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ABSTRACT 

This paper deals with a chemotaxis-haptotaxis model of cancer invasion of tissue. The model consists of three reaction- 
diffusion-taxis partial differential equations describing interactions between cancer cells, matrix degrading enzymes, 
and the host tissue. The equation for cell density includes two bounded nonlinear density-dependent chemotactic and 
haptotactic sensitivity functions. In the absence of logistic damping, we prove the global existence of a unique classical 
solution to this model by some delicate a priori estimate techniques. 
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1. Introduction 

Cancer invasion is associated with the degradation of the 
extra cellular matrix (ECM), which is degraded by matrix 
degrading enzymes (MDEs) secreted by tumor cells. The 
degradation creates spatial gradients which direct the 
migration of invasive cells either via chemotaxis (cellular 
locomotion directed in response to a concentration gra-
dient of the diffusible MDE) or via haptotaxis (cellular 
locomotion directed in response to a concentration gra-
dient of adhesive molecules along the ECM). Chaplain 
and Lolas [1] proposed a PDE model of cancer invasion 
of tissue, which considers the competition between the 
following several biological mechanisms: random diffu-
sion, chemotaxis, haptotaxis and logistic growth. 

Actually, cancer invasion is a very complex process 
which involves many various biological mechanisms. In 
fact, a variety of mathematical models have been devel-
oped for various aspects of cancer invasion, and various 
attempts to give more biologically relevant models have 
been made by different people (see [2], for instance). 
Gatenby and Gawlinski [3] useda reaction-diffusion popu- 
lation competition model to study how the tumor invades 
the surrounding normal tissue or ECM. They suggested 
that tumor cells createan acidic environment that is toxic 
to normal tissue, and the high acidity gives rise to the 
death of the normal tissue, which provides space for tu- 
mor cells to proliferate and invade into the surrounding 
tissue. In contrast to the acid-invasion mechanism, Pe- 
rumpanani and Byrne [4] found that the ECM heteroge-  

neity affects suchinvasion. They proposed a model under 
the assumptions that the ECM is degraded by proteases. 
The proliferation of tumor cells and the remodeling of 
the ECM are taken into account in the Chaplain and Lo-
las model. Recently, Gerisch and Chaplain [5] devel- 
oped a novel non-local model which incorporates cell- 
cell adhesion and cell matrix adhesion, playing important 
roles in the tumor invasion process. 

Very recently, Szymańka et al. [6] proposed a non- 
local model which focuses on the role of non-local ki- 
netic terms modeling competition for space and degrada- 
tion; Szymańka et al. [7] also discussed the influence of 
heat shock proteins on cancer invasion of tissue. The 
analytical results on various models of cancer invasion 
are mathematically interesting. Walker and Webb [8] 
proved the global existence solutions to the Chaplain and 
Anderson’s model [9]. Walker [10] also established the 
global existence of solutions to an age and spatially- 
structured haptotaxis model, which can be regarded as an 
extension of the Chaplain and Anderson’s model [9]. Mar- 
ciniak-Czochra and Ptashnyk recently [11] proved the 
uniform boundedness of solutions to the haptotaxis model 
[9]. Szymańka et al. [6] proved the global existence of 
solutions to their non-local model. 

Very recently, by refining their previous techniques 
developed in [12]. Litcanu and Morales-Rodrigo [13] stu- 
died the asymptotic behavior of solutions to Perumpanani 
and Byrne’s model [4]. Paper [13], to our knowledge, is 
the first attempt to analytically discuss the asymptotic 
behavior of solutions for cancer invasion models. We 
should note that the cancer invasion models in [4-7,9,14]  *Corresponding author. 
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are haptotaxis only models. However, Chaplain and Lolas’ 
model [1] is a parabolic-ODE-parabolic-chemotaxis-hapto- 
taxis system. The global existence and uniqueness of 
classical solutions to this model has been proved for 

0   (where   is the growth rate of cancer cells) in 
one space dimension (see [15]), for 0   in two space 
dimensions (see [16]) and for large   in three space 
dimensions (see [15]).We should note that the global 
existence is still open for small 0   in three space 
dimensions for the parabolic-ODE-parabolic chemotaxis- 
haptotaxis system and the parabolic-ODE-elliptic chemo- 
taxis-haptotaxis system. 

Recently, in addition to global existence and uniqueness, 
the uniform-in-time boundedness of solutions to a sim- 
plified parabolic-ODE-elliptic-chemotaxis-haptotaxis sys- 
tem has been proved for 0   in two space dimensions 
and for large   in three space dimensions (see [17]). 

This paper tries to analytically study a mathematical 
model of cancer invasion with 0  . When 0  , the 
solution Chaplain and Lolas’ model can blow up in finite 
time (see Section 6, [15]). However, it is obvious that the 
blow-up of cancer cell density in finite time is biologi- 
cally irrelevant. Hence, we need to deal with the follow- 
ing problem: how to reasonably modify the Chaplain and 
Lolas’ model [1] to obtain the global existence, which is 
the cancer of the present paper. 

This paper extends Chaplain and Lolas’ model to a 
parabolic-parabolic-parabolic chemotaxis-haptotaxis sys- 
tem, and we study the global existence and boundedness of 
solutions to this model. This paper organized as follows: 
Section 2 describes the model. Section 3 proves the local 
existence and uniqueness of solutions. Section 4 estab- 
lishes some a priori estimates and proves the global exis- 
tence. 

2. Mathematical Model 

The mathematical model of cancer invasion is involved 
in the following three physical variables: cancer cell den- 
sity , ECM density  ,c x t   ,v x t  and MDE concentra- 
tion .  ,u x t

The equations describing the dynamics of each vari-
able read as follows: 

   

  

1

random motion randommotion

2

haptotaxis

. ,

c

c
D V

t

V c

c c
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


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
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
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  
random motion proteolysis

v vv
v

D F u
t


 

                (2) 

  
production decaydiffusion

,u

u
D cu

t

where , , , , , andc v uD D D      are assumed to be posi-
tive constants and  1V c  and are the density-de- 
pendent chemotactic and haptotactic sensitivity functions, 
respectively. 

 2V c

In Equation (1), the migration of cancer cells is as-
sumed to be governed by random motion, chemotaxis 
and haptotaxis. In Equation (2) is assumed that ECM has 
random motion and its degradation by MDEs upon con-
tact; for simplicity, we assume that no remodeling of the 
ECM takes place, as done in [15,18]. Since random mo-
tion ECM is so small hence we assume that Dv is small 
positive constant. In Equation (3), the MDE concentra-
tion is assumed to be influenced by diffusion, production 
and decay; specifically, MDE is produced by cancer cells, 
diffuses throughout ECM, and undergoes decay through 
simple degradation. We shall consider the system (1)-(3) 
in a bounded domain   in d 2 or 3 .d 

For any 0 T    we set 

 Ω Ω 0 ,T t T     

 Ω Ω 0 .T t T       

To close the system of equations, we need to impose 
boundary and initial conditions. 

Boundary conditions: 
The boundary conditions are represented by the fol-

lowing equalities: 

0 on Ω ,T

c u v

n n n

  
   

  
            (4) 

where n is the our ward normal vector to ∂Ω. 
Initial conditions: We prescribe the initial data 

       
   

0

0

,0 , ,0 ,

,0 , Ω

c x c x v x v x

u x u x x

 

 
0

        (5) 

Throughout this paper we will assume that  

        1 0, , 0, 0 0,i iV c C V c Vi         (6) 

 iV c  is Lipschitz continuous,         (7) 

where i = 1, 2 and 

      1 0, and 0.F u C F u          (8) 

In Chaplain and Lolas’ original model [1], it is assumed 
that    1 2,V c c V c c    and  F u u  (where ,   
and   are some positive constants). For this choice of 
   1 2,V cV c  and   ,F u  although the assumptions (6)- 

(8) are satisfied but we would like to slightly modify the 
choice of    , aV c V c  u1 2  such that the modi- 
fied model has a unique global solution. To this end, in 
addition to the assumptions (6)-(8), we will assume that 

nd F

   1 2and are bounded for any 0,V c V c c       (9) 
u 

  


            (3) 
  is bounded for any 0.F u u           (10) 

Copyright © 2012 SciRes.                                                                                  AM 



K. BAGHAEI  ET  AL. 384 

For example, we may take  1
1

,
1

c
V c

c





  

 2
21

c
V c

c





 and  

31

u
F u

u





 ( are 

small positive constants ). Clearly 

1 2 3, and  

c 1V c   as  

 1 20,V c c 

  3asF u u 

 as  and 

 For this choiceof 

2 0

0.    2 c1 ,V c V , 

and  F u

 of 

, the assumptions (6)-(10) are satisfied. An-

other choice  1 c  an  c  satisfying (9) is that 

 for  which has a clear 

biologically relevant interpretation: the cancer cells stop 
to accumulate at a given point of the tumor tissue after 
their density attains a maximal density . A similar as- 

sumption for a prey taxis sensitivity function was made in 
[19]. 

V

   1 0 andV c V c 

d 2V

2 0 ,m

c

c c

m

 

In next section we will prove the local existence and 
uniqueness of a solution for the system (1)-(5) by a fixed 
point argument. 

3. Local Existence and Uniqueness 

Throughout this paper we assume that 

     

       

0 0 0

2

2
0 0 0

0 0 0
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, , ,

( ) ( ) ( )
0 on .
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
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   

 

  
   

  
Ω

      (11) 

For brevity we set 

 , ,U c v u                   (12) 

For notations’ convenience, in what follows we denote 
various constants which are independent of T by A0, 
whereas we denote various constants which depend on T 
by A .The constants A0 and A may be different from line 
to line. 

In the following, under the assumptions (6)-(8) and 
(11), we shall prove that the system (1)-(5) has a unique 
local (in time) smooth solution. 

Theorem 3.1. Under the assumptions (6)-(8), there ex- 
istsa unique solution 2 ,1 2 ΩTU C      of the system 
(1)-(5) for some small  which depends on  0T 

   2 Ω
.,0 .

C
U   

Proof. We shall prove the local existence by a fixed 
point argument. We introduce the Banach space X of the 
vector function U (defined in (12)) with norm 

 1 , 2 Ω
(0 1)

TC
U U T  

 : ,MX U X U M    

where 

       

 

 
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2

2
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 
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



 

 

 

 

,MU X  Given any we define a corresponding.  
Function U by FU



and a subset 

 

 ( , , )U c v u , where U  sat-
isfies the equations 

  0 in Ω ,v T

v
D v F u v

t


   


        (13) 

0 on Ω ,T

v

n


 


             (14) 

   0,0 in Ω,v x v x           (15) 

in Ω ,u T

u
D u u c

t
 

   


       (16) 

0 on Ω ,T

u

n


 


            (17) 

   0,0 in Ω,u x u x           (18) 

 1 , , in Ω ,c T

c
D c h c u v

t


  


     (19) 

0 on Ω ,T

c

n


 


           (20) 

   0,0 in Ω,c x c x          (21) 

where 

    
  

   
    

1 1

2

1 2

1 2

, ,

 

 

h c u v V c u

V c v

V c u V c v

V c u V c v c





 

 

   

  

    

     

   (22) 

We first consider the linear parabolic (13)-(15). By (8), 
(11) and the parabolic Schauder theory (for example, see 
[20]) there exists a unique solution v , and 

     2 ,1 2 20 0Ω Ω
,0

TC C
v A v x A  M         (23) 

Similarly, from ,MU X  
 (16)-(1

(11) and the parabolic Schau- 
der theory, problem 8) has a unique solution u  
satisfying 

        2 ,1 2 , 220Ω ΩΩ

0

,0
T TC CC

u A u x c

A M

       



 
 (24) 

We now turn to the linear parabolic problem (19)-(21). 
Using ,MU X  (23) and (24) and noting  1V c and 
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 2V c  hitz continuous, we have are Lipsc

 , 21 0Ω
,h A M       

TC
        (25) 

Hence, by Schauder theory as before, the problem (19)- 
(21) admits a unique solution c  satisfying 

 

      
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By direct calculations, we obtain 
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 that next show F  is contract mapping. Take 

1 2, in ,
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0,

t
v v


   Schauder theory yields 
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We next turn to the equation for 1 2c c : 
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Noting  1 cV   and  2 cV   are Lipschitz continuous 
and using ( , (27), (28 nd (29), we have 6), (7) ) a

 , 22 0Ω
.

TC
h A    

 1 2 0
0,

t
c c


   By Schauder theory, since 
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A  2 ,1 21 2 0Ω
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T TC

c c A h           (31) 

Combining this with (28) and (29), we get 

 2 ,1 21 2 0Ω
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U U A 

T
    

   1 2 ,0 0U U x Nothing  and proceeding as be-
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 
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

  
 
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 
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  (32) 

Taking T small such that  0

1

2
A T   we conclude  

fr n in om (32) that F is a contractio MX .
 fi

 By the contrac- 
tion mapping theorem F has a unique xed point U  in 

MX  which is the unique solution of (1)-(5). 

es and Global Existence 4. A Priori Estimat

e To continue the local solution established in the abov
section to all t > 0 we need to establish some a priori es-
timates. Throughout this section, in addition to the as-
sumptions (6)-(8) and (11) we assume that the assump-
tions (9) and (10) hold. 

Noting        1 20 0 0,  0,  0V V c x v x0 0     and  
 0 0,x   easily 

ollowing lemma. 
Lemma 4.1. Assume that  

u  and using the maximum principle, we
fprove the 

 2,1, , Ω  is 
a solution to (1)-(5), then  

TU c v u C 

Copyright © 2012 SciRes.                                                                                  AM 



K. BAGHAEI  ET  AL. 386 

0,  0,  c v  33) 

Lemma 4.2. Assume that 

0.u               (

   2,1U c 
2p  , 

, , ΩTv u C  is 
we have  a solution to (1)-(5) then for 

 Ωp
TL

c ,A       (         34) 

 2,1 0 ,               (35) 
p TW

v A




 2,1 Ω
.

p TW
u A                (36) 

Proof. For , we derive fro2p  m  

 

   

   

 

 
   

21 2

Ω Ω Ω

2
1

Ω

2
2

Ω

22 2

Ω

2
0 Ω

2
2Ω

d
d

 1 d

 1 d

4 1
d

 1 d

 1 d .

p

p

p

c

p

p

c c c c x

p p c V c c u x

p p c V c c v x

p D
c x

p

A p p c c u x

p p c V c c v x









 











   

   

 
 

   

   










(37) 

We now consider the integral x . By  

Equation (3) and the parabolic 

d
d d 1p p

t cc x p x p p D
t

     

2

Ω
dpc c v u   

pL  estimate [20] we have 

      
 0 0 Ω

,p
TL

A A c 



In particular, 

2,1 20 0Ω Ω Ωp
p T p TW W L

u A u c  
      (38) 

     0 0 ΩΩ pp
TT

t LL
A A c         (39) 

Multiplying Equation (3) by 

Ωp
TL

u u

1pc   and in
, we obtain 

d dp t

And there for, by Young’s inequality and estimate (39), 
we have 

tegrating in 
Ωt

 1
t t

p D 2

0 Ω 0 Ω

1 1

0 Ω 0 Ω

d d

    d d d d

p
u

t t
p p

t

c c u x t c x

c u x t c u x t







 

  

 

 

 



 
 

   

 

2
0

0 Ω 0 Ω

0 0
0 Ω 0 Ω 0 Ω

1
t t

p  d d d d

d d d d d d .

p p
u

t t t
pp p

t

D c c u x t A p c x t

u x t u x t A p c x t A

   

   

 

   




 (40) 

Also, by Equation (2) and the parabolic pL  estimate 
we have 

   2,1 20 0 0Ω Ωp T pW W
v A v A       (41)    

In particular, 

  0Ω
.p

TL
v A               (42) 

By (9), Young’s inequality and estimate (42) 

 

 

 

2 2
2 0

0 Ω 0 Ω

c d d dp pc V c v x t A c c v       

2 22 2
0

0 Ω 0 Ω

22
02

0 Ω 0 Ω

22
2

0 Ω 0 Ω

0 0
0 Ω

d

d d ( ) d d

4
d d , d d

4
  d d d d

  , d d

t t

t t
p p

t t
p p

t t
p p

t
p

x t

c c x t A c v x t

c x t A p c x t
p

v x t c x t
p

A p c x t A

    

  

   

 

 



 

 

 





 



 

 





 (43) 

Integrating with respect to t on both sides (37), noting 
(11) and using estimates (40) and (43) and taking
su

   
fficiently small, we obtain  

   

   

   

0 Ω

0 0
0 Ω

0 0
0 Ω

d d

,

d d .

c

t
p

t
p

c x s

A p c A p

A p c x t A p



 

 

 

 

   

Gronwall’s lemma yields 

           (44) 

Now, by (39) and (44) we have 

22

Ω

4 1
d

tp pp
c x D

p



  

 
0 Ω

.
T

A p  d dpc x t

   2,1 Ωp TW
u A .p             (45) 

This completes the proof of lemma 
In the following result we obtaina better bound of c, a 

4.2. 

L —bound. Let p > 1 and define :B   c

main    

D   I , with  

do 2 Ω : 0p

c
D B c W

n


on     


Ω  For


 each 

0,   de Bfine the sectorial operator  (see [21]) and  

 :X D B
   .with the norm pX L

ma 4 3

c B c  

Lem . . Let 2 1,   
ve 

then for   where 0 ,t t T
0 0t  , we ha

( ) .A         (46) 
X

c t


       

Proof. We have that 

  0c t e c

     ( )
1 2

0

d

tB

t
t s Be V c u V c v 



  c s         
 

and so 
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 

     

0

( )
1 2

0

d

tB

X X

t
t s B

X

c t e c

e V c u V c v c

 


 



 



        


 

s

(47) 

By [21] (Theorem 1.4.3) and (11) 

 0 0 0 0Ωp
tB t t

LX
e c A t e c A t e



             (48

and, by (34), 

) 

     
 

   

Ω

,

p
s

L

t s

c

A t s e







    
      (49) 

 . Moreover, by [22] (Lemma 2.1), (9), 
(35) an ain 

0
t s B t

X
e c A t s e



     

where 0Q ,1
d (36), we obt

     

     

   

    

( )
1 2

( )
0 1 2

1
(2( )( )

X

tA t s e



     
 

 
)

0 1 2 (Ω)

1

2 ,

p

t s B

t s

s

L

t s

e V c u V c v

A e V c u V c v

V c u V c v

A t s e


 

 

 

 

 

    

       

        

  

   
(50) 

where 

X

1
0 such that 1.

2
       

Inserting (48)-(50) into (47) and noting 
1

1
2

      

and 1  , we obtain 

 

     
1

( )2  t s  



0

0

d

t

X

t
t s

A t e


0

c t

A t s e t s e
        

  s

A t



 

 




 



  

for all .
Th of lemma 4.3
Lemma 4.4. We have that 



 0 0, (0 )t t T t T    
is completes the proof .  

     
Ω

for all 0, .
L

c t A t T           (51) 

Proof. Let ,2 ,1 . since 2P d
p

   


d d

p

 
  we have  

by


 [21] (Theorem 1.6.1) that 

 ΩX c   

Thanks to lemma 4.3 we have that 

     0 0ΩL
c t A t  for 0.t t   

Moreover, the local existence Theorem yields  
    0ΩL

c t A 

Therefore 

   
(Ω)

for all 0, .
L

c t A t T    

This completes the proof of Lemma 4.4.  
We ha atLemma 4.5. ve th  

 2,1 Ωp TW
c A               (52) 

Proof. By the Sobolev embedding theorem (see [20], 
(L tly large, then 
(3

emma 3.3, p. 80)), if we take p sufficien
5) and (36) yields 

   2 Ω
,

T
A, 2 ,0,ΩTC C

v A u     

an

       (53) 

d therefore  

   0,Ω Ω
,

T TL L
v A u A             (54) 

By (7) and (51), we have  

 
 

 
 Ω

1 2
Ω

,
L

L
V  c A V c A




  .      (55) 

Now, Equation (1) can be rewritten as 

 for 0.t t  

    
   

1 2

1 2

.C u V c v c
t

V c u V c v



 

c
D c V c        


    

w

 

here 

   
 

1 2
ΩL

V c u V c v A 


             (56) 

     1 2 Ωp
TL

V c u V c v A             (57) 

), (35), (36), (53) and (55). These, along with (11) 
and the parabolic 

By (9
pL  estimate, yield the es

Lemma 4.6. Assume that 
timate (52).  

   2,1, , TU c v u C   is 
a solution to (1)-(5), then 

 2 ,1 2 ΩTC   

Proof. By (52) nd the Sobolev embedding theor  

.U A              (58) 

 a em
(taking p large), 

 , 2C
c   Ω

.
T

A                (59) 

Also, (35), (36) and the Sobolev em
(ta

bedding theorem 
king p large) yield 

   ΩT
, 2 , 20Ω

, .
TC C

A u A v            (60) 

Now, from (3), (11), (59) and the parabolic Schauder 
estimates we have 

 2 ,1 2 ΩTC
u A                (61) 

Also, the parabolic Schauder estimates yield 

 2 ,1 2 0Ω
.

C
v A               (62) 

T

Finally, we conclude from (61) and (62) that 
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Hence, by the parabolic Schauder estimates, we obtain
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