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ABSTRACT 

Group key security protocols play an important role in today’s communication systems. Their verification, however, 
remains a great challenge because of the dynamic characteristics of group key construction and distribution protocols. 
Security properties that are well defined in normal two-party protocols have different meanings and different interpreta-
tions in group key distribution protocols, specifically, secrecy properties, such as group secrecy, forward secrecy, 
backward secrecy, and key independence. In this paper, we present a method to verify forward secrecy properties for 
group-oriented protocols. The method is based on a correct semantical link between group key protocols and event-B 
models and also uses the refinement process in the B method to model and verify group and forward secrecy. We use an 
event-B first-order theorem proving system to provide invariant checking for these secrecy properties. We illustrate our 
approach on the Tree based Group Diffie-Hellman protocol as case study.  
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1. Introduction 

Security protocols are used to establish secure channels 
between communicating systems. These protocols need 
great care in their development and their implementation. 
The complexity of security-protocol interactions can hide 
security weaknesses that normal analysis methods cannot 
reveal. Security properties that are well defined in normal 
two-party protocols have different meanings and differ- 
ent interpretations in group key distribution protocols. 
Therefore, they require a more precise definition before 
we look at how to verify them. For group key distribution 
protocols, secrecy property has a further dimension since 
there are long term secret keys, short-term secret keys, in 
addition to present, future, and past keys; where a prin- 
cipal who just joined the group and learned the present 
key should not be able to have enough information to 
deduce any previous keys, or similarly a principal who 
just left the group should not have enough information to 
deduce any future keys.  

In group key protocols, there are generally four types 
of security properties [1]: group key secrecy, which 
guarantees that it is computationally infeasible for a pas- 
sive adversary to discover any group key, intuitively, that 
the attacker should not be able to obtain a key that honest 
users think to be safe; forward secrecy, which guarantees  

that a passive adversary who knows a contiguous subset 
of old group keys cannot discover any subsequent group 
key; backward secrecy, which guarantees that a passive 
adversary who knows a contiguous subset group keys 
cannot discover preceding group keys, and finally, key 
independence, which guarantees that a passive adversary 
who knows a proper subset of group keys cannot dis- 
cover any other group key. 

Event-B [2] was introduced by extending B [3] with- 
out changing it to model operations that could be guarded 
in the process algebraic sense. The event-B method uses 
the set-theoretical and logical notations of the B method 
and provides new notations for expressing abstract mod- 
els based on events. It provides invariants proofs based 
on a state-based system that is updated by guarded events. 
The refinement capability offered by event-B allows in- 
cremental development moving from an abstract level to 
a more concrete one. Refinement technique allows the 
preservation of proved properties and therefore it is not 
necessary to prove them again in the refined transition 
system. Moreover, in the refinement, it is not needed to 
re-prove these properties again while the model com- 
plexity increases. This advantage is important compared 
to classical model checking where the transition system 
describing the model is refined and enriched. 
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Group key protocols have special features, such as the 
concept of group secrecy, forward secrecy, and dynamic 
group events. These feature were rarely considered or ad- 
dressed thoroughly when formal verification techniques 
were applied. In this paper, we provide an event-B based 
invariant checking for verification of group key protocols. 
We model group key protocols and verify their required 
properties, in particular secrecy and forward secrecy 
properties, using the event-B method. Event-B deals with 
tools allowing invariant checking, and can be used to 
verify group key secrecy properties. In order to model a 
group key protocol in event-B first order logic, a formal 
relation between the semantics of the event-B language 
[4] and the protocol model should be defined. This map-
ping relation should present the semantics of group key 
protocol model based on event-B, hence, allowing the 
verification of secrecy properties. This allows us to avoid 
user interaction with the theorem proving tool, and re-
duce the time required to verify these properties. This 
paper extends the work in [5] to verify forward secrecy 
using event-B refinement. 

We apply our approach on the tree based Group Dif-
fie-Hellman (TGDH) protocol [6] and provide invariant 
checking for secrecy under the static and the dynamic 
case by applying a single event (join/leave). We use the 
event-B first order prover platform Rodin [7,8] to per- 
form invariant checking under the assumption that basic 
Diffie-Hellman key is correct. The dynamic case is also 
considered by applying events such as join and leave and 
verify the correctness of key construction for bounded 
tree size and bounded number of events. We assume 
perfect cryptography conditions in our approach. In addi-
tion the group key protocol is analyzed in the presence of 
passive adversaries. 

The rest of the paper is organized as follows. Section 2 
discusses related work to ours. In Section 3, we pre- sent 
our methodology to verify forward secrecy using event-B 
refinement. In Section 4, we apply our approach on 
TGDH protocol. Finally, Section 5 concludes the paper 
with future work hints. 

2. Related Work 

The recent years have seen the emergence of successful 
applications of formal approaches to reasoning about 
security protocols. Earlier methods were concerned with 
reasoning about the events that a security protocol can 
perform, and make use of a causal dependency that exists 
between protocol events. Methods like strand spaces [9] 
and the inductive method of Paulson [10] have been de- 
signed to support an intensional, event-based, style of 
reasoning. These methods have successfully tackled a 
number of protocols though in an ad hoc fashion. They 
make an informal spring from a protocol to its represen- 

tation and do not address how to build up protocol repre- 
sentations in a compositional fashion [11]. 

Events-based verification of security protocols was 
used by Crazzolara [11] using mappings between process 
algebra, Petri nets, strand spaces and inductive models. 
The authors established precise relationships between the 
Petri nets semantics and transition semantics, strand spaces, 
inductive rules, trace languages, and event structures. 
They show how event-based models can be structured in 
a compositional way and so used to give a formal seman-
tics to security protocols which support proofs of the 
correctness of these protocols. They demonstrated the 
usefulness of their Petri nets semantics in deriving proof 
principles for security protocols and apply them to prove 
an authentication property. 

Cremers [12] proposed an operational semantic for se- 
curity protocols. The work provides a generic description 
of the interpretation of such security protocols and what 
it means for a protocol to ensure some security property. 
This work imposes explicit static requirements for valid 
protocols, and verifies that the model is parametric with 
respect to the matching function and intruder network 
capabilities. Other related work that treats group key 
protocols verification, specifically DH based protocols, 
are discussed in more details in [13]. 

Stouls and Potet [14] proposed a method to automati- 
cally enforce an abstract security policy on a network. 
They used the B refinement process to build a formal 
link between concrete and abstract terms, which is dy- 
namically computed from the environment data. The 
method is applied on a case study modeling a network 
monitor. A different approach to achieve a similar object- 
tive was proposed in [15], where the authors addressed the 
proof-based development of system models satisfying a 
security policy. They used OrBAC [16] models to ex-
press the security policies in order to state permissions 
and prohibitions on actions. An abstract B model is de-
rived from the OrBAC specification of the security pol-
icy and then the model is refined to introduce properties 
that can be expressed in OrBAC. The refinement guar-
antees that the resulting B model satisfies the security 
policy. 

Bert et al. [17] presented a tool to build symbolic la- 
beled transition systems from B specifications. The re- 
sulting symbolic transition system represents all the be- 
haviors of the initial B event system. The tool, called 
GeneSyst, was illustrated on a security property for a 
model of a smart card purchase transaction protocol. 
Butler [18] combined CSP and B method refinement in 
order to verify authentication property. The work does 
not present a new theoretical framework, instead it de- 
scribes the use of the above methods to treat refinement 
of secure communication systems. 

Chridi et al. [19] presented a decision procedure for 
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the sub-class of Well-Tagged protocols with Autono-
mous Keys to analyzing Web Services manipulating se-
quences of items. Dalal et al. [20] provided a compara-
tive and evaluation study for tools used in verification of 
security protocols. In another related work, Li [21] and 
Pand extended the strand space method to include time 
and timstamps to model the notion of recency in Kerbe-
ros protocol. 

 SYSTEM <name> 
SETS <sets> 
VARIABLES <variables> 
INVARIANT <invariants> 
INITIALISATION <initialization of variables>
EVENTS <events> 
END 

Compared to the above, we address security properties 
for group oriented protocols, which have special features 
that were not addressed in any of these approaches, such 
as the concept of group secrecy and forward secrecy and 
dynamic group events. In addition, we consider events 
that are specific for group key protocols that were never 
treated by the Event-B method. In [13], we used the rank 
function based inference system to model and verify two 
parties Diffie-Hellman protocol, while in [5], we pre- 
sented an approach for modeling and verification of 
group key protocols by using event-B first-order logic 
invariant checking. The method is based on a formal link 
between the semantics of group key protocols model and 
event-B based on a well-formed connection between 
event-B invariant and the group key protocol model in- 
cluding its secrecy property. This paper extends the work 
in [5] to verify forward secrecy property using event-B 
refinement. We define two models for the group protocol: 
an abstract model and a refined model. The first one 
captures secrecy property as an invariant for the abstract 
model, and the second one captures forward secrecy as 
an invariant for the refined model. 

Many methods were developed to verify certain as- 
pects of security protocols such as secrecy and authentic- 
cation. These methods have successfully tackled a num- 
ber of protocols though in an ad hoc fashion. On the 
other hand, using formal methods like model checking 
can be efficient in the verification of authentication prop-
erty, while modeling and reasoning about properties like 
forward secrecy requires first-order-logic based methods 
such as Event-B. 

3. Event-B Method 

Event-B [2] is a variant of the B method introduced by 
Abrial [3] to deal with reactive systems. An event con- 
sists of a guard and an action. The guard is a predicate 
built on state variables and the action is a generalized sub- 
stitution which defines a state transition. An event may 
be activated once its guard evaluates to true and a single 
event may be evaluated at once. The system is assumed 
to be closed and it means that every possible change over 
state variables is defined by transitions; transitions cor-
respond to events defined in the model. The B method is 
based on the concept of machines [3]. A machine is 
composed of descriptive and operational specifications:  

 
 
A descriptive specification describes what the system 

does by using a set of variables, constants, properties 
over constants and invariants which specify properties 
that the machine’s state verify. This constitutes the static 
definition of the model. Operational specification de- 
scribes the way the system operates. It is composed of a 
set of atomic events described by generalized substitu- 
tions. An event has a guard and an action, and it may 
occur only when its guard evaluates to true. An event has 
one of the general forms where the SELECT form is just 
a particular case of the ANY form. SELECT takes the 
form 

Name event = 
ANY P WHERE  

G 
THEN 

R 
and similarly a SELECT statement takes the form 

Name event = 
WHEN  

G  
THEN 

R 

3.1. Event-B Invariant Checking 

The consistency of an event-B model is established by 
proof obligations which guarantee that the initialization 
verifies the invariant and that each event should preserve 
the invariant. The guard and the action of an event define 
a before-after predicate for this event. It describes a rela- 
tion between variables before the event holds and after 
this. Proof obligations are produced from events in order 
to state that the invariant condition is preserved. Let M be 
an event-B model with v being variables, carrier sets or 
constants. The properties of constants are denoted by 
 P v , which are predicates over constants, and the in- 

variant by  v . Let E be an event of M with guard I
 G v  ,R v v

v
 and before-after predicate  that indeed 

yields at least one after value . The initialization event 
is a generalized substitution of the form  :v init v

 

. Ini- 
tial proof obligation guarantees that the initialization of 
the machine must satisfy its invariant:  Init v I v . 

Each event E, if it holds, has to preserve the invariant. 
The feasibility statement is illustrated in Lemma 3.1 and 
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 cthe invariant preservation is given in Lemma 3.2 [4]. 
Lemma 3.1.        ,I v G v P v  v R v v   


. 

Lemma 3.2.         ,I v G v P v R   v v I v 

|

. 

An event-B model M with invariant I is well-formed, 
dented by M I

 domain R

, only if M satisfies all proof oblige- 
tions. The B syntax for generalized substitutions defines 
three predicates: a relation R, the subsets of the pre-states 
where G is true of the states in , and the 
subset of the pre-state where P is true. Let S be restricted 
to evaluations that satisfy the invariant,   S v I v . 
Each event can be represented by a binary relation rel 
formally defined as      ,v R v v  v I v G rel v  . 
The fact that the invariant  I v

S

 is preserved by event 
rel is simply formalized by saying that rel is a binary 
relation built on S: . It is shown that this bi- 
nary relation yields to both Lemmas 3.1 and 3.2 above 
[4]. 

rel S 

Lemma 3.1 guarantees that the active part of the rela- 
tion is a total relation, i.e., when all predicates I, P, and G 
hold, formally,    G v P v dom   ,ain R v v  , while 
Lemma 3.2 guarantees that the postcondition of any op- 
eration must satisfy the machine invariant. The initial 
proof obligation guarantees that the initialization of a 
machine must satisfy its invariant. 

We distinguish special rules for the initialization events. 
We use I  to denote the predicate of the gene- 
ralized substitution associated with this event. Then we 
obtain the following initialization statements [4]: 

 ,R v v

 ,Iv R v v 

  ,v v I v

Lemma 3.3.   P v  

Lemma 3.4.   IP v R   

v

 

3.2. Event-B Refinement 

Refinement is a technique to deal with the development 
of complex systems. It consists in building, starting from 
an abstract model, a sequence of models of increasing 
complexity containing more and more details. These de- 
tails could be introduced when using new variables, add- 
ing details to abstract events or adding new events. A 
model in the sequence is followed by a model it refines. 
The invariant of the refined model is not weaker than the 
model it refines and it may contain new variables. The 
events are the same but may be redefined. It is also used 
to transform an abstract model into a more concrete ver-
sion by modifying the state description [22]. The abstract 
state variables, v, and the concrete ones, c , are linked 
together by means of a gluing invariant  , cJ v v



. A 
number of proof obligations ensures that 1) each abstract 
event is correctly refined by its corresponding concrete 
version; 2) each new event refines skip; 3) no new event 
takes control forever; and 4) relative deadlock fairness is 
preserved. Suppose that an abstract model AM with vari- 
ables v and invariant v  is refined by a concrete 

model CM with variables vc and gluing invariant J ,v v . 
If  ,R v vC c c ,R v vA   and   are, respectively, the ab- 
stract and concrete before-after predicates of the same 
event, we have to prove the following statement: 



I

     
    
, ,

, ,

c C c c

A c

v J v v R v v

v R v v J v v

 I

      
 

This statement means that under the abstract invariant 
 v  , and the gluing invariant cI J v v , a concrete step 
 ,C c cR v v  can be simulated  by an abstract one  v
 ,AR v v  in such a way that the gluing invariant  
 c,J v v   is preserved. A new event with before-after 

predicate  ,R v vc c    must refine skip x x  . This leads 
to the following statement to prove:  

     , , ,c C c c v J v v R v v J v v   

V v

I . 

Moreover, we must prove that a variant c  (valua- 
tion of variable v) is decreased by each new event (this is 
to guarantee that an abstract step may occur). We have 
thus to prove the following for each new event with be- 
fore-after predicate  ,c c cR v v : 

        , , <c cv J v vc BA v v Val v Val v  I . 

At last, we must prove that a concrete model does not 
introduce more deadlocks than the abstract one. This is 
formalized by means of the following proof obligation: 

      , c M MI v J v v G A G C     

where G A
 G C

M  stands for the disjunction of the guards 
of the events of the abstract model, and M  stands 
for the disjunction of the guards of the events of the con- 
crete one. The essence of the refinement relationship is 
that it preserves already proved system properties in- 
cluding safety properties. The invariant of an abstract 
model plays a central role for deriving safety properties; 
the goal is to obtain a formal statement of properties 
through the final invariant of the last refined abstract 
model. 

4. Event-B Semantics Based Verification 
Methodology 

In order to reason about group protocols in the first-order 
logics, a map between the group protocol model and 
event-B model semantics is defined. The event-B tool 
guarantees the correctness of the invariant w.r.t the 
event-B model. The map from group protocols to event- 
B model guarantees certain equivalence between the two 
models, under certain conditions. Secrecy property is 
semantically implied in event-B invariant in a defined 
and proved lemma. Then, a theorem is defined to guar- 
antees that once an event-B invariant is proved against 
event-B mode, we can conclude that the secrecy property 
is correct for the group protocol mode. 
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In the event-B method, compared to higher-order logic, 
the number of protocol participants that can be consid- 
ered is limited, finally, modeling forward and backward 
simultaneously requires more than two levels of abstract- 
tion, hence, generates more proof obligations, which will 
reduce automation as more interaction with the tool will 
be required to discharge these obligations, this is an open 
issue to be addressed in future work. Figure 1 depicts the 
formal links in the proposed event-B approach. 

The security property is defined in the event-B model 
based on mapping sets, events, and invariants. For for- 
ward secrecy, we use refinement of secrecy. The sound- 
ness of the event-B model is then established based on a 
well-formed link to the group protocol model. The valid- 
ity of the event-B invariant against its model is checked 
using the Rodin invariant checking tool. This way, we 
establish the formal link from the Rodin langauge to the 
group protocol model. 

Let  be a group key protocol model, and let  
be a set of all possible messages (messages space). We 
choose  to represent the secret messages space, the set 
of all secret messages, . Thereafter, we define 

 to be the set of all events, or dynamic operations, i.e., 
join, leave, merge, and split. An event is a term from the 
message space to the message space, . It 
represents an action the user can perform on the system 
to update his/her own set of knowledge.  

 


 



  

0
 

m     

0  

:

Let  be the set of initial knowledge of the intruder, 
where 0 . The initial knowledge of the informa- 
tion is collected before executing the protocol events. 
This information is usually publicly known,  

0 . We then define  as the 
set of knowledge of the intruder that is updated by exe- 
cuting events. The system starts with the initial set of 
knowledge and the set of events, then, by executing a 
sequence of events, it updates this set.  and 

.  

m m  

 
We define a safety property   for a group key pro- 

tocol model . This property states that the system 
cannot execute an event in  in order to generate a 
message in , and is formally modeled as follows: 





 e m m  


|

e m      . 

If this property is correct for the protocol , then we 
can write 

 , , ,

. 
Forward secrecy guarantees that a passive adversary 

who knows a contiguous subset of old group keys (say 

0 1 iK K K ) cannot discover any subsequent group 
key jK  for all i and j, wher > i . We will follow 
this definition in our model for the rest of the pap

e j
er. 

The proposed verification methodology consists of a 
number of steps as shown in Figure 2. In the first step, 
the group key protocol is specified formally using the 
model presented before in order to obtain precise proto-  

 

Figure 1. Event-B based approach. 
 

 

Figure 2. Verification methodology. 
 
col specifications. In addition, the secrecy property ex- 
pected to be checked by the system is described infor- 
mally. In the second step, the obtained specification is 
translated into event-B specification using mapping rela- 
tions to obtain an event-B model that captures the fea- 
tures of the group protocol model. Next, a secrecy prop- 
erty   is specified as an invariant of the resulting 
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event-B model I, and a forward secrecy property f  is 
specified as an invariant of the refined event-B model. 
Messages can be defined as a set with an enumeration of 
all possible secret and known messages. The intruder 
initial knowledge, 0 , is directly defined as variable or 
set in the event-B initialization list. Secret messages are 
defined similarly. Protocol initial constraints, such as 

0  and , are defined as properties that 
will be included in the invariant. Protocol join or leave 
events are defined as event-B operations that update the 
intruder’s knowledge and the set of secret messages, in- 
cluding the new generated key. Finally, the property is 
checked from the obtained global system specification 
using the event-B invariant checking in Rodin platform. 



  

In Figure 3, protocol events and execution traces are 
mapped into event-B events, messages generation condi- 
tions are mapped into events guards, and messages sets 
are used to generate event-B model constants properties. 
The initial knowledge is defined as event-B initialize- 
tions, messages are mapped directly into sets, and finally 
the secrecy property is defined as an invariant for the 
event-B model. The generation of the target event-B 
model requires treating three parts: the static part which 
includes initializations and the constant properties of the 
protocol, the dynamic part that represents events of the 
protocol, and finally, enriching the resulting model with 
invariants describing the required secrecy properties. 

The event-B semantics is close to the protocol model 
semantics. This relationship is demonstrated by estab- 
lishing a well-formed link between the semantics of both 
models. To achieve this link, we are interested in show- 
ing that if the invariant I holds for event-B system M, 
then the safety property   must hold for the group pro- 
tocol model . Formally,  M I   ||    . In terms 
of equivalence between the two models, we can say that 
the event-B model M is an abstract model of the protocol 
model , with regards to the security property, if the 
property 


  holds in the model , and the invariant I 

holds in the abstract model M. To illustrate this equiva- 
lence, we need to show that I  . Therefore, it is  
 

 

Figure 3. Mapping protocol primitives into event-B. 

enough to show that the invariant I, with regards to M, 
implies the safety property  , with regard to . 

I

4.1. Verification of Secrecy as Event-B Invariant 

To show that 





, we need to establish a well-formed 
link between event-B invariant and the safety property. 
We split this formal link into two parts: the first deals 
with the initialization, and the second deals with execut-
ing the events. For this, we need to relate messages in  
to variables in M by mapping public messages and secret 
messages to event-B sets and messages sets to event-B 
constants properties. This map relates the variable m over 
the set of messages  directly to the variable v over 
event-B carrier sets and constants. The semantical corre- 
spondence between the variable m and the variable v is 
defined by this map. 

Theorem 4.1. Secrecy Soundness. 
A group protocol, G, satisfies its secrecy property,  , 

if there is an equivalent abstract event-B model, M, that 
satisfies an event-B invariant, I, and implies the property 
 . More formally, for a model G, we need to find an 
abstract model M where  means that the event-B 
model M can be abstracted from the group protocol G. 
This abstraction will be defined later. Let 

G M

 |M I , and 
 I   be correct lemmas, then, 

       | |G M M I I        

G M

G M

. 

The proof is divided into two parts, in the first we 
assume that  holds, then we prove the theorem 
based on that. In the next stage we prove each lemma 
separately and we identify the relation between G and M 
such that  holds. 

 G M  |, I  I, and Proof. Given M  , we 
can deduce 

     | |M I I M       

     | |G M M G    

M

 

We establish the abstract relation between G and M 
such that G  holds, then we prove the lemma 
 I  |M I . The lemma   is assumed to be correct 
in the event-B tool. 

Definition 4.1. A group protocol model G, is ab- 
stracted to an event-B model, M under certain conditions 
and semantically correct map from G to M.  is 
defined as follows: 

G M

, , , , ,

For every component and condition in G there is an 
equivalent one in M. A protocol model is composed of 

0     



, we map each component in G into an 
equivalent one in M. 

Messages sets are mapped into an event-B variable by 
defining v over the set , and messages sets relations 
are mapped to event-B constants properties.  P v  is a 
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function of . These relations include the predicates 
about sets that should always hold. 



Messages generation conditions are mapped into events 
guards. These conditions include predicates that should 
hold prior to executing an event, like having the appro-
priate key to encrypt or decrypt a message.  

   ,ition  G v cond  

The secrecy property,  , is mapped into an event-B 
invariant, I. This map is defined in Lemma 4.1. 

An event in  is mapped into event R, an event, 
 with a precondition condition, where  


ce 

 1 2c , the message generated from execut- 
ing the even, can be defined concretely using an event-B 
statement such as: 

, ,m m m e

Name event =  
ANY mWHERE 

condition 
THEN  

 ,R m m
G M

I

 
This map defines the relation . 
To show that 





, we need to establish a well- 
formed link between event-B invariant and the safety 
property. We split this formal link into two parts: the first 
deals with the initialization, and the second deals with 
executing the events. First we relate messages in  to 
variables in M. In Figure 3, we describe a map from 
public messages and secret messages to event-B sets and 
a map from messages sets relations to event-B constants 
properties. This map relates the variable m over the set of 
messages  directly to the variable v over event-B 
carrier sets and constants. The semantical correspond- 
dence between the variable m and the variable v is de- 
fined by this map. 

We define the invariant I as init EI I  I , where initI  
is the invariant predicate under the initial conditions, and 

EI  is the invariant predicate under executed events. 
Similarly, we define the safety property init E   

 I  

 I 


 

   
 

. 
Lemma 4.1.    I I    init init E E

Proof. We define the well-formed conditions that guar- 
antee the correctness of this lemma in two steps, we first 
show that init init . We identify the initial events 
and initial set of messages in  under which the for- 
mula init init  holds. Then we define the predicates 
P, I, G, and R presented in Lemmas 3.1 and 3.2 for the 
protocol model  such that Lemma 4.1 holds. 

 

I


The definition of the group key protocol must satisfy 

the initial soundness conditions: 0  and  

i , where ie  is an initial 
event that can be applied on the intruder's initial set of 
messages. We choose  to be the set of events 
that can be executed on . 

 e m m  

0IR  


:i ie m   

0

We will define the constants property P and the ini- 
tialization predicate IR 



 for the model  that will 

satisfy Lemmas 3.3 and 3.4. Then we define P, R, the 
predicate guards G, and the invariant I for the model  
that will satisfy Lemmas 3.1 and 3.2. 

 init initI   Case 1. 

      0 0P m 0           

     0, :I i iR e m m m e m            

 I m m m0    
 :m e m 

 ,IR v v

 

The message generation event i  is equiva-
lent to the transition relation . This yields the 
formula    : iP m e m e m    i i  which is exactly 
Lemma 3.3 considering that I i

The invariant definition for the model  is  
R e


. 

 I m m m    . We need to show that the invari- 
ant I holds for both  m   and I I m

 
. Since the proto- 

col is initially sound, then both  I m  and I m  hold 
by the fact that 0     and that the initial events 
cannot generate secret messages in S. If   then : im e m 
m

   
. Therefore we can write  

    :P m m e m I mi    , which corresponds to 
Lemma 3.3 considering that I iR e . 

Case 2.  E EI   

   P m      

   I m m  

     

m    

 : ,
k

G m m encr m k  

 

k    

   : ,
k

m decr m k m     

     ,R e m m m           e m  

This message generation event is equivalent to the tran- 
sition relation  ,R v v . Therefore, applying the predi- 
cates P, I, and G will lead to the relation R. We can write 
the formula        i  
which is equivalent to Lemma 3.1 considering that the 
relation R is equivalent to an existing event 

P m I m G m e m e m      

e
 

. 
IThe validity of the invariant m  for the model  

is expressed by the validity of the predicates P, I, R, and 
G, where  :m e m  . This can be written as  
       I m P m G m R I m    , which corresponds 

to Lemma 3.2. 
Under these conditions, we guarantee that when the 

invariant holds in event-B model, the secrecy property 
definition holds for the group key protocol model. These 
predicates should be considered carefully when provid- 
ing the event-B implementation. Properties that can be 
expressed as invariants are verified using the translation 
process and the event-B tool. 

This completes the proof of Theorem 4.1. The major 
restriction on this method is that it can reason about the 
execution of a single protocol event, i.e., join or leave. 
However, this is enough to model and verify group se- 
crecy when a member joins or leaves the group. 
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4.2. Verification of Forward Secrecy Using 
Event-B Refinement 

Figure 4 illustrates the modifications required on the 
verification methodology in order to support forward 
secrecy. When the invariant I holds for event-B system 
M, the safety property   must also hold for the group 
protocol model . The verification methodology for 
forward secrecy is built on top of the methodology we 
use for secrecy. In order to apply invariant checking on 
forward secrecy, we will consider the model M as an 
abstract one, and define a refined model, c



M , and a 
gluing invariant J linking variables of the abstract model 
to those of the concrete or refined one ( cM ). In addition 
to the previous map defined from G to M, we will use the 
variable c  to represent the set of intruders messages in 
the refined model. Therefore, c

v
 ,J v v  will represent 

the gluing invariant which represents forward secrecy 
property before the relation c . In addition, we use R
 cI v  to represent the invariant in the refined model, 

which corresponds to the secrecy property of the refined 
protocol model, c . The relation  will be defined 
the same way as the relation R. 

G cR

R R  ,R v v

 ,v
v

In event-B, refinement can be done with events or 
variables. In our case, the group protocol join or leave 
events have the same semantics in both secrecy and for- 
ward secrecy, therefore, it will have the same definition 
in both the abstract and refined event-B models, i.e., 

c . We use  to represent join or leave events, 
which update the intruder’s set of knowledge, the vari-
able v here. In the refined model, we will use the same 
relation, we call it c c cR v , that will update the in-
truder’s set of knowledge, c, in the refined model CM . 

The correctness of forward secrecy, f , with regards 
to the event-B concrete model cM  is achieved through 
the correctness of the gluing invariant c ,J v v

G

 . Figure 
5 below illustrates the link between the abstract and re- 
fined model to achieve a model for forward secrecy in 
event-B. 

A group protocol, c , satisfies its secrecy property, 

f , if there is an equivalent event-B model, M, that sat- 
isfies an event-B invariant, I, and a refined event-B 
model cM  that satisfies an event-B invariant I, and a 
gluing variable  , cJ v v  that implies f  in the exis- 
tence of a relation .  , cV 

c cM
c cR V
 G  c fIFormally, given ,  ,  |M I , 

and  | cM I , then 

      | fJ |c fGc cG M c cM I         . 

Assuming  c cG M  , fJ  , and  |cM J , we 
can deduce:  

 M J  | |f c fMc J      

 | |c fG

. 

 c c c fG M M      . 

This way, we guarantee that once a refined event-B  

 

Figure 4. Refined Event-B method for forward secrecy. 
 

 

Figure 5. Relationship between abstract and refined models. 
 
model is verified against its invariant, then the group 
protocol model is verified against its forward secrecy 
property. 

Event-B invariant checking cannot reason about back- 
ward secrecy because invariants cannot be used in a re- 
verse manner, i.e., refining the intruder’s knowledge 
back in time. In backward secrecy the intruder is as-
sumed to be an active user in the group while trying to 
discover older secret shares prior to his/her membership. 
Therefore, refinement of secrecy can only be used for 
forward secrecy. Based on this, key independence (collu-
sion) cannot also be modeled in this method as is. 

5. Case Study: The TGDH Protocol 

In this section, we apply the approach on a group key 
protocol that generates a key in a distrusted group. We 
show how the conditions defined for the correctness of 
the above model can be concretely applied on a real pro- 
tocol. The intended secrecy property, along with its con- 
ditions, are efficiently defined and checked as event-B 
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invariant. 
The Tree-based Group Diffie-Hellman protocol (TGDH) 

is intended for secure key generation. Figure 6 shows a 
binary tree structure that represents the group members, 
their own secret shares, and the secret sub-keys on every 
node up to the root. As part of the protocol, a group 
member can take on a special sponsor role, which in- 
volves computing intermediate keys and broadcasting to 
the group. Each broadcasted message contains the send- 
ers view of the key tree, which contains each blind key 
known to the sender [1]. 

A group key can be computed from any members se- 
cret share and all blind keys on the co-path to the root. 
Blind keys are the siblings of the nodes on the key path. 
The members own secret share and all sibling blind keys 
on the path to the root enable a member to compute all 
intermediate keys on its key-path, including the root 
group key. 

The group key is calculated by each member based on 
his/her key-path and blind keys. For instance, for a 
member M3 at node , the key-path is the set of mes- 3n

 2 3
2 3 1, ,

n nn n n gg

4 5
6

1, ,
n nn gn gg

 
 
 

4 52 3
61

n nn n n gn gg g

sages . The set of blind keys ordered  3n g

as they appear up to the root is  

2ng g . The group key at the root is calcu- 

lated directly using the two sets: 

GroupKey g  

The protocol designers presented four types of security 
properties: group key secrecy, forward secrecy, back- 
ward secrecy, and key independence. The authors of [1] 
provided an informal proof that their protocol satisfies 
these security property. In this work, we provide a formal 
proof for group key secrecy property under certain con- 
ditions. This property can be described as a correct key 
construction property, which guarantees that only group 
members, who are of knowledge to their own private 
shares, can calculate the group key at root. On the other 
hand, an adversary, who knows all blind sub-keys cannot 
find a full path to calculate the root key. 

We illustrate our method on a group protocol com- 
posed of three members, then we apply a join event for a 
fourth member. Figure 7 shows the modification on the 
tree structure when a new member joins the group, we 
define the group protocol components before and after 
this event takes place. Assuming that a passive adversary 
is monitoring the group activity, the knowledge set is 
built based on the blind keys interchanged between 
members. Based on this, we show all group protocol 
components, including secrecy property, and the equiva- 
lent event-B model including the invariant, before the  

 

Figure 6. Tree-based GDH protocol binary tree structure. 
 

 

Figure 7. Join event in the TGDH protocol. 
 
join event takes place: 

 1 21 2
3 31 2 1 2

1 2 3, , , , , , , ,
n nn nn n gn n n n gM n n n g g g g g g  

 1 2
31 2

1 2 3, , , ,
n nn gn nS n n n g g  

 0 , in
iK n g  

 1 2
31 2, , , , ,i

n nn nn n g
iK n g g g g g

1 2
3

n nn gGroupKey g

 

 

  0 0K  , , KMwhere the sets of messages  
S  

n

, 
and . 

Then, we show the same components after the join 
event of a new member with a new secret contribution 

4 . Note that group key secrecy has the same definition 
and should be valid always, before and after a join (or 
leave) event takes place. 




1 2
3 3 41 2 4 1 2

3 4 3 41 2

1 2 3 4

,

, , , , , , , , , , ,
n nn n nn n n n n g

n n n nn ng g g

M n n n n g g g g g g g

g


 

 3 41 2
3 41 2 ,

1 2 3 4, , , , ,
n nn nn nn n g gS n n n n g g  

 3 41 2
31 2 4, , , , , , ,i

n nn nn nn n n g g
iK n g g g g g g g  
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3 41 2 n nn ng gy gGroupKe  

GroupKey        

K S

 

5.1. Secrecy Model in Event-B Invariant 

The event-B model for the protocol components is de- 
scribed below. We describe the current status of the 
group by initializations appropriate sets for messages and 
keys. The secrecy property is defined as an invariant that 
combines a set of conditions to be satisfied at the ini- 
tialization and after executing the event:    . 
Some of the protocol characteristics can also be encoded 
within this invariant, such as K M S  M

 

. We also 
define an event to represent the protocol action (join/ 
leave). 

The TGDH protocol components are defined within 
the event-B model. The group key has basically the same 
definition, and secrecy property is defined as an event-B 
invariant that contains, in addition to group key secrecy, 
certain conditions on messages sets to ensure the consis- 
tency of the map,  

K S GKey K      K M S M  

 

. 

An event-B definition that captures the behavioral se- 
mantics of a join event which will result in updating the 
intruder’s set of knowledge is described as follows: 

MACHINE  M0  
SEES  P0       
VARIABLES 

K  GKey  S 
pwn 

INVARIANTS 
inv1: K  Key  GKey  Key  S  M  
inv2: pwn  N × N  K 
inv3: K ∩ S =   GKey  K  

EVENTS 
Initialisation 

begin 
act1: M := {n1, n2, n3, pwn(g, n1), pwn(g, n2), 

pwn(g, n3), pwn(g, n1 * n2),  
pwn(g, n2 * n3), pwn(g, pwn(n1 * n2)), 
pwn(g, n3 * g(n1, n2))}  

act2: K := {ni, pwn(g, ni), pwn(g, n1),  
pwn(g, n2), pwn(g, n3),  
pwn(g, pwn(g, n1 * n2))} 

act2: Key := {pwn(g, n3 * pwn(g, n1 * n2))} 
act3: S := {n1, n2, n3, pwn(g, n1 * n2),  

pwn(g, n3 * pwn(g, (n1 * n2)))}  
act4: GKey := {pwn(g, n3 * pwn(g, n1 * n2))} 

end 
Event  join  

any 
n4  

where 
grd1: n4  M 

then 
act5: M := M  {n4, pwn(g, n4), pwn(g, n3 * n4), 

pwn(g, pwn(g, n3 * n4) * pwn(g, (n1 * 
n2)))} 



act6: S := S  {n4, pwn(g, n3 * n4), pwn(g, 
pwn(g, n3 * n4) * pwn(g, (n1 * n2)))} 

act7: GKey := pwn(g, pwn(g, n3 * n4) * pwn(g, 
(n1 * n2)))  

act8: Key := Key {GKey}  
act8: K := K {n4, pwn(g, pwn(g, n3 * n4))}  

Event  IntEvnt  
any  

m1, m2  
where  

  K   m2  K 



3 41 2
=

n nn ng gGKey g

I

grd1: m1 
then 

act1: K := K  {pwn(m1, m2)} 
END 
The intruder set of knowledge is modeled with K in 

the above model, and is initialized with the public set of 
knowledge. We assume the intruder has access to the 
knowledge of users leaving the group. Therefore, with 
the execution of each event, this knowledge is updated 
dynamically. The function pwn models the exponent op- 
erator used to calculate keys. After the join event is exe- 
cuted, the new key will be generated and added to that 
set of secret keys based on the contribution of the joined 
member, n4, as follows: 

 

For the verification of the invariants, we first consider 
the static case of key construction under the assumption 
that basic DH key construction (on tree leaf nodes) is 
correct. We then consider the dynamic case by applying 
events such as join and leave and verify the correctness 
of key construction for a bounded tree size and bounded 
number of events. The event-B invariant has been proven 
totally. The number of generated proof obligations are 
three, all proof obligations are discharged, and then the 
initial model of the group key protocol is validated. The 
event-B invariant, I, defined in the Rodin platform above, 
implies the group protocol secrecy semantically, 

|
. 

The event-B tool guarantees that M I . We have 
shown in the previous section that the group protocol G 
is mapped into an event-B model M. Therefore, we can 
conclude the correctness of the secrecy property   for 
the protocol model G, | . 

The proposed solution allows us to verify the required 
property, however, one limitation of our approach is its 
applicability on bounded number of participants and 
protocol events, this issue will be addressed in the future 
work. Another limitation is due to the fact that we verify 
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 3 4
3 4 2

2 3 4, , , ,
n nn n n gS n n n g g 

3 4
2

n nn g
cGroupKey g 

the property under the execution of a single event. How- 
ever, this approach is sufficient for the target property, 
where key distribution is abstracted away because we are 
concerned only with modeling key construction but not 
key distribution or authentication property. Even though 
there are some limitations for the approach, event-B can 
be used in modeling specific protocols behaviors, like 
key construction, and tree-based protocol primitives can 
be modeled directly in event-B for safety properties veri- 
fication. 

5.2. Forward Secrecy Model with Event-B 
Refinement 

We illustrate the method on a group protocol composed 
of four members, then we apply a leave event for a spe- 
cific member. Figure 8 shows the modification on the 
tree structure when a new member leaves the group, we 
define the group protocol components before and after 
this event takes place. This represents the abstract model. 
When a new member joins the group, the knowledge set 
is built based on the blind keys interchanged between 
group members and the observing member’s old set of 
knowledge who left the group earlier (Figure 8). This 
represents the refined model. 

In Figure 8(a), the current set of messages, secret set 
of messages, and the current group key are defined, re- 
spectively, as follows: 

1 21 23 3,
n nn nn n gg g 

 


1 2
31 2 ,

n n
n gn ng g 

 
 

1 2
3

n n
n g

aey g

1 2
3 3 42 , , ,

n nn n nn gg g

 3 41 2
3 4 , n nn nn n g gg

3 41 2 n nn ng g
b g

1 2 1 2
1 2 3, , , , , , ,n n n n gM n n n g g g


 

1 2 3= , , ,S n n n  

GroupK  

Then, after member M4 joins the group, as shown in 
Figure 8(b), the above variables become: 


1 2 4 1

1 23 4 3 41 2
3

1 2 3 4, , , , , , , ,

, ,

n n n n

n nn n n nn nn gg g g

M n n n n g g g g g

g g g

 
  

1 2
1 2 3 4, , , , ,n nS n n n n g  

GroupKey  

The next step, is that we let member 1M , who will be 
assumed to be dishonest later, leave the group, where a 
new secret share 2  is generated as in Figure 8(c). The 
above variables become: 

n


4 1 2

3 43 4
2

, , ,

 ,

n n n

n nn n n gg

g g

g 

31 2 2

1 23 41 2 1 2
3 4 3

1 2 2 3 4, , , , , , , ,

, , , ,

nn n n

n nn nn n n nn n n gg g g

M n n n n n g g g g

g g g g

  
  

 

 

Finally, Figure 8(d) is the join (or similarly leave) 
event on which we will check invariant for the refined 
model. The event represents the join event for the new 
member 5M . 1M  is a dishonest user who will take 
advantage of this event. We first illustrate secrecy, then 
forward secrecy: 



31 2 2 4

3 4 5 21 2
5 3 4 5 21 2

1 2 3 43 4 5 2 3 41 2
3 2

1 2 2 3 4 5, , , , , , , , , , ,

, , , , , , ,

, , ,

nn n n n

n n n nn nn n n n nn n g g g

n n n nn n n n n nn nn g n gg g g g

M n n n n n n g g g g g

g g g g g g g

g g g g





 

  



 

 3 4 5 2 3 4
3 4 5 2 2

2 3 4 5, , , , , , , n n
n n n n n nn n n g g gS n n n n g g g g

 

5 2 3 4n n n ng g
dGroupKey g




5

 

  

The intruder knowledge, K, as viewed by a member 
monitoring the group from outside, before M  joins the 
group is defined as: 

 3 41 2
31 2 2 4= , , , , , , , ,i

n nn nn nn n n n g g
iK n g g g g g g g g

5

 

Then we show the set of messages when member M  
joins the group: 
 

 

Figure 8. Forward secrecy in the TGDH protocol. (a) M1 is 
member of the group; (b) M4 joins the group; (c) M1 leaves 
the group; (d) M5 joins the group. 
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
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1 2 2

3 4 5 2
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i

n n n ng g

K n g g g g g

g g





 1 2
3 54, , , ,

n nnn gg g g

1

 

Secrecy implies that the intruder monitoring the group 
should not be able to calculate the group key GroupKeyd 
(or any secret share or sub-key). 

In forward secrecy, the set of messages K is refined 
with the knowledge gained by user M  while member 
in the group, and is denoted K  : 



5 2
3 4

3 4

, , ,

,

n nn g

n ng g

g g

g



5 2 3 4n n n ng gg




GroupKey

1 2 2

1 2 1 2
3 5 1 2

1, , , , , ,

, , ,

in nn n n
i

n n n nn g n n n

K n n g g g g g

g g g g

  
  

dGroupKey  

f d           

Group key protocol secrecy properties were defined as 
invariants in Rodin platform, the tool generates proof 
obligations that were successfully discharged using 
event-B proof control. The results achieved here are im- 
portant because our method allows semi-automated veri- 
fication of these properties under dynamic operation of 
the protocol. In addition, the method allows modeling 
protocols at different levels of abstraction, where the 
model can be further refined in order to include more 
details about the protocol operation. 

6. Conclusions 

In this paper, we provided invariant checking approach 
for group key secrecy and forward secrecy. We used 
event-B invariants to model and verify group key secrecy, 
then, on top of this, we used event-B refinement to model 
and verify forward secrecy. For this purpose, a formal 
link between the semantics of the group protocol model 
and event-B was established. The result was combining 
the event-B and group protocol model to be able to use 
specific features in event-B to model protocol actions 
and verify the required property. However, we restrict 
the group protocol model to be verified to certain condi- 
tions in order to guarantee the correctness of the method 
and the applicability of first-order logic theorem proving. 
This includes the number of participants, abstracting the 
exponentiation operator for Diffie-Hellman style proto- 
cols, and finally, applying a single protocol event. 

We applied this approach on a group key protocol, the 
tree based Group Diffie-Hellman protocol and provided 
invariant checking for secrecy under the static and the 
dynamic case by applying a single event (join/leave). In 
contrast to our work, the authors of this protocol [1] pro- 

vided an informal, non-intuitive and simple proof for 
secrecy property. 

Even though our approach can model and verify only 
invariant properties, while liveness related properties 
cannot be modeled in our approach, we believe that in- 
variant checking is adequate to model secrecy related 
properties. This is due to the target model and the verify- 
cation tool, namely, event-B and Rodin platform. Event- 
B supports only safety related properties which are mod- 
eled and verified as invariants. In addition, a limited class 
of liveness properties can be modeled using invariants, 
such as termination, while more general liveness proper- 
ties are not supported yet in Event-B. Hoang and Abrial 
[23] have an ongoing research for reasoning about live-
ness properties in Event-B. 

As future work, an interesting issue to be considered is 
modeling and verifying liveness security properties using 
event-B. In addition, an extension of the event-B based 
model to handle a parameterized number of participants 
shall be explored. It will also be interesting to investigate 
modeling backward secrecy and key independence using 
event-B. 
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