
Journal of Software Engineering and Applications, 2012, 5, 255-261
http://dx.doi.org/10.4236/jsea.2012.54030 Published Online April 2012 (http://www.SciRP.org/journal/jsea)

255

Rank-Me: A Java Tool for Ranking Team Members in
Software Bug Repositories

Naresh Kumar Nagwani1, Shrish Verma2

1Department of Computer Science & Engineering, National Institute of Technology Raipur, Raipur, India; 2Department of E&TC,
National Institute of Technology Raipur, Raipur, India.
Email: {nknagwani.cs, shrishverma}@nitrr.ac.in

Received January 21st, 2012; revised February 29th, 2012; accepted March 25th, 2012

ABSTRACT

In this paper a team member ranking technique is presented for software bug repositories. Member ranking is performed
using numbers of attributes available in software bug repositories, and a ranked list of developers is generated who are
participating in development of software project. This ranking is generated from the contribution made by the individual
developers in terms of bugs fixed, severity and priority of bugs, reporting newer problems and comments made by the
developers. The top ranked developers are the best contributors for the software projects. The proposed algorithm can
also be used for classifying and rating the software bugs using the ratings of members participating in the software bug
repository.

Keywords: Software Bug Repository; Team Member Rating; Rating Software Bugs; Team Member Scores in Bug

Repositories

1. Introduction

A software bug repository contains information about the
software bugs. A software bug report consist of some
bug attributes like summary (or title) of the bug, descrip-
tion of the bug, date at which the bug is reported, as-
signed-to field (developer to whom the bug has been as-
signed, reported-by field (person by whom the bug has
assigned), comments from the team members etc. Large
scale projects maintain their bug information’s using bug
tracking tools. Some of the popular bugs tracking tools
are Bugzilla, Trac, JIRA, Perforce etc. An example of
software bug repository using these tools is Mozilla Bug-
zilla, which has the information about the Mozilla project
bugs. The present work reports a new algorithm to rate
(rank) the team members on the basis of information
available in bug repositories about their contribution.

1.1. Motivation

The motivation behind this work is to answer the fol-
lowing three questions: 1. Why to rate team members? 2.
How to rate team members? 3. How this ranking will
help? The answers to these questions give the motivation
towards the proposed work, and are given in the follow-
ing sections.

1.2. Why to Rate Team Members?

Rating team members in software bug repository helps in

identifying the expert and good team members involved
in software project. It is a measure by which various
team members can be classified by the amount of effort
each team member exerts in the project.

1.3. How to Rate?

The rating can be done using the vast information present
in the software bug repository. The effort could be made
in verity of ways; some of which are resolving or fixing
the bugs for the different priority and severity levels.
Person who has fixed critical severity and/or high prior-
ity bugs will get more score than one who has fixed low
priority and/or minor severity bugs. Another effort could
be on the basis of the number of times the user is provid-
ing the comments for the reported bugs to offer more
information, and the number of times a team member is
reporting new issues and bugs related to the software.
Apart from this if the team member is tracking some
bugs and is a part of bug thread communication (Carbon
Copy mailing list), then also the effort needs to be calcu-
lated. Using all these efforts the scores for team member
is calculated for their rating.

1.4. How This Ranking Will Help?

Rating the team members help in finding the experienced
and efficient team members who can carry more respon-
sibilities and can help in faster development of the soft-

Copyright © 2012 SciRes. JSEA

Rank-Me: A Java Tool for Ranking Team Members in Software Bug Repositories 256

ware. The good rating persons show that they are having
good experience in the software project and they can
guide junior or new team members for effective bug
resolutions and faster development of the software.

2. Related Work

Bug repositories are huge source of informations. Using
bug mining, knowledge patterns can be generated. Weib,
et al. reported a method to predict the software bug esti-
mation [1,2], proposed predictors are designed using two
data points—the title, and description of bugs. An ap-
proach is designed by Matter et al. [3] to automatically
suggest developers who have the appropriate expertise
for handling a bug report. The developer expertise model
is designed using the vocabulary found in their source
code contributions which is compared with the vocabu-
lary of bug reports. An advantage of this approach is the
record of previous bug reports is not required; the pro-
posed technique is also able to recommend developers
who are not involved in fixing the bugs earlier. Canfora
and Cerulo [4] have developed a technique to identify the
most appropriate developers to resolve a new change
request and also to predict the set of impacted source
files for this new change request.

Anvik et al. [5] proposed an approach to automate bug
assignment using machine learning techniques, in this
proposed technique, when a new report arrives, the clas-
sifier produced by the machine learning technique sug-
gests a small number of developers suitable to resolve the
report. The only problem with this technique is it has low
precision and recall values for the suggested developers.
Anvik and Murphy [6] did an empirical evaluation of two
approaches to locate expertise. The two approaches are
based on mining the source and bug repositories. In the
first approach, source code check-in logs are examined
for the modules that contain the fixed source files. In the
second approach, the bug reports from bug repositories
are analyzed to locate expertise. Panjer [7] has explored
the feasibility of using data mining tools to predict the
time to fix a bug based on basic information known at the
beginning of a bug’s lifetime.

Nagwani and Verma proposed the prediction tech-
nique for the bug fix estimations [8], in which the esti-
mation was perofmed using average fix time for the
similar software bugs in the proposed technique. Nag-
wani and Verma [9] designed an open framework in java
to pre-process the data available at online software bug
repositories. The proposed framework accepts a URL
(Uniform Resource Locator) for the online software bug
repository, where user can specify the ranges of the soft-
ware bug id’s. The bugs in the specified ranges are stored
to the local machine where the framework provides the
parsing and pre processing work for the retrieved soft-
ware bugs. The processed software bugs can be taken

directly from the local machine for the analysis. A frame-
work for automated assignment of bug-fixing tasks is
presented by Baysal et al. [10], in the proposed approach
the knowledge about a developer’s expertise is used by
analyzing the history of bugs previously resolved by the
developer, in the proposed approach lacks the experi-
mental evaluation due to number of reasons mentioned in
the work.

A detailed literature review reveals that although the
ranking mechanism is common at most of the places like
applying the ranking in web search result [11] etc., but
the concept of ranking the team members in software bug
repositories is a novel technique and is yet to be reported.
Gousios et al. [12] proposed a model by combining tradi-
tional contribution metrics with data mined from soft-
ware repositories for developer contribution measure-
ments. In the proposed model clusters of similar projects
were created to extract weights which were applied to the
actions performed by a developer on project assets to
calculate a combined measurement of the developer’s
contribution. The proposed model was designed for over-
all contribution of developers, but the problem with the
proposed model is, the number of parameters is calcu-
lated using personal experience and traditional contribu-
tion, which may not be feasible or accurate at certain
cases, whereas in the present work, the member ranking
is performed for software bug repositories using infor-
mation available in software bug repository, itself.

3. Methodology

The overall process of assigning ratings to the team
members in software bug repository is shown in Figure 1.
Using the information present in bug attributes of the bug
reports, various scores are calculated for each team mem-
ber. The major scores are bug fixing score using impor-
tance (priority and severity) of bugs, user comment
scores, newly reported bug scores and CC mailing list
scores for bug related communication in software bug
repository. The aggregate scores are calculated using the
four scores, and normalized for the ratings. This criterion
is used to develop the rating of the team members present
in software bug repository.

The overall score of i’th team member in the software
bug repository can be calculated using (1). This score is
the linear sum of four major scores. These four scores are
bug fixing score (Scorei(Fix)) according to the priority
and severity of the software bugs, the score of the com-
ments (Scorei(C)) made by the team members in various
bugs, the score of the team members who are added in
the CC mailing list (Scorei(CC)) in the various software
bugs and the last score is the score of number of times a
team member has reported a software bug (Scorei(R)).

   
   

i i i

i i

Score Score Score CFix

Score ScoreCC R

 
 

 (1)

Copyright © 2012 SciRes. JSEA

Rank-Me: A Java Tool for Ranking Team Members in Software Bug Repositories 257

Bug Reports

Fix Score

Comment Score

Reported Score

CC Mailing Score

Aggregate Score

Normalized Score Assign Ratings &
Visualizing

Pre-processing
Eliminating Spam’s

Attribute Extraction

Figure 1. The rating methodology for the team members.

Scorei(Fix) can be again decomposed in two the two
parts as given in (2).

     i iScore Score Score SFix P  i

5

 (2)

Scorei(P) is bug fixing scores using different priority
values and Scorei(S) is the bug fixing scores using diffe-
rent severity values. The calculation of Scorei(P) is based
on assumption, that there are five different priorities
available in software bug repositories named P1, P2, P3,
P4, and P5 (Most of the bigger projects like Mozilla,
MySql, JBoss etc. have five priority levels. Each of the
five different priorities are assigned corresponding weights,
as given in (3). The relationship between the various pri-
orities weighting factor is given) in (4).

     
   
 

i 1 i 2 i1 2

3 i 3 4 i 4

5 i 5

Score WP N WP NP PP

WP N P WP N P

WP N P

   

   

 

 (3)

1 2 3 4WP WP WP WP WP    (4)

In the similar manner the severity score is also calcu-
lated using different weighting factor of different severi-
ties at different levels and is given in (5). The standard
severity levels are typically the “Critical”, “Major”, “Nor-
mal”, “Enhancement”, “Trivial” and “Minor”. For these
different severities different score-weights are assigned
to fix or resolve a bug. The relationship between the vari-
ous severity score is presented in (6). The symbol used in
(3) and (5) for calculating the priority and severity scores
are systematically arranged and summarized in Tables 1
and 2.

     
  
   

i i i

i i

i i

Score CT N MJ NS CT M

NM N EN N

Table 1. Various symbols used in equations.

Symbol Significance

Ni(P1) Number of priority P1 bugs fixed by a developer.

Ni(P2) Number of priority P2 bugs fixed by a developer.

Ni(P3) Number of priority P3 bugs fixed by a developer.

Ni(P4) Number of priority P4 bugs fixed by a developer.

Ni(P5) Number of priority P5 bugs fixed by a developer.

Ni(CT) Number of Critical severity bugs fixed by a developer.

Ni(MJ) Number of Major severity bugs fixed by a developer.

Ni(NM) Number of Normal severity bugs fixed by a developer.

Ni(EN) Number of Enhancement bugs fixed by a developer.

Ni(TR) Number of Trivial severity bugs fixed by a developer.

Ni(MN) Number of Minor severity bugs fixed by a developer.

Ni(C) Number of comments made by a team member.

Ni(CC)
Number of time a team member is added to the CC
mailing list in the bugs.

Ni(R) Number of times a team member has reported a bug.

Table 2. Various weighting parameters and their meaning.

Weighting
Parameter

Significance

WP1 Weight of bug fixed by a developer with the priority P1

WP2 Weight of bug fixed by a developer with the priority P2

WP3 Weight of bug fixed by a developer with the priority P3

WP4 Weight of bug fixed by a developer with the priority P4

WP5 Weight of bug fixed by a developer with the priority P5

CT
Weight of bug fixed by a developer with the severity
Critical

MJ
Weight of bug fixed by a developer with the severity
Major

NM
Weight of bug fixed by a developer with the severity
Normal

EN
Weight of bug fixed by a developer with the severity
Enhancement

MN
Weight of bug fixed by a developer with the severity
Minor

TR
Weight of bug fixed by a developer with the severity
Trivial

R Weight of bugs reported by a team member

C Weight of comments made by a team member

CC Weight of being the part of CC mailing list for a bug.

 (6) CT MJ NM EN TR MN    

The score calculations for the bug comments, cc mail-
ing list and number of bugs reported by the team member
are given in (7) to (9) respectively.

   i iScore C* NC  C (7)


J

NM E

TR N MN N MNTR

   
   
   

   i iScore C* NCC CC (8)

   
N (5)

i iScore C* NR R (9)

Copyright © 2012 SciRes. JSEA

Rank-Me: A Java Tool for Ranking Team Members in Software Bug Repositories

Copyright © 2012 SciRes. JSEA

258

where Ni(C), Ni(CC) and Ni(R) are the number of times
the ith team member posted comment, number of time the
ith team member is added to the CC mailing list and
number of time the i’th team member has reported a soft-
ware bug. C, CC and R are the weigh for the scores for
the comments, CC mailing list and newly reported soft-
ware bugs.

posed by Nagwani and Verma [10] is used for this pur-
pose. Once the parsing is done, suitable attributes for
team ranking are filtered from the parsed data. The at-
tributes selected in this work are assigned-to, priority,
severity, cc-list, and reported-by.

Apart from parsing, another important pre-processing
operation is identification and elimination of spams from
the various textual bug fields like comments, description
etc. This will ensure that only the effective information is
selected for the analysis. For instance, just to increase the
comment count any user can put some ineffective infor-
mation in comment section of any bug, which should not
be counted for ranking of commented user since it is
useless. For this purpose jASEN (java Anti Spam EN-
gine), an open source java based anti spam framework is
used. The jASEN framework is available at
http://www.jasen.org/

The methodology is elaborated further in the following
continuation.

4. Pre-Processing and Data Preparation for
Rating

Software bugs are available as HTML or XML file for-
mats in online software bug repositories, where the soft-
ware bugs are managed using various bug tracking tools
like Bugzilla, Trac, Jira, Perforce etc. One instance of a
software bug taken from Mozilla bug repository (avail-
able at: https://bugzilla.mozilla.org) is shown in Figure 2.
Mozilla uses the Bugzilla bug tracking tool to manage
the software bugs of Mozilla products. These bugs are
required to be available in local machine in order to per-
form some analysis. Parsing is another major operation
required in order to extract the various bug attributes
information. In the present paper the framework pro-

5. Score Transformation and Rating
Normalization

Once the raw score for the team members participating in
the software bug repository is calculated, the next im-
portant step is to transform the raw score into the newer
range of score for smoothing the criteria of ratings. The

Figure 2. Snapshot of a Mozilla bug (bug id = 11012).

Rank-Me: A Java Tool for Ranking Team Members in Software Bug Repositories 259

reason behind normalization of raw score is to make the
rating outputs was to understand. For this purpose vari-
ous score normalization techniques are available. Out of
which the most popular is Min-Max normalization, as
explained below.

     NEW NEWA A

NEW

Max Minmin max min

Min

n n    


A



(10)
where ' is the transformed value for the given value 
for a particular attribute A, maxA and minA are the
maximum and minimum values of an attribute A. Max-
NEW and MinNEW are the new maximum and new mini-
mum values; the new range where the given value is go-
ing to be transformed. The attribute “A” here is the score
calculated for participating team members in a software
bug repository.

Alternatively, normalization using decimal scaling and
other standard normalization techniques can also be used.
However in the example presented in this paper Min-
Max normalization technique is used with minimum
value as 0 and maximum value as 5.

6. Visualizing the Member Ranking

Next the team member ratings have to be visualized us-
ing the ranking value calculated from the proposed algo-
rithm. Two common rating visualization techniques are
mentioned here as a reference. Figure 3 shows a star
rating visualization to represent the rating in the range of
[0…5], Where as Figure 4 represents the rating bar visu-
alization for rating scores in the scale of 0 to 5.

7. Calculating Bug Ranking Using Member
Ranking

The proposed team member ranking can now be used for
calculating software bug ranks. The software bug rank
can be used to represent the ordering of the bugs using
the involvement of team members of different rank. Lin-
ear sum of rank of the team members involved in soft-
ware bugs can used for calculating the software bug rank.
A general way of calculating the software bug rank is
given in (11).

  
   

 
1 2

N

BRank Assigned by Assigned To

Comment Comment

 Comment

RANK RANK

RANK RANK

RANK

   

 

 

(11)
After calculating the bug rank it can be normalized to

a specific range to indicate various bug rank levels.

8. Implementation & Experiment

The implementation is performed for the given technique

Figure 3. A star rating visualization technique in the range
[1…5].

Figure 4. A rating bar visualization technique in the range
[1…5].

using Java as the programming language and MySql as
the local database to store the processed information. The
implementation is performed in the five stages.

1) Retrieving and Parsing the Software Bugs: In the
first step the software bugs are retrieved at local system
and parsing using tokenization for extracting the bug
attributes and their corresponding values.

2) Creating local database for selected attributes: The
extracted attributes are filtered for analysis and saved in
the local database.

3) Eliminating the possible spams: In this stage the
textual bug attributes are analyzed for possible spam. The
information which is likely to be spam is ignored and
never used for calculating the ranking of team members.

4) Generating Metadata for Ranking: Once the possi-
ble spams are eliminated the next step is to prepare the
metadata for ranking. This includes counting the number
of team members; number of bugs for each member,
number of comments for each member etc. is performed
in this stage.

5) Implementing the ranking algorithm: With the help
of metadata generated in previous stage and using vari-
ous user supplied weights given in Table 2, the algo-
rithm given in section-2 is implemented in java.

6) Visualizing the ranking: As a post processing part
after the calculation of ranking for the team members,
using one of the visualization techniques can be used to
visualize the normalized rank of a team member.

For experiment and simulation of the developed algo-
rithm Mozilla bug repository is selected and around 1000
software bugs are selected using sequence sampling
technique. These bugs are selected from bug-id 501 to
1500. The list of developers is generated, total 97 deve-
lopers were found to whom these bugs were assigned.
For each developer total numbers of bugs are counted,
which indicates the involvement of a developer (or team
member) in the process of bug resolution. The experi-
ment for team member ranking demonstration is per-
formed using the weight values of R = 5, C = 2, CC = 1,
WP1 = 10, WP2 = 8, WP3 = 6, WP4 = 4, WP5 = 2, CT =
10, MJ = 8, NM = 6, EN = 4, and MN = TR = 2.

Copyright © 2012 SciRes. JSEA

Rank-Me: A Java Tool for Ranking Team Members in Software Bug Repositories 260

The output data about the top five contributors is com-
puted and is shown in Table 3 for the selected 1000 sam-
ple (bug-id 501 to 1500) bugs from Mozilla bug re-
pository. In this table the computation details of members
are provided, who have contributed more in the software
bug repository for the selected 1000 samples. For exam-
ple “BUSTER” is one of the member whose bug fix
score is 2796 (which is calculated using Equation (2) by
combing the various bug fix scores for different priority
and severity software bug), bug reported score is 0 (bug
reported score is 0, since non of the selected bug samples
are reported by “BUSTER”), comment score is 296,
CC-listing score is 61, total score is 3449 and the trans-
formed score is 5.0 since “BUSTER” got the maximum
total score in the selected samples.

The fix score calculation break up for the team mem-
bers is given in Table 4. For example “BUSTER” have
worked on fixing 22 priority “P1” bugs etc., using these
counts weighted sum is calculated for the different prior-
ity and severity bugs using the appropriate weights ex-
plained in Table 2. The totcal scores of the team mem-
bers are calculated using Equation (2). The normalized
marks are also shown in the last column of the table after
the Min-Max normalization with MinNEW as 0 and MaNEW
as 5.

Table 6 shows the breakup of the bug fix score using
the different priorities and severities of the software bugs.

The bug fix value of the team member ‘LEGER’ is 0
which means he was not involved in bug fixing rather he
was contributing by providing the “757” comments in the
selected bug samples, which made him the top contribu-
tor. The sample rating criteria is shown in Table 5 (se-
lected for the experiment) and the final output in form of
the ratings of the top 5 contributors using the sample
rating criteria is given in Table 6. The final output shows
that the rating of only user

“BUSTER” is outstanding, and he is found to be very
effective person for the 1000 sample software bugs.

9. Limitation of Proposed Work

Literature review reveals that the ranking technique like
the proposed one is not yet implemented. Once this type
of approach will be introduced for the software reposito-
ries, there is the possibility that some of the team mem-
bers can start posting of ineffective information in such
repositories. So for effective ranking of team member the
management (project managers) has to monitor the effec-
tiveness of the team members. Various weights given in
Table 2 can be adjusted according to the manual moni-
toring in the bug repositories.

10. Conclusion & Future Scpope

A new algorithm to rate the participating team member in

Table 3. The top 5 scores from 1000 sample Mozilla bug reports.

Member Fix Reported Comment CCListed Total Score t-Score

BUSTER 2796 0 296 61 3449 5.0

LEGER 0 0 757 18 1532 2.22

KARNAZE 974 0 177 0 1328 1.92

PETER LINSS 834 0 116 0 1066 1.54

RICKG 794 0 112 34 1052 1.52

Table 4. Bug fix scores for the the top 5 scorers in 1000 sample Mozilla bug reports.

Member P1 P2 P3 P4 P5 Critical Major Normal Enhancement Minor Fix Score

BUSTER 22 156 13 3 1 11 27 148 2 7 2796

LEGER 0 0 0 0 0 0 0 0 0 0 0

KARNAZE 9 54 4 0 0 4 9 52 0 2 974

PETER LINSS 3 51 5 0 0 3 2 52 2 0 834

RICKG 10 42 1 0 0 6 8 37 1 1 794

Table 5. Sample criteria for team members rating.

Criteria-id Criteria Rating

1 t-Score > 4.0 Outstanding

2 t-Score <= 4.0 && t-Score > 3.0 Excellent

3 t-Score <= 3.0 && t-Score > 2.0 Very Good

4 t-Score <= 2.0 && t-Score > 2.0 Good

5 t-Score <= 1.0 && t-Score > 0.0 Moderate

Copyright © 2012 SciRes. JSEA

Rank-Me: A Java Tool for Ranking Team Members in Software Bug Repositories 261

Table 6. Ratings for top scorers in 1000 sample bug reports
in Mozilla.

Member Score t-Score Rating

BUSTER 3449 5.0 Outstanding

LEGER 1532 2.22 Very Good

KARNAZE 1328 1.92 Good

PETER LINSS 1066 1.54 Good

RICKG 1052 1.52 Good

a software bug repository is presented in this paper.
Various scores required to rate a team member are for-
mulated and calculated by assigning proper weights to
each score. Experiments are performed and validated
over Mozilla bug repository, and the calculated ratings
are validated and found to be in good agreement. Future
scope of this work can be identifying the relevance of
user comments and assigning the weight as per the rele-
vance of the comment entered by the team member. Also
the technique of team member’s contribution in terms of
effectiveness can be evolved.

REFERENCES
[1] C. Weiss, R. Premraj, T. Zimmermann and A. Zeller, “How

Long Will It Take to Fix This Bug?” Proceedings of the
4th International Workshop on Mining Software Reposi-
tories, Minneapolis, 19-20 May 2007, pp. 1-8.
doi:10.1109/MSR.2007.13

[2] C. Weiss, R. Premraj, T. Zimmermann and A. Zeller,
“Predicting Effort to Fix Software Bugs,” Proceedings of
9th Workshop Software Reengineering (WSR 2007), Bad
Honnef, May 2007.

[3] D. Matter, A. Kuhn and O. Nierstrasz, “Assigning Bug
Reports Using a Vocabulary-Based Expertise Model of
Developers,” Proceedings of 6th IEEE Working Confer-
ence on Mining Software Repositories (MSR 2009), Van-
couver, 16-17 May 2009, pp. 131-140.
doi:10.1109/MSR.2009.5069491

[4] G. Canfora and L. Cerulo, “How Software Repositories
can Help in Resolving a New Change Request,” Proceed-

ings of IEEE International Workshop on Software Tech-
nology and Engineering Practice (STEP 2005), Budapest,
September 2005.

[5] J. Anvik, L. Hiew and G. C. Murphy, “Who Should Fix
This Bug?” Proceedings of the 28th International Con-
ference on Software Engineering (ICSE 2006), Shanghai,
20-28 May 2006, pp. 329-338.
doi:10.1145/1134285.1134336

[6] J. Anvik and G. C. Murphy, “Determining Implementa-
tion Expertise from Bug Reports,” Proceedings of 4th In-
ternational Workshop on Mining Software Repositories
(MSR 2007), Minneapolis, 20-26 May 2007, p. 2.
doi:10.1109/MSR.2007.7

[7] L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” Pro-
ceedings of 29th International Conference on Software En-
gineering Workshops (ICSEW 2007), Minneapolis, 20-26
May 2007, p. 29. doi:10.1109/MSR.2007.25

[8] N. K. Nagwani and S. Verma, “Predictive Data Mining
Model for Software Bug Estimation Using Average
Weighted Similarity,” Proceedings of IEEE 2nd Interna-
tional Advance Computing Conference (IACC 2010), Pa-
tiala, 19-20 February 2010, pp. 373-378.
doi:10.1109/IADCC.2010.5422923

[9] N. K. Nagwani and S. Verma, “An Open Source Frame-
work for Data Pre-Processing of Online Software Bug
Repositories,” CiiT International Journal of Data Mining
Knowledge Engineering, Vol. 1, No. 7, 2009, pp. 329-
338.

[10] O. Baysal, M. W. Godfrey and R. Cohen, “A Bug You
Like: A Framework for Automated Assignment of Bugs,”
Proceedings of 17th International Conference on Pro-
gram Comprehension (ICPC 2009), Vancouver, 17-19 May
2009, pp. 297-298. doi:10.1109/ICPC.2009.5090066

[11] L. Page, S. Brin, R. Motwani and T. Winograd, “The Pag-
erank Citation Ranking: Bringing Order to the Web,”
Technical Report, Stanford University, Stanford, 1998.

[12] G. Gousios, E. Kalliamvakou and D. Spinellis, “Measur-
ing Developer Contribution from Software Repository
Data,” Proceedings of the 28th International Working
Conference on Mining Software Repositories (MSR 2008),
Leipzig, 10-11 May 2008, pp. 129-132.
doi:10.1145/1370750.1370781

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/MSR.2007.13
http://dx.doi.org/10.1109/MSR.2009.5069491
http://dx.doi.org/10.1145/1134285.1134336
http://dx.doi.org/10.1109/MSR.2007.7
http://dx.doi.org/10.1109/MSR.2007.25
http://dx.doi.org/10.1109/IADCC.2010.5422923
http://dx.doi.org/10.1109/ICPC.2009.5090066
http://dx.doi.org/10.1145/1370750.1370781

