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ABSTRACT 

Soft and hard micromachining techniques used to develop microfluidic devices can yield microchannels of many dif-
ferent cross-sectional profiles. For semi-circular microchannels, these techniques often produce only partial semicircu-
lar (PSC) cross-sections. This study investigated fully developed laminar flow in PSC microchannels as a function of a 
circularity index, , defined as the ratio of the radiuses along the curved and flat surfaces of the PSC profile. A correc-
tion factor, K, to the Hagen-Poiseuille relation was determined and was well-fitted by the power-law relationship 



2.565.299K  . Actual correction factors were compared to estimates based on several hydraulic models for flow in mi-

crochannels of arbitrary cross-section, as well as the half-ellipsoid cross-section. The level of wall shear stress, when nor-
malized by the pressure drop per unit length, increased approximately linearly with increase in the circularity index,  . 
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1. Introduction 

The trend toward miniaturization that has been driven by 
advances in fabrication processes derived from micro- 
electromechanical systems (MEMs) and other microsys- 
tem technologies has led to microfluidic devices for use in 
numerous chemical, biological and medical applications. 
Microfluidics refers to devices for accommodating and 
controlling flow through microchannels with cross-sec- 
tional scales of 10 - 100 microns. For many traditional 
applications, microchannels are fabricated on silicon or 
quartz substrates using photolithographic methods derived 
directly from MEMs processes. Whitesides and coworkers 
extended these “hard” microfabrication techniques into 
the novel realm of soft lithography to create microchan-
nels and other microfluidic devices in elastomeric materi-
als such as polydimethylsiloxane (PDMS), principally 
with advantages in biological and biomedical applications 
[1]. The processes underlying hard and soft microfabrica-
tion allow for different microchannel shapes tailored to 
specific applications. While rectangular microchannels 
are ubiquitous, the second most common microchannel 
geometry may be the semi-circular profile, which occurs 
naturally in hard micromachining with isotropic etching 
in the photolithographic steps [2]. In soft lithography, 
plasma etching can also be tailored to provide rounded 
corners to silicon negative masters, that then yield elas-

tomeric microchannels with semi-circular profiles after 
spin coating [3,4]. The rounded edges of semicircular 
profiles help promote cell seeding and proliferation in 
microfluidic devices developed for tissue engineering [3].  

Recent studies that have developed microchannels with 
semi-circular profiles include an analysis of shear stress 
effects on endothelial cells in curved microvessels [5], the 
evaluation of micromachined flow cytometers with inte- 
grated optics [6,7], the creation of a novel magnetohy- 
drodynamic micropump [8], and studies of microfluidic 
devices for capillary electrophoresis [9]. Our own group 
recently developed biohybrid artificial lung modules with 
semi-circular endothelialized blood microchannels subja- 
cent to rectangular gas microchannels [10]. 

The semi-circular microchannels that are fabricated 
using hard or soft micromachining can best be charac- 
terized as partial semi-circular (PSC) microchannels, in 
which the “radius” to the curved-side is appreciably less 
than the “radius” along the flat-side. Figure 1(a) displays 
an SEM image of the typical PSC cross-section obtained 
using soft-lithography from our work on biohybrid artifi- 
cial lung modules [10], while Figure 1(b) shows an SEM 
image of a PSC microchannel developed using hard- 
micromachining for a microfluidic capillary electropho- 
resis device [9]. A circularity index, , can be defined 
as the ratio of the radius to the curved-side relative to that 


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along the flat-side, with  representing a complete 
semi-circular profile. The values of  are approximately 
0.84 and 0.80 for the PSC microchannels shown in Fig- 
ures 1(a) and (b), respectively.  

1 


In this study, we analyze fully-developed flow in par- 
tial semi-circular (PSC) microchannels using an analytic- 
cal solution ( ) and numerical simulations (1  0.5   

) using Comsol Multiphysics®. The analysis and 
results presented focus primarily on determining a cor- 
rection factor to the Hagen-Poiseuille pressure drop- 
flowrate relationship for fully-developed flow in circular 
channels and on characterizing the maximum and aver- 
age wall shear stress. While the equation of motion for 
fully-developed flow in a complete semi-circular micro- 
channel ( ) can be analytically solved, the analytical 
solution was not found in our literature search and our 
solution is presented in the Appendix. Several recent 

1.0

1 

 
(a) 

 
(b) 

Figure 1. (a) Example 1 of the partial semi-circular (PSC) 
cross-sectional profiles for microchannels fabricated using 
soft techniques. Adapted from (Burgess et al. 2009); (b) 
Example 2 of the partial semi-circular (PSC) cross-sectional 
profiles for microchannels fabricated using hard micromach-
ing techniques. Adapted from (Peeni et al. 2005). 

studies have addressed fully-developed flow in micro- 
channels of arbitrary and/or specific cross-sectional sha- 
pes. Oosterbroek [11] used analytical and approxima- 
tion techniques to determine or estimate the velocity pro- 
files in different microchannel geometries. The geometry 
which models closest the PSC microchannel was the 
half-ellipsoid. Variational principles based on minimize- 
tion of work were adapted from analogous structural 
mechanics problems related to beam torsion to estimate 
the velocity profile and flow resistance for the half-el- 
lipsoid microchannel. For microchannels of arbitrary 
cross-section, Mortensen et al. [12] showed that the hy- 
draulic resistance can be approximated as a linear func- 
tion of a compactness factor, which is defined as the ratio 
of the perimeter squared to the cross-sectional area of the 
microchannel. The linear relationship was determined 
from the analytical velocity profiles for flow in micro- 
channels of full-ellipsoid, rectangular, and triangular shape. 
Bahrami et al. [13] developed a novel approximate solu-
tion for estimating the flow resistance of microchannels of 
any arbitrary cross-section based solely on a single geo-
metrical feature, the dimensionless polar moment of iner-
tia of the cross-section. The approximate solution com-
pared well with analytical and numerical results for flow 
in microchannels of several different geometries. The 
results of our study on fully-developed flow in PSC mi-
crochannels are compared and evaluated against the theo-
ries described above in these recent studies. 

2. Theoretical Model and Simulations 

The geometry and geometrical parameters for the partial 
semi-circular (PSC) microchannel are shown in Figure 
2(a) in the x, y plane, where z is the direction of flow. 
The flat, bottom-side of the PSC is of length, D, and the 
height of the PSC is given as 2D , so that 1   
represents a complete semi-circular channel. This study 
considers the flow resistance of PSC microchannels in 
the range of   from 0.5 to 1.0. 

Fully developed laminar flow in the z direction for a 
Newtonian fluid is governed by 

2 1 P
V

L


                   (1) 

where  ,V V x y
2
 is the magnitude of the velocity in 

the z direction,   is the Laplacian operator in ,x y  
space,   is the fluid viscosity, and P L  is the pres- 
sure drop per unit length in the direction of flow. The 
flow is also governed by the no-slip condition on the wall 
(w) surfaces of the microchannel: 

0 for wV S R               (2) 

The governing equation can be solved numerically 
most conveniently by introducing dimensionless de- 
pendent and independent variables. The spatial coordi- 
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nates ( ,x y ) are scaled by the flat surface width, D, while 
the flow velocity is scaled according to: 

2D P
U V

L


                (3) 

The resulting dimensionless equation of motion is 
given by: 

2 1U                     (4) 

where  is the dimensionless Laplacian operator on 
the domain shown in Figure 2(b). 

2

The no-slip boundary condition requires 0U   on 
the surfaces in Figure 2(b).  

Comsol Multiphysics® Version 3.4 was used to nu- 
merically solve Equation (4), subject to its boundary con- 
dition, on the dimensionless domain (Figure 2(b)) using 
the Poisson equation solver in the basic multiphysics 
module of Comsol. The solution for the dimensionless 
flow velocity was integrated over the dimensionless do- 
main (subdomain integration in Comsol) to obtain a 
“correction factor” to the Hagen-Poiseuille relation for 
laminar flow in a circular conduit. The correction factor, 
K, is defined from the integrated dimensionless velocity 
for convenience as 

 

 
(a) 

 
(b) 

Figure 2. (a) Schematic illustrating the cross-sectional ge-
ometry of the PSC microchannel in dimensional forms. The 
circularity index denotes the departure from a full semi- 
circular channel ( ); (b) Schematic illustrating the 
cross-sectional geometry of the PSC microchannel in di-
mensionless forms. The circularity index denotes the de-
parture from a full semi-circular channel ( ).  

1 

1 

1π
d

128
A

U A K


                (5) 

where dA  and A  indicate integration over the di- 
mensionless domain (Figure 2(b)). With this definition, 
transforming Equation (5) back into dimensional form 
yields: 

4

128

π

L
P K Q

D


               (6) 

where Q is the volumetric flowrate through the channel. 
Thus, the correction factor K represents the proportion by 
which the flow resistance ( P Q ) is increased in a PSC 
microchannel compared to a circular duct of diameter, D. 

Also of interest is the shear stress exerted on the wall 
by the flowing fluid. The wall shear stress is the z com- 
ponent of the fluid stress vector exerted on the wall: 
  n , where   is the stress tensor, given for a  

Newtonian fluid by  t       V V , and n  is a  

unit normal vector at the wall directed into the domain. 
Applying these relationships and noting th Vat V k

by 
, 

the wall shear stress in the PSC microchannel is given 

w V  n                 (7) 

which can be determined in a normalized form directly 
from the numerical solution by computing the normal 
derivative of the dimensionless velocity at the wall: 

 
w U

D P L

  


n             (8) 

3. Results and Discussion 

3.1. Hagen-Poiseuille Correction Factor 

Fully developed laminar flow in partial semi-circular 
(PSC) microchannels was numerically simulated using 
Comsol Multiphysics®. The “partial” nature of the PSC 
microchannel was specified by the dimensionless pa- 
rameter,   wherein the height of the PSC microchannel 
was 2D , with D being the diameter or width of the 
flat-side of the PSC microchannel. Laminar flow was 
characterized over the range . Simulations 
were performed using dimensionless variables with the  

0.5 1.0 

velocity (V) normalized according to 
2D P

V
L

 
 
 

,  

where   is fluid viscosity and P L  is the pressure 
drop per unit length in the channel. Figure 3 shows the 
contours of the normalized velocity field in a PSC mi- 
crochannel with 0.5  . 

The pressure drop and flowrate relationship for PSC 
microchannels was characterized by introducing a cor- 
rection factor, K, to the Hagen-Poiseuille relation (see 
Equation (6)), in which K represents the proportion by  
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Figure 3. Normalized velocity contours for fully-developed 
laminar flow in a PSC microchannel for . .0 5 
 
which the flow resistance is increased in a PSC micro- 
channel compared to a circular duct of the same diameter. 
The flow correction factor increased by 6-fold as   
decreased from  (complete semi-circular micro- 
channel) to  (Figure 4(a)). 

1.0 
0.5 

In this range the correction factor was well fit by the 
power-law relation: 2.565.299K  . For the complete 
semi-circular microchannel ( 1.0  ), the correction 
factor computed from the simulations (5.279) was in 
agreement with that from the analytical solution (5.279) 
for a semi-circular microchannel (see Appendix). Figure 
4(b) displays the correction factor plotted against the 
microchannel compactness factor, C. Mortensen et al. 
[12] developed a theoretical analysis showing that for 
microchannels of arbitrary cross-section, the hydraulic 
resistance varies approximately linearly with a compact- 
ness factor defined by: 

2P
C

A
                   (9) 

in which P and A are the microchannel perimeter and 
cross-sectional area, respectively. In the range of the cir- 
cularity index ( ) studied here, the correction factor did 
follow the linear relationship: K = 3.517C – 55.35 with 
an  value of 0.98. 



2R
The Hagen-Poiseuille correction factor can also be 

compared with predictions based on several hydraulic 
models for flow in arbitrary microchannels. The simplest 
hydraulic model would be based on using the hydraulic 
diameter, 4hD A P , in the Hagen-Poiseuille relation. 
The correction factor is then given by 4 4Dh . Table 1 
indicates that the hydraulic diameter model significantly 
over-predicts the correction factor by 36% to 75% in the 
range of  studied. 

D


Bahrami et al. [13] (ref: doi:10.1016/j.ijheatmasstrans 

fer.2006.12.019) developed a novel approach for esti- 
mating the flow resistance of microchannels of any arbi- 
trary cross-section. Their analysis introduces the dimen-  

Table 1. Comparison of actual and predicted Hagen- 
Poiseuille correction factors. 

  actK 1 
hdK 2 

pmiK 3 
seK 4 

0.5 32.21 56.37 31.86 34.66 

0.6 19.46 31.19 19.19 20.74 

0.7 12.87 19.37 12.64 13.56 

0.8 9.107 13.09 8.905 9.479 

0.9 6.787 9.447 6.610 6.969 

1 5.279 7.174 5.117 5.333 

 

 
(a) 

 
(b) 

Figure 4. (a) Correction factor, K, for the Hagen-Poiseuille 
relation as a function of circularity index ; (b) Correc- 
tion factor, K, for the Hagen-Poiseuille relation as a func- 
tion of the compactness factor C. 



 
sionless polar moment of inertia, *

pI , computed for the 
microchannel geometry: 

   2 2

2

1
dp c c

A

I x x y A
A 

y    


         (10) 

in which the dimensionless coordinates and cross-sec- 
tional area (denoted with asterisks) are scaled by the 
same dimension. (Note: Comsol automatically calculates 
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the polar moment of inertia and all other pertinent geo- 
metric parameters for any defined domain.) Applying 
their analysis to determine the Hagen-Poiseuille correc- 
tion factor yields: 

3
2

1
π

8
pI

K
A



                (11) 

in which the dimension used to normalize for length is 
that used in the Hagen-Poiseuille relation itself. Table 1 
indicates that Equation (11) provides a very good esti- 
mate for the correction factor of PSC microchannels, 
underestimating the correction factor by only 1.1% at 

 to 3.1% at . 0.5  1.0 
An approximate model for the cross-sectional profile a 

PSC microchannel is a half-ellipsoid. While an analytical 
solution to the equation of fluid motion does not exist for 
the half-ellipsoid, Oosterbroek used a variational approach 
based on minimization of work, adapted from the analo-
gous structural mechanics problem of beam torsion, to 
approximate the velocity profile and flow resistance for 
half-ellipsoid microchannels [11]. The approximate re-
sistance, R, of a half-ellipsoid microchannel was deter-
mined as 

2 2

3 3

32 3

π 3

L a b
R

a b

 
             (12) 

where a and b are the major and minor axes of the 
half-ellipsoid. Since b a  approximates the circularity 
index, , Equation (12) yields the Hagen-Poiseuille 
correction factor: 



2

3

3
4

3
K





                (13) 

Table 1 indicates that the correction factor based on the 
half-ellipsoid is also a good estimate for the correction 
factor for PSC microchannels, in this case over-estimating 
the correction factor most at small : 7.6% at  0.5  , 
and improving to a 1.0 % over-estimate at . 1.0 

3.2. Wall Shear Stress Distribution 

The wall shear stress associated with fully developed 
laminar flow in PSC microchannels would also be of 
interest in many applications, especially biomedical ap- 
plications involving cells. The wall shear stress, w , 
computed directly from the dimensionless flow field is  

normalized according to w

P
D

L
     

 
. Figure 5  

shows the variation of the normalized wall shear stress 
on the flat and curved surfaces of a PSC microchannel 
for . As would be anticipated, the maximum 
shear stress occurs in the middle of the flat surface for 
PSC microchannels. 

0.5 

The maximum and average values of the normalized  

 

Figure 5. Distribution of the normalized wall shear stress, 
along the flat and curved surfaces of a PSC microchannel 
for .0 5  .  

 

 

Figure 6. The linear variation in the maximum and average 
normalized wall shear stress with the circularity index  . 
 
wall shear stress varied approximately linearly with  , 
as shown in Figure 6. The linear correlations for the 
maximum and average normalized wall shear stresses 
are: m  and  (re-
spectively). The shear stress decreased by a factor of 0.57 
as 

0.182 0.032    0.122 0.031a   

  decreased from unity to . 0.5 
This decrease occurs because the shear stress was nor- 

malized by the pressure drop per unit length in the mi- 
crochannels. For a given flowrate, the pressure drop per 
unit length increases about 6-fold as  decreases from 

1.0   to 0.5   (see Figure 4(a)). Accordingly, for 
a given flowrate the shear stress would increase by ap- 
proximately 3.4-fold as   decreases from 1.0   to 

0.5  . For 1.0   the normalized maximum shear 
stress from the simulations (0.212) was in agreement with 
that from the analytical solution (0.212) for a semi-circu- 
lar channel (Appendix). 
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4. Conclusions 

1) For fully developed laminar flow in partial semi-cir- 
cular (PSC) microchannels, the correction factor, K, to 
the Hagen-Poiseuille relationship is well fitted by the 
power law relation: 2.565.299K   in the range of 

, where  is an index of circularity relat-  0.5 1.0  

ing the radius of the curved surface, 
1

2
D , to that of the  

flat surface, 2D . 
2) The correction factor can be predicted within 3% by 

a novel relationship developed for microchannels of ar- 
bitrary cross-section, which accounts for the shape of the 
cross-sectional profile using only the dimensionless polar 
moment of inertia for the profile. 

3) The normalized wall shear stress, w

P
D

L
     

 
  

increases approximately linearly with the circularity index 
. The maximum shear stress occurs at the center of the 

flat surface. The maximum (m) and average (a) normal- 
ized wall shear stresses are given  
and . 



0.182 0.032m   
0.122 0.031a   
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Appendix  

The normalized equation of motion can be analytically 
solved readily for the special case of a semi-circular 
channel ( ). Using polar coordinates (1.0  ,r  ) cen- 
tered on the flat side of the normalized geometry, the 
dimensionless equation of motion is: 

2

2

1 1
1

U U
r

r r r r 
         

          (A1) 

with the no-slip boundary conditions:    1 2, ,0U U  r  
. A separation of variables approach can be 

undertaken after the substitution: 
 ,π 0U r 

    21
, , cos 2

4
U r W r r    1    (A2) 

which leads to Laplace’s equation for  ,W r  : 
2

2

1 1
0

W W
r

r r r r 
        

with the same no-slip conditions as for U with the excep-  

tion  1 1
, cos 2

2 16
W   

1   
 

. 

A straight-forward separation of variables solution to 
Equation (A3) can be performed resulting in a series so- 
lution for  ,W r  . Substituting that solution into Equa- 
tion (A2) results in the normalized velocity profile for a 
semi-circular channel: 

   

 
   

2

2 1
2

1

1
, cos 2 1

4

sin 2 11
            2

2π 2 1 2 1 2 3

n
n

n

U r r

r n

n n n

 





 

 
  

    (A4) 

The integrals and derivatives leading to the Hagen- 
Poiseuille correction factor and normalized wall shear 
stress are straightforward and hence are not provided here. 

           (A3) 
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