encrypts 64 bit texts by using 56 bit key.
Breaking DES means that given one (plain-text, cipher-
text) pair, we can find a key which maps the plain-text to
the cipher text. A conventional attack on DES would
need to perform an exhaustive search through all of the

Figure 1. A neucleotide.

256 keys, which, at a rate of 100,000 operations per se-
cond, would take 10,000 years. In contrast, it was esti-
mated that DES could be broken by using sticker based
DNA computing in about 4 months.

Other than Adleman-Lipton and Sticker based models,
other various models are also proposed in DNA comput-
ing by researchers. Quyang et al. [12] solved the maxi-
mal clique problem using DNA molecules and Restric-
tion endonuclease enzymes. Amos et al. [13,14] described
a DNA computation model using restriction endonucle-
ase enzymes instead of successive cycles of separation
by DNA hybridization, which can reduce the error-rate
of computation. Hagiya et al. [15] proposed a new me-
thod of DNA computing that involves a self-acting DNA
molecule containing both the input, program, and work-
ing memory. In this method, a single-stranded DNA mo-
lecule consists of an input segment on the 5’-end, fol-
lowed by a formula (program) segment, followed by a
spacer, and finally with a “head” on the 3’-end that
moves and performs the computation. Another method
for DNA computation is “computation by self-assembly”.
Eric Winfree et al. [16-18] introduced a linear and 2-di-
mentional self-assembly model.

The surface-based model was introduced by Liu et al.
[19]. This model uses DNA molecules attached to a solid
surface, instead of DNA molecules floating in a solution.
The computing by blocking was introduced by Rozen-
berg et al. [20,21]. This model uses a novel approach to
filter the DNA molecules: Instead of separating the DNA
strands to distinct tubes, or destroy and removing the
DNA molecules that does not contribute to finding a so-
lution, it blocks (inactivates) them in a way that the
blocked strands can be considered as non-existent during
the subsequent steps of computation.

2.2. Sticker Based DNA Computation

The sticker model was introduced by S. Roweis et al. [2].
In this model, there is a memory strand with N bases in
length subdivided into K non-overlapping regions each
M bases long (N  MK). M can be for example 20. The
substrands (bit regions) are significantly different from
each other. One sticker is designed for each subregion;
each sticker has M bases long and is complementary to
one and only one of the K memory regions. If a sticker is
annealed to its corresponding region on memory strand,
then the particular region is said to be on. If no sticker is
annealed to a region then the corresponding bit is off.
Each memory strand along with its annealed stickers is
called memory complex. In sticker model, a tube is a co-
llection of memory complexes, composed of large num-
ber of identical memory strands each of which has stick-
ers annealed only at the required bit positions. This me-
thod of representation of information differs from other

Copyright © 2012 SciRes. OPEN ACCESS

H. Taghipour et al. / American Journal of Molecular Biology 2 (2012) 153-158 155

methods in which the presence or absence of a particular
subsequence in a strand corresponded to a particular bit
being on or off. In sticker model, each possible bit string
is represented by a unique association of memory strands
and stickers. This model has a random access memory
that requires no strand extension and uses no enzymes
[2].

Another conception in sticker model is (K, L) library.
Each (K, L) library contains memory complexes with K
bit regions, the first L bit regions are either on or off, in
all possible ways, whereas the remaining K-L bit regions
are off. The last K-L bit regions can be used for inter-
mediate data storage. In every (K, L) library there are at
least 2L memory complexes. In Figure 2, a memory
complex with 7 bit regions representing the binary num-
ber 1100101 is shown.

2.3. Biological Operations in Sticker Model

There are four principal operations in sticker model: com-
bination, separation, setting and clearing [2]. We also de-
fined a new operation called “divide” which is used in con-
struction of solution space. Here we briefly discuss about
these operations.

1) Combine (T0, T1, T2): the memory complexes from
the tubes T1 and T2 are combined to form a new tube T0,
simply the contents of T1 and T2 are poured into tube T0.

(T0 = T1  T2).
2) Separate (T0, i)  (T1, T2), this operation creates

two new tubes T1 and T2, T1 contains the memory com-
plexes having the ith bit on (T1 = +(T0, i)) and T2 con-
tains the memory complexes having the ith bit off (T2 =
–(T0, i)).

3) Set (T0, i): the ith bit region on every memory com-
plex in tube T0 set to 1 or turned on, or we can say the
sticker for that bit is annealed to corresponded bit region
on every memory complex.

4) Clear (T0, i): the ith bit region on every memory
complex in tube T0 set to 0 or turned off, or we can say
the stickers of that bit region must be removed (if present)
from every memory complex in tube T0.

5) Divide (T0, T1, T2): by this operation, the contents
of tube T0 is divided into two equal portions and poured
into the tubes T1 and T2.

3. SOLVING THE INDEPENDENT SET
PROBLEM IN STICKER BASED DNA
COMPUTERS

3.1. Definition of the Independent Set Problem

In graph theory, an independent set of a graph G = (V, E),

Figure 2. A memory complex representing 1100101.

where V is the set of the vertices and E is the set of the
edges, is a subset V1  V such that no two vertices in V1
are joined by an edge in E. On the other hand, the inde-
pendent set is a set of vertices such that for every two
vertices, there is no edge connecting the two. The size of
an independent set is the number of vertices it contains.
A maximum independent set is a largest independent set
for a given graph G and the problem of finding such a set
is called the maximum independent set problem. The ma-
ximum independent set problem has been proved to be a
NP-complete problem [22]. For example, the graph in
Figure 3 includes 5 vertices and 4 edges.

All of the independent sets for our graph are as fol-
lows: {V1}, {V2}, {V3}, {V4}, {V5}, {V1, V2}, {V1, V3},
{V1, V4}, {V2, V3}, {V3, V5}, {V4, V5}, {V1, V2, V3}

It is clear that the independent set of the maximum
size is {V1, V2, V3}, furthermore, the size of the inde-
pendent set problem in our graph is 3.

3.2. Construction of Sticker Based DNA Solution
Space for Independent Set Problem

First of all, it is essential to generate the sticker based
DNA solution space of our problem. Then, basic bio-
logical operations are used to select legal strands and
remove illegal strands from the solution space. It is ob-
vious that a graph with N vertices has 2N subset of verti-
ces or 2N possible independent sets. Furthermore, each
possible independent set can be represented by an N-
digit binary number. If the ith bit in an N-digit binary
number is set to 1, it represents that the ith vertex is in the
independent set. If the ith bit in an N-digit binary number
is set to 0, it represents that the ith vertex is not in the
independent set.

Our graph has 5 vertices and 32 possible independent
sets. All of these possible independent sets can be repre-
sented by a 5-digit binary number. For example the bi-
nary number 11100 represent the {V1, V2, V3} or the bi-
nary number 11111 represent the {V1, V2, V3, V4, V5}.

To represent all possible independent sets by appro-
priate DNA memory complexes, we introduce two me-
thods for construction of solution space.

Method One:
In this method which is proposed by Roweis et al., [2]

Figure 3. The graph of our problem.

Copyright © 2012 SciRes. OPEN ACCESS

H. Taghipour et al. / American Journal of Molecular Biology 2 (2012) 153-158 156

first we provide enough amounts of memory strands with
at least 5 bit regions. Then, the strands are split into two
tubes A and B. To one tube (tube A) is added an excess
amounts of all stickers and set all bits on. The unused
stickers are then removed. The contents of tubes A and B
are then mixed together and by rising temperature all
annealed stickers dissociate from memory strands. Fi-
nally the mixture is cooled again, causing the stickers to
randomly anneal to the memory strands. By this method,
it is expected that approximately 63% of memory com-
plexes will be produced. Of course, this percentage can
obviously be increased by starting with more memory
strands. The advantage of this method is that the solution
space is produced at single step, but its main disadvan-
tage is that some memory complexes may not be pro-
duced by above method.

Method Two:
1) Input (T0), where T0 contains large amounts of me-

mory strands with at least N (number of vertices in graph)
bit regions.

2) For i = 1 to N, where N is number of vertices in
graph

a) Divide (T0, T1, T2)
b) Set (T1, i)
c) Combine (T0, T1, T2)
End for
Note: Method two has N divide, N set and N combine

operations. At the end of procedure, tube T0 contains all
of the memory complexes which each of them represent
one of the possible independent sets. The main advantage
of this new method is that the memory complexes repre-
senting all possible independent sets will be produced
definitely. In our example, tube T0 contains 32 different
memory complexes. The 32 memory complexes which
are produced during construction of solution space are
shown in Table 1.

3.3. DNA Algorithm for Solving the Independent
Set Problem

The following algorithm is proposed for solving the in-
dependent set problem:

1) For k = 1 to m, where m is the number of edges in
the graph G

a) Let ek = (vi, vj), where ek is one edge and vi, vj are
vertices which are connected to each other by ek

b) Bit regions i and j represents vi and vj, respectively.
c) Separate (T0, i) → (T1, T2)
d) Separate (T1, j) → (T3, T4)
e) Discard T3
f) Combine (T0, T2, T4)
2) For i = 0 to n – 1
For j = i down to 0
Separate (Tj, I + 1) → (T(j+1)’, Tj)

Table 1. Memory complexes which are produced during con-
struction of solution space.

 00000 or  10000 or {V1}

 00001 or {V5} 10001 or {V1, V5}

 00010 or {V4} 10010 or {V1, V4}

 00011 or {V4, V5} 10011 or {V1, V4, V5}

 00100 or {V3} 10100 or {V1, V3 }

 00101 or {V3,V5} 10101 or {V1, V3, V5}

 00110 or {V3,V4} 10110 or {V1, V3, V4}

 00111 or {V3, V4, V5} 10111 or {V1, V3, V4, V5}

 01000 or {V2} 11000 or {V1, V2 }

 01001 or {V2,V5} 11001 or {V1, V2, V5}

 01010 or {V2, V4} 11010 or {V1, V2, V4}

 01011 or {V2,V4, V5} 11011 or {V1, V2, V4, V5}

 01100 or {V2, V3} 11100 or {V1, V2, V3}

 01101 or {V2, V3, V5} 11101 or {V1, V2, V3, V5}

 01110 or {V2, V3, V4} 11110 or {V1, V2, V3, V4}

 01111 or {V2, V3, V4, V5} 11111 or {V1, V2, V3, V4, V5}

Combine (Tj+1, Tj+1, T(j+1)’)
3) Read Tn; else if it was empty then:
Read Tn–1; else if it was empty then:
Read Tn–2; else if it was empty then:
Read T2; else if it was empty then:
Read T1;
According to the steps in the algorithm, the indepen-

dent set problem can be resolved by sticker based DNA
computation in polynomial time. Any two vertices con-
nected in the graph G cannot be the members of the same
independent set; hence their corresponding bit regions
cannot be set to 1. For example, we have four edges in
our graph: (v1, v5), (v2, v5), (v2, v4), (v3, v4), therefore

Copyright © 2012 SciRes. OPEN ACCESS

H. Taghipour et al. / American Journal of Molecular Biology 2 (2012) 153-158 157

“1xxx1”, “x1xx1”, “x1x1x” and “xx11x” (x can be either
1 or 0) cannot be independent set and memory com-
plexes representing them should be removed from solu-
tion space.

Step 1 of the algorithm is executed m times (m is 4 in
our graph) and at each round of execution the memory
complexes representing the subsets “1xxx1”, “x1xx1”,
“x1x1x” and “xx11x” are removed from tube T0. At the
end of step 1, illegal memory complexes are removed
from solution space and tube T0 only contains the me-
mory complexes which represent legal independent sets.
({V1}, {V2}, {V3}, {V4}, {V5}, {V1, V2}, {V1, V3}, {V1,
V4}, {V2, V3}, {V3, V5}, {V4, V5}, {V1, V2, V3}).

By the execution of step 2, the memory complexes
without any annealed stickers are placed in tube T0, the
memory complexes with only one annealed sticker are
placed in tube T1, the memory complexes with 2 an-
nealed stickers are placed in tubes T2, the memory com-
plexes with 3 annealed stickers are placed in tube T3, and
so on. Note, that the numbers of annealed stickers in
every memory complex represent the number of vertices
in corresponding independent set. For example, in Graph
of our problem, the legal independent sets with one ver-
tex ({V1}, {V2}, {V3}, {V4}, {V5}) are placed in tube T1 ,
and those with 2 vertices ({V1,V2}, {V1,V3}, {V1,V4},
{V2,V3}, {V3,V5}, {V4,V5}) are placed in tube T2 and
finally the independent set with 3 vertices ({V1,V2,V3})
is placed in tube T3.

The legal memory complexes which remain in tube T0

at the end of step 1 of the algorithm and their final places
at the end of step 2 are shown in Table 2.

In step 3, all of the tubes (from Tn to T1) are evaluated
for presence of memory complexes, and the first tube
which is not empty and contains memory complexes
represent maximum independent set. In our example,
tubes T5 and T4 are empty and devoid of any memory
complexes. The first tube which contains DNA mole-
cules is tube T3. As mentioned before, the memory com-
plexes in tube T3 have 3 annealed stickers; therefore, the
maximum independent set in our graph is 3.

4. CONCLUSIONS

In this paper, the sticker based DNA computing was used
for solving the independent set problem. This method
could be used for solving other NP-complete problems.
There are four principal operations in sticker model:
Combination, Separation, Setting and Clearing. We also
defined a new operation called “divide” and applied it in
construction of solution space. This new method of con-
struction of solution space has some advantages over
other methods. The main advantage of this new method
is that the memory complexes representing all possible
independent sets will be produced definitely.

Table 2. The legal memory complexes which remain in tube T0

at the end of step 1 of algorithm and their final places at the end
of step 2.

Legal memory complex Final place

 00000 or  T0

 10000 or {V1} T1

 01000 or {V2} T1

 00100 or {V3} T1

 00010 or {V4} T1

 00001 or {V5} T1

 11000 or {V1, V2 } T2

 10100 or {V1, V3 } T2

 10010 or {V1, V4} T2

 01100 or {V2, V3} T2

 00101 or {V3,V5} T2

 00011 or {V4, V5} T2

 11100 or {V1, V2, V3} T3

Among the four principal operations in sticker model,

“Clearing” operation is the most problematic and there
are some difficulties and limitations in perfect execution
of that. For this reason, we have not used this operation
in our algorithm.

REFERENCES

[1] Adleman, L.M. (1994) Molecular computation of solu-
tions to combinatorial problems. Science, 266, 1021-1024.
doi:10.1126/science.7973651

[2] Roweis, S., et al. (1999) A sticker based model for DNA
computation. In: Landweber, L. and Baum, E., Eds., The
2nd Annual Workshop on DNA Computing, Princeton
University, Series in Discrete Mathematics and Theoreti-
cal Computer Science, DIMACS, American Mathemati-
cal Society, 1-29.

[3] Lipton, R.J. (1995) DNA solution of hard computational
problems. Science, 268, 542-545.
doi:10.1126/science.7725098

[4] Adleman, L.M. (1995) On constructing a molecular com-
puter. University of Southern California, Los Angeles,
1995.

[5] Adleman, L.M. (1996) On constructing a molecular com-

Copyright © 2012 SciRes. OPEN ACCESS

http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1126/science.7725098

H. Taghipour et al. / American Journal of Molecular Biology 2 (2012) 153-158

Copyright © 2012 SciRes.

158

 OPEN ACCESS

puter. In: Lipton, R.J. and Baum E.B., Eds., DNA Based
Computers, American Mathematical Society, 1-22.

[6] Chang, W.-L. and Guo, M. (2002) Solving the dominat-
ing-set problem in Adleman—Lipton’s model. The 3rd
International Conference on Parallel and Distributed
Computing, Applications and Technologies, Kanazawa,
4-6 September 2002, 167-172.

[7] Chang, W.-L. and Guo, M. (2002) Solving the clique
problem and the vertex cover problem in Adleman—
Lipton’s model. IASTED International Conference, Net-
works, Parallel and Distributed Processing, and Applica-
tions, Japan, 2-4 July 2003, 431-436.

[8] Chang, W.-L. and Guo, M. (2002) Solving NP-complete
problem in the Adleman—Lipton model. The Proceed-
ings of 2002 International Conference on Computer and
Information Technology, Japan, 157-162.

[9] Perez-Jimenez, M.J. and Sancho-Caparrini, F. (2001) Solv-
ing knapsack problems in a sticker based model. Series in
Discrete Mathematics and Theoretical Computer Sci-
ence, Seventh Annual Workshop on DNA Computing, Prince-
ton University, Series in Discrete Mathematics and Theo-
retical Computer Science, DIMACS, American Mathe-
matical Society.

[10] Adleman, L., Rothemund, P., Roweis, S. and Winfree E.
(1999) On applying molecular computation to the data
encryption standard. The 2nd Annual Workshop on DNA
Computing, Princeton University, Series in Discrete Ma-
thematics and Theoretical Computer Science, DIMACS,
American Mathematical Society, 31-44.

[11] Boneh, D., Dunworth, C. and Lipton, R. (1996) Breaking
DES using a molecular computer. Technical Reports, TR-
489-95, Princeton University, Princeton.

[12] Quyang, Q., Kaplan, P.D., Liu, S. and Libchaber, A. (1997)
DNA solution of the maximal clique problem. Science,
278, 446-449. doi:10.1126/science.278.5337.446

[13] Amos, M., Gibbons, A. and Hodgson, D. (1996) Er-
ror-resistant implementation of DNA computations. Pro-
ceedings of the 2nd DIMACS Workshop on DNA Based

Computers, 87-101.

[14] Amos, M., Gibbons, A. and Hodgson, D. (1996) A new
model of DNA computation. 12th British Colloquium on
Theoretical Computer Science.

[15] Hagiya, M., Arita, M., Kiga, D., Sakamoto, K. and Yoko-
yama, S. (1999) Towards parallel evaluation and learning
of boolean μ-formulas with molecules. DIMACS: Series
in Discrete Mathematics and Theoretical Computer Sci-
ence, Proceedings of 3rd Annual Meeting on DNA Based
Computers, 48, 105-114.

[16] Winfree, E. (1998) Simulations of computing by self-
assembly. In: Winfree, E. and Gifford, D.K., Eds., 4th In-
ternational Meeting on DNA Based Computers, Massa-
chusetts Institute of Technology, Cambridge, 213-239.

[17] Winfree, E., Liu, F.L., Wenzler, L.A. and Seeman, N.C.
(1998) Design and self-assembly of two-dimensional DNA
crystals. Nature, 394, 539-544. doi:10.1038/28998

[18] Winfree, E., Yang, X. and Seeman, N.C. (1996) Universal
computation via self-assembly of DNA: Some theory and
experiments. Proceedings of the 2nd DIMACS Workshop
on DNA Based Computers, 44, 191-213.

[19] Liu, Q., et al. (1996) A surface-based approach to DNA
computation, Proceedings of the 2nd Annual Meeting on
DNA Based Computers, Princeton University, Princeton,
10-12 June 1996.

[20] Rozenberg, G. and Spaink, H. (2003) DNA computing by
blocking. Theoretical Computer Science, 292, 653-665.
doi:10.1016/S0304-3975(01)00194-3

[21] Schmidt, K., Henkel, C., Rozenberg, G. and Spaink, H.
(2001) Experimental aspects of DNA computing by block-
ing: Use of fluorescence techniques for detection. In:
Kraayenhof, R., Visser, A.J.W.G. and Gerritsen, H.C., Eds.,
Fluorescence Spectroscopy, Imaging and Probes. Springer-
Verlag, Berlin.

[22] Garey, M.R. and Johnson, D.S. (1979) Computer and in-
tractability: A Guide to the theory of NP-completeness.
Freeman, San Francisco.

http://dx.doi.org/10.1126/science.278.5337.446
http://dx.doi.org/10.1038/28998
http://dx.doi.org/10.1016/S0304-3975(01)00194-3

