
Int. J. Communications, Network and System Sciences, 2012, 5, 165-177
http://dx.doi.org/10.4236/ijcns.2012.53021 Published Online March 2012 (http://www.SciRP.org/journal/ijcns)

Formal Verification of Secrecy in Group Key
Protocols Using Event-B

Amjad Gawanmeh1, Sofiène Tahar2, Leila Jemni Ben Ayed3
1Department of Electrical and Computer Engineering, Khalifa University of Science,

Technology and Research, Sharjah, UAE
2Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada

3Ecole Nationale des Sciences de l’Informatique, University of la Manouba, Tunis, Tunisia
Email: amjad.gawanmeh@kustar.ac.ae, tahar@ece.concordia.ca, leila.jemni@fsegt.rnu.tn

Received December 20, 2011; revised January 19, 2012; accepted February 28, 2012

ABSTRACT

Group key security protocols play an important role in today’s communication systems. Their verification, however,
remains a great challenge because of the dynamic characteristics of group key construction and distribution protocols.
Security properties that are well defined in normal two-party protocols have different meanings and different interpreta-
tions in group key distribution protocols, specifically, secrecy properties, such as group secrecy, forward secrecy,
backward secrecy, and key independence. In this paper, we present a method to verify forward secrecy properties for
group-oriented protocols. The method is based on a correct semantical link between group key protocols and event-B
models and also uses the refinement process in the B method to model and verify group and forward secrecy. We use an
event-B first-order theorem proving system to provide invariant checking for these secrecy properties. We illustrate our
approach on the Tree based Group Diffie-Hellman protocol as case study.

Keywords: Group Key Protocols; Formal Verification; Forward Secrecy; Secrecy; Event-B

1. Introduction

Security protocols are used to establish secure channels
between communicating systems. These protocols need
great care in their development and their implementation.
The complexity of security-protocol interactions can hide
security weaknesses that normal analysis methods cannot
reveal. Security properties that are well defined in normal
two-party protocols have different meanings and differ-
ent interpretations in group key distribution protocols.
Therefore, they require a more precise definition before
we look at how to verify them. For group key distribution
protocols, secrecy property has a further dimension since
there are long term secret keys, short-term secret keys, in
addition to present, future, and past keys; where a prin-
cipal who just joined the group and learned the present
key should not be able to have enough information to
deduce any previous keys, or similarly a principal who
just left the group should not have enough information to
deduce any future keys.

In group key protocols, there are generally four types
of security properties [1]: group key secrecy, which
guarantees that it is computationally infeasible for a pas-
sive adversary to discover any group key, intuitively, that
the attacker should not be able to obtain a key that honest
users think to be safe; forward secrecy, which guarantees

that a passive adversary who knows a contiguous subset
of old group keys cannot discover any subsequent group
key; backward secrecy, which guarantees that a passive
adversary who knows a contiguous subset group keys
cannot discover preceding group keys, and finally, key
independence, which guarantees that a passive adversary
who knows a proper subset of group keys cannot dis-
cover any other group key.

Event-B [2] was introduced by extending B [3] with-
out changing it to model operations that could be guarded
in the process algebraic sense. The event-B method uses
the set-theoretical and logical notations of the B method
and provides new notations for expressing abstract mod-
els based on events. It provides invariants proofs based
on a state-based system that is updated by guarded events.
The refinement capability offered by event-B allows in-
cremental development moving from an abstract level to
a more concrete one. Refinement technique allows the
preservation of proved properties and therefore it is not
necessary to prove them again in the refined transition
system. Moreover, in the refinement, it is not needed to
re-prove these properties again while the model com-
plexity increases. This advantage is important compared
to classical model checking where the transition system
describing the model is refined and enriched.

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 166

Group key protocols have special features, such as the
concept of group secrecy, forward secrecy, and dynamic
group events. These feature were rarely considered or ad-
dressed thoroughly when formal verification techniques
were applied. In this paper, we provide an event-B based
invariant checking for verification of group key protocols.
We model group key protocols and verify their required
properties, in particular secrecy and forward secrecy
properties, using the event-B method. Event-B deals with
tools allowing invariant checking, and can be used to
verify group key secrecy properties. In order to model a
group key protocol in event-B first order logic, a formal
relation between the semantics of the event-B language
[4] and the protocol model should be defined. This map-
ping relation should present the semantics of group key
protocol model based on event-B, hence, allowing the
verification of secrecy properties. This allows us to avoid
user interaction with the theorem proving tool, and re-
duce the time required to verify these properties. This
paper extends the work in [5] to verify forward secrecy
using event-B refinement.

We apply our approach on the tree based Group Dif-
fie-Hellman (TGDH) protocol [6] and provide invariant
checking for secrecy under the static and the dynamic
case by applying a single event (join/leave). We use the
event-B first order prover platform Rodin [7,8] to per-
form invariant checking under the assumption that basic
Diffie-Hellman key is correct. The dynamic case is also
considered by applying events such as join and leave and
verify the correctness of key construction for bounded
tree size and bounded number of events. We assume
perfect cryptography conditions in our approach. In addi-
tion the group key protocol is analyzed in the presence of
passive adversaries.

The rest of the paper is organized as follows. Section 2
discusses related work to ours. In Section 3, we pre- sent
our methodology to verify forward secrecy using event-B
refinement. In Section 4, we apply our approach on
TGDH protocol. Finally, Section 5 concludes the paper
with future work hints.

2. Related Work

The recent years have seen the emergence of successful
applications of formal approaches to reasoning about
security protocols. Earlier methods were concerned with
reasoning about the events that a security protocol can
perform, and make use of a causal dependency that exists
between protocol events. Methods like strand spaces [9]
and the inductive method of Paulson [10] have been de-
signed to support an intensional, event-based, style of
reasoning. These methods have successfully tackled a
number of protocols though in an ad hoc fashion. They
make an informal spring from a protocol to its represen-

tation and do not address how to build up protocol repre-
sentations in a compositional fashion [11].

Events-based verification of security protocols was
used by Crazzolara [11] using mappings between process
algebra, Petri nets, strand spaces and inductive models.
The authors established precise relationships between the
Petri nets semantics and transition semantics, strand spaces,
inductive rules, trace languages, and event structures.
They show how event-based models can be structured in
a compositional way and so used to give a formal seman-
tics to security protocols which support proofs of the
correctness of these protocols. They demonstrated the
usefulness of their Petri nets semantics in deriving proof
principles for security protocols and apply them to prove
an authentication property.

Cremers [12] proposed an operational semantic for se-
curity protocols. The work provides a generic description
of the interpretation of such security protocols and what
it means for a protocol to ensure some security property.
This work imposes explicit static requirements for valid
protocols, and verifies that the model is parametric with
respect to the matching function and intruder network
capabilities. Other related work that treats group key
protocols verification, specifically DH based protocols,
are discussed in more details in [13].

Stouls and Potet [14] proposed a method to automati-
cally enforce an abstract security policy on a network.
They used the B refinement process to build a formal
link between concrete and abstract terms, which is dy-
namically computed from the environment data. The
method is applied on a case study modeling a network
monitor. A different approach to achieve a similar object-
tive was proposed in [15], where the authors addressed the
proof-based development of system models satisfying a
security policy. They used OrBAC [16] models to ex-
press the security policies in order to state permissions
and prohibitions on actions. An abstract B model is de-
rived from the OrBAC specification of the security pol-
icy and then the model is refined to introduce properties
that can be expressed in OrBAC. The refinement guar-
antees that the resulting B model satisfies the security
policy.

Bert et al. [17] presented a tool to build symbolic la-
beled transition systems from B specifications. The re-
sulting symbolic transition system represents all the be-
haviors of the initial B event system. The tool, called
GeneSyst, was illustrated on a security property for a
model of a smart card purchase transaction protocol.
Butler [18] combined CSP and B method refinement in
order to verify authentication property. The work does
not present a new theoretical framework, instead it de-
scribes the use of the above methods to treat refinement
of secure communication systems.

Chridi et al. [19] presented a decision procedure for

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 167

the sub-class of Well-Tagged protocols with Autono-
mous Keys to analyzing Web Services manipulating se-
quences of items. Dalal et al. [20] provided a compara-
tive and evaluation study for tools used in verification of
security protocols. In another related work, Li [21] and
Pand extended the strand space method to include time
and timstamps to model the notion of recency in Kerbe-
ros protocol.

 SYSTEM <name>
SETS <sets>
VARIABLES <variables>
INVARIANT <invariants>
INITIALISATION <initialization of variables>
EVENTS <events>
END

Compared to the above, we address security properties
for group oriented protocols, which have special features
that were not addressed in any of these approaches, such
as the concept of group secrecy and forward secrecy and
dynamic group events. In addition, we consider events
that are specific for group key protocols that were never
treated by the Event-B method. In [13], we used the rank
function based inference system to model and verify two
parties Diffie-Hellman protocol, while in [5], we pre-
sented an approach for modeling and verification of
group key protocols by using event-B first-order logic
invariant checking. The method is based on a formal link
between the semantics of group key protocols model and
event-B based on a well-formed connection between
event-B invariant and the group key protocol model in-
cluding its secrecy property. This paper extends the work
in [5] to verify forward secrecy property using event-B
refinement. We define two models for the group protocol:
an abstract model and a refined model. The first one
captures secrecy property as an invariant for the abstract
model, and the second one captures forward secrecy as
an invariant for the refined model.

Many methods were developed to verify certain as-
pects of security protocols such as secrecy and authentic-
cation. These methods have successfully tackled a num-
ber of protocols though in an ad hoc fashion. On the
other hand, using formal methods like model checking
can be efficient in the verification of authentication prop-
erty, while modeling and reasoning about properties like
forward secrecy requires first-order-logic based methods
such as Event-B.

3. Event-B Method

Event-B [2] is a variant of the B method introduced by
Abrial [3] to deal with reactive systems. An event con-
sists of a guard and an action. The guard is a predicate
built on state variables and the action is a generalized sub-
stitution which defines a state transition. An event may
be activated once its guard evaluates to true and a single
event may be evaluated at once. The system is assumed
to be closed and it means that every possible change over
state variables is defined by transitions; transitions cor-
respond to events defined in the model. The B method is
based on the concept of machines [3]. A machine is
composed of descriptive and operational specifications:

A descriptive specification describes what the system

does by using a set of variables, constants, properties
over constants and invariants which specify properties
that the machine’s state verify. This constitutes the static
definition of the model. Operational specification de-
scribes the way the system operates. It is composed of a
set of atomic events described by generalized substitu-
tions. An event has a guard and an action, and it may
occur only when its guard evaluates to true. An event has
one of the general forms where the SELECT form is just
a particular case of the ANY form. SELECT takes the
form

Name event =
ANY P WHERE

G
THEN

R
and similarly a SELECT statement takes the form

Name event =
WHEN

G
THEN

R

3.1. Event-B Invariant Checking

The consistency of an event-B model is established by
proof obligations which guarantee that the initialization
verifies the invariant and that each event should preserve
the invariant. The guard and the action of an event define
a before-after predicate for this event. It describes a rela-
tion between variables before the event holds and after
this. Proof obligations are produced from events in order
to state that the invariant condition is preserved. Let M be
an event-B model with v being variables, carrier sets or
constants. The properties of constants are denoted by
 P v , which are predicates over constants, and the in-

variant by  v . Let E be an event of M with guard I
 G v  ,R v v

v
 and before-after predicate that indeed

yields at least one after value . The initialization event
is a generalized substitution of the form  :v init v

 

. Ini-
tial proof obligation guarantees that the initialization of
the machine must satisfy its invariant:  Init v I v .

Each event E, if it holds, has to preserve the invariant.
The feasibility statement is illustrated in Lemma 3.1 and

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 168

 cthe invariant preservation is given in Lemma 3.2 [4].
Lemma 3.1.        ,I v G v P v  v R v v   


.

Lemma 3.2.         ,I v G v P v R   v v I v 

|

.

An event-B model M with invariant I is well-formed,
dented by M I

 domain R

, only if M satisfies all proof oblige-
tions. The B syntax for generalized substitutions defines
three predicates: a relation R, the subsets of the pre-states
where G is true of the states in , and the
subset of the pre-state where P is true. Let S be restricted
to evaluations that satisfy the invariant,   S v I v .
Each event can be represented by a binary relation rel
formally defined as      ,v R v v  v I v G rel v  .
The fact that the invariant  I v

S

 is preserved by event
rel is simply formalized by saying that rel is a binary
relation built on S: . It is shown that this bi-
nary relation yields to both Lemmas 3.1 and 3.2 above
[4].

rel S 

Lemma 3.1 guarantees that the active part of the rela-
tion is a total relation, i.e., when all predicates I, P, and G
hold, formally,    G v P v dom   ,ain R v v  , while
Lemma 3.2 guarantees that the postcondition of any op-
eration must satisfy the machine invariant. The initial
proof obligation guarantees that the initialization of a
machine must satisfy its invariant.

We distinguish special rules for the initialization events.
We use I to denote the predicate of the gene-
ralized substitution associated with this event. Then we
obtain the following initialization statements [4]:

 ,R v v

 ,Iv R v v 

  ,v v I v

Lemma 3.3.  P v  

Lemma 3.4.   IP v R   

v

3.2. Event-B Refinement

Refinement is a technique to deal with the development
of complex systems. It consists in building, starting from
an abstract model, a sequence of models of increasing
complexity containing more and more details. These de-
tails could be introduced when using new variables, add-
ing details to abstract events or adding new events. A
model in the sequence is followed by a model it refines.
The invariant of the refined model is not weaker than the
model it refines and it may contain new variables. The
events are the same but may be redefined. It is also used
to transform an abstract model into a more concrete ver-
sion by modifying the state description [22]. The abstract
state variables, v, and the concrete ones, c , are linked
together by means of a gluing invariant  , cJ v v



. A
number of proof obligations ensures that 1) each abstract
event is correctly refined by its corresponding concrete
version; 2) each new event refines skip; 3) no new event
takes control forever; and 4) relative deadlock fairness is
preserved. Suppose that an abstract model AM with vari-
ables v and invariant v is refined by a concrete

model CM with variables vc and gluing invariant J ,v v .
If  ,R v vC c c ,R v vA  and  are, respectively, the ab-
stract and concrete before-after predicates of the same
event, we have to prove the following statement:



I

     
    
, ,

, ,

c C c c

A c

v J v v R v v

v R v v J v v

 I

      

This statement means that under the abstract invariant
 v  , and the gluing invariant cI J v v , a concrete step
 ,C c cR v v can be simulated by an abstract one  v
 ,AR v v in such a way that the gluing invariant
 c,J v v  is preserved. A new event with before-after

predicate  ,R v vc c   must refine skip x x  . This leads
to the following statement to prove:

     , , ,c C c c v J v v R v v J v v   

V v

I .

Moreover, we must prove that a variant c (valua-
tion of variable v) is decreased by each new event (this is
to guarantee that an abstract step may occur). We have
thus to prove the following for each new event with be-
fore-after predicate  ,c c cR v v :

        , , <c cv J v vc BA v v Val v Val v  I .

At last, we must prove that a concrete model does not
introduce more deadlocks than the abstract one. This is
formalized by means of the following proof obligation:

      , c M MI v J v v G A G C  

where G A
 G C

M stands for the disjunction of the guards
of the events of the abstract model, and M stands
for the disjunction of the guards of the events of the con-
crete one. The essence of the refinement relationship is
that it preserves already proved system properties in-
cluding safety properties. The invariant of an abstract
model plays a central role for deriving safety properties;
the goal is to obtain a formal statement of properties
through the final invariant of the last refined abstract
model.

4. Event-B Semantics Based Verification
Methodology

In order to reason about group protocols in the first-order
logics, a map between the group protocol model and
event-B model semantics is defined. The event-B tool
guarantees the correctness of the invariant w.r.t the
event-B model. The map from group protocols to event-
B model guarantees certain equivalence between the two
models, under certain conditions. Secrecy property is
semantically implied in event-B invariant in a defined
and proved lemma. Then, a theorem is defined to guar-
antees that once an event-B invariant is proved against
event-B mode, we can conclude that the secrecy property
is correct for the group protocol mode.

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 169

In the event-B method, compared to higher-order logic,
the number of protocol participants that can be consid-
ered is limited, finally, modeling forward and backward
simultaneously requires more than two levels of abstract-
tion, hence, generates more proof obligations, which will
reduce automation as more interaction with the tool will
be required to discharge these obligations, this is an open
issue to be addressed in future work. Figure 1 depicts the
formal links in the proposed event-B approach.

The security property is defined in the event-B model
based on mapping sets, events, and invariants. For for-
ward secrecy, we use refinement of secrecy. The sound-
ness of the event-B model is then established based on a
well-formed link to the group protocol model. The valid-
ity of the event-B invariant against its model is checked
using the Rodin invariant checking tool. This way, we
establish the formal link from the Rodin langauge to the
group protocol model.

Let be a group key protocol model, and let
be a set of all possible messages (messages space). We
choose to represent the secret messages space, the set
of all secret messages, . Thereafter, we define

 to be the set of all events, or dynamic operations, i.e.,
join, leave, merge, and split. An event is a term from the
message space to the message space, . It
represents an action the user can perform on the system
to update his/her own set of knowledge.

 


 



  

0
 

m     

0  

:

Let be the set of initial knowledge of the intruder,
where 0 . The initial knowledge of the informa-
tion is collected before executing the protocol events.
This information is usually publicly known,

0 . We then define as the
set of knowledge of the intruder that is updated by exe-
cuting events. The system starts with the initial set of
knowledge and the set of events, then, by executing a
sequence of events, it updates this set. and

.

m m  

 
We define a safety property  for a group key pro-

tocol model . This property states that the system
cannot execute an event in in order to generate a
message in , and is formally modeled as follows:





 e m m  


|

e m      .

If this property is correct for the protocol , then we
can write 

 , , ,

.
Forward secrecy guarantees that a passive adversary

who knows a contiguous subset of old group keys (say

0 1 iK K K) cannot discover any subsequent group
key jK for all i and j, wher > i . We will follow
this definition in our model for the rest of the pap

e j
er.

The proposed verification methodology consists of a
number of steps as shown in Figure 2. In the first step,
the group key protocol is specified formally using the
model presented before in order to obtain precise proto-

Figure 1. Event-B based approach.

Figure 2. Verification methodology.

col specifications. In addition, the secrecy property ex-
pected to be checked by the system is described infor-
mally. In the second step, the obtained specification is
translated into event-B specification using mapping rela-
tions to obtain an event-B model that captures the fea-
tures of the group protocol model. Next, a secrecy prop-
erty  is specified as an invariant of the resulting

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 170

event-B model I, and a forward secrecy property f is
specified as an invariant of the refined event-B model.
Messages can be defined as a set with an enumeration of
all possible secret and known messages. The intruder
initial knowledge, 0 , is directly defined as variable or
set in the event-B initialization list. Secret messages are
defined similarly. Protocol initial constraints, such as

0 and , are defined as properties that
will be included in the invariant. Protocol join or leave
events are defined as event-B operations that update the
intruder’s knowledge and the set of secret messages, in-
cluding the new generated key. Finally, the property is
checked from the obtained global system specification
using the event-B invariant checking in Rodin platform.



  

In Figure 3, protocol events and execution traces are
mapped into event-B events, messages generation condi-
tions are mapped into events guards, and messages sets
are used to generate event-B model constants properties.
The initial knowledge is defined as event-B initialize-
tions, messages are mapped directly into sets, and finally
the secrecy property is defined as an invariant for the
event-B model. The generation of the target event-B
model requires treating three parts: the static part which
includes initializations and the constant properties of the
protocol, the dynamic part that represents events of the
protocol, and finally, enriching the resulting model with
invariants describing the required secrecy properties.

The event-B semantics is close to the protocol model
semantics. This relationship is demonstrated by estab-
lishing a well-formed link between the semantics of both
models. To achieve this link, we are interested in show-
ing that if the invariant I holds for event-B system M,
then the safety property  must hold for the group pro-
tocol model . Formally,  M I   ||    . In terms
of equivalence between the two models, we can say that
the event-B model M is an abstract model of the protocol
model , with regards to the security property, if the
property


 holds in the model , and the invariant I

holds in the abstract model M. To illustrate this equiva-
lence, we need to show that I  . Therefore, it is

Figure 3. Mapping protocol primitives into event-B.

enough to show that the invariant I, with regards to M,
implies the safety property  , with regard to . 

I

4.1. Verification of Secrecy as Event-B Invariant

To show that 





, we need to establish a well-formed
link between event-B invariant and the safety property.
We split this formal link into two parts: the first deals
with the initialization, and the second deals with execut-
ing the events. For this, we need to relate messages in
to variables in M by mapping public messages and secret
messages to event-B sets and messages sets to event-B
constants properties. This map relates the variable m over
the set of messages directly to the variable v over
event-B carrier sets and constants. The semantical corre-
spondence between the variable m and the variable v is
defined by this map.

Theorem 4.1. Secrecy Soundness.
A group protocol, G, satisfies its secrecy property,  ,

if there is an equivalent abstract event-B model, M, that
satisfies an event-B invariant, I, and implies the property
 . More formally, for a model G, we need to find an
abstract model M where means that the event-B
model M can be abstracted from the group protocol G.
This abstraction will be defined later. Let

G M

 |M I , and
 I  be correct lemmas, then,

       | |G M M I I        

G M

G M

.

The proof is divided into two parts, in the first we
assume that holds, then we prove the theorem
based on that. In the next stage we prove each lemma
separately and we identify the relation between G and M
such that holds.

 G M  |, I  I, and Proof. Given M  , we
can deduce

     | |M I I M      

     | |G M M G    

M

We establish the abstract relation between G and M
such that G holds, then we prove the lemma
 I  |M I . The lemma  is assumed to be correct
in the event-B tool.

Definition 4.1. A group protocol model G, is ab-
stracted to an event-B model, M under certain conditions
and semantically correct map from G to M. is
defined as follows:

G M

, , , , ,

For every component and condition in G there is an
equivalent one in M. A protocol model is composed of

0     



, we map each component in G into an
equivalent one in M.

Messages sets are mapped into an event-B variable by
defining v over the set , and messages sets relations
are mapped to event-B constants properties.  P v is a

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 171

function of . These relations include the predicates
about sets that should always hold.



Messages generation conditions are mapped into events
guards. These conditions include predicates that should
hold prior to executing an event, like having the appro-
priate key to encrypt or decrypt a message.

   ,ition  G v cond

The secrecy property,  , is mapped into an event-B
invariant, I. This map is defined in Lemma 4.1.

An event in is mapped into event R, an event,
 with a precondition condition, where


ce 

 1 2c , the message generated from execut-
ing the even, can be defined concretely using an event-B
statement such as:

, ,m m m e

Name event =
ANY mWHERE

condition
THEN

 ,R m m
G M

I

This map defines the relation .
To show that 





, we need to establish a well-
formed link between event-B invariant and the safety
property. We split this formal link into two parts: the first
deals with the initialization, and the second deals with
executing the events. First we relate messages in to
variables in M. In Figure 3, we describe a map from
public messages and secret messages to event-B sets and
a map from messages sets relations to event-B constants
properties. This map relates the variable m over the set of
messages directly to the variable v over event-B
carrier sets and constants. The semantical correspond-
dence between the variable m and the variable v is de-
fined by this map.

We define the invariant I as init EI I  I , where initI
is the invariant predicate under the initial conditions, and

EI is the invariant predicate under executed events.
Similarly, we define the safety property init E   

 I  

 I 


 

   
 

.
Lemma 4.1.  I I    init init E E

Proof. We define the well-formed conditions that guar-
antee the correctness of this lemma in two steps, we first
show that init init . We identify the initial events
and initial set of messages in under which the for-
mula init init holds. Then we define the predicates
P, I, G, and R presented in Lemmas 3.1 and 3.2 for the
protocol model such that Lemma 4.1 holds.

 

I


The definition of the group key protocol must satisfy

the initial soundness conditions: 0 and

i , where ie is an initial
event that can be applied on the intruder's initial set of
messages. We choose to be the set of events
that can be executed on .

 e m m  

0IR  


:i ie m   

0

We will define the constants property P and the ini-
tialization predicate IR 



 for the model that will

satisfy Lemmas 3.3 and 3.4. Then we define P, R, the
predicate guards G, and the invariant I for the model
that will satisfy Lemmas 3.1 and 3.2.

 init initI  Case 1.

      0 0P m 0         

     0, :I i iR e m m m e m           

 I m m m0    
 :m e m 

 ,IR v v

The message generation event i is equiva-
lent to the transition relation . This yields the
formula    : iP m e m e m    i i which is exactly
Lemma 3.3 considering that I i

The invariant definition for the model is
R e


.

 I m m m    . We need to show that the invari-
ant I holds for both  m   and I I m

 
. Since the proto-

col is initially sound, then both  I m and I m hold
by the fact that 0    and that the initial events
cannot generate secret messages in S. If   then : im e m 
m

   
. Therefore we can write

    :P m m e m I mi    , which corresponds to
Lemma 3.3 considering that I iR e .

Case 2.  E EI 

   P m    

   I m m  

     

m  

 : ,
k

G m m encr m k  

 

k  

   : ,
k

m decr m k m   

     ,R e m m m           e m

This message generation event is equivalent to the tran-
sition relation  ,R v v . Therefore, applying the predi-
cates P, I, and G will lead to the relation R. We can write
the formula        i
which is equivalent to Lemma 3.1 considering that the
relation R is equivalent to an existing event

P m I m G m e m e m      

e
 

.
IThe validity of the invariant m  for the model

is expressed by the validity of the predicates P, I, R, and
G, where  :m e m  . This can be written as
       I m P m G m R I m    , which corresponds

to Lemma 3.2.
Under these conditions, we guarantee that when the

invariant holds in event-B model, the secrecy property
definition holds for the group key protocol model. These
predicates should be considered carefully when provid-
ing the event-B implementation. Properties that can be
expressed as invariants are verified using the translation
process and the event-B tool.

This completes the proof of Theorem 4.1. The major
restriction on this method is that it can reason about the
execution of a single protocol event, i.e., join or leave.
However, this is enough to model and verify group se-
crecy when a member joins or leaves the group.

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 172

4.2. Verification of Forward Secrecy Using
Event-B Refinement

Figure 4 illustrates the modifications required on the
verification methodology in order to support forward
secrecy. When the invariant I holds for event-B system
M, the safety property  must also hold for the group
protocol model . The verification methodology for
forward secrecy is built on top of the methodology we
use for secrecy. In order to apply invariant checking on
forward secrecy, we will consider the model M as an
abstract one, and define a refined model, c



M , and a
gluing invariant J linking variables of the abstract model
to those of the concrete or refined one (cM). In addition
to the previous map defined from G to M, we will use the
variable c to represent the set of intruders messages in
the refined model. Therefore, c

v
 ,J v v will represent

the gluing invariant which represents forward secrecy
property before the relation c . In addition, we use R
 cI v to represent the invariant in the refined model,

which corresponds to the secrecy property of the refined
protocol model, c . The relation will be defined
the same way as the relation R.

G cR

R R  ,R v v

 ,v
v

In event-B, refinement can be done with events or
variables. In our case, the group protocol join or leave
events have the same semantics in both secrecy and for-
ward secrecy, therefore, it will have the same definition
in both the abstract and refined event-B models, i.e.,

c . We use to represent join or leave events,
which update the intruder’s set of knowledge, the vari-
able v here. In the refined model, we will use the same
relation, we call it c c cR v , that will update the in-
truder’s set of knowledge, c, in the refined model CM .

The correctness of forward secrecy, f , with regards
to the event-B concrete model cM is achieved through
the correctness of the gluing invariant c ,J v v

G

 . Figure
5 below illustrates the link between the abstract and re-
fined model to achieve a model for forward secrecy in
event-B.

A group protocol, c , satisfies its secrecy property,

f , if there is an equivalent event-B model, M, that sat-
isfies an event-B invariant, I, and a refined event-B
model cM that satisfies an event-B invariant I, and a
gluing variable  , cJ v v that implies f in the exis-
tence of a relation .  , cV 

c cM
c cR V
 G  c fIFormally, given ,  ,  |M I ,

and  | cM I , then

      | fJ |c fGc cG M c cM I         .

Assuming  c cG M  , fJ  , and  |cM J , we
can deduce:

 M J  | |f c fMc J      

 | |c fG

.

 c c c fG M M      .

This way, we guarantee that once a refined event-B

Figure 4. Refined Event-B method for forward secrecy.

Figure 5. Relationship between abstract and refined models.

model is verified against its invariant, then the group
protocol model is verified against its forward secrecy
property.

Event-B invariant checking cannot reason about back-
ward secrecy because invariants cannot be used in a re-
verse manner, i.e., refining the intruder’s knowledge
back in time. In backward secrecy the intruder is as-
sumed to be an active user in the group while trying to
discover older secret shares prior to his/her membership.
Therefore, refinement of secrecy can only be used for
forward secrecy. Based on this, key independence (collu-
sion) cannot also be modeled in this method as is.

5. Case Study: The TGDH Protocol

In this section, we apply the approach on a group key
protocol that generates a key in a distrusted group. We
show how the conditions defined for the correctness of
the above model can be concretely applied on a real pro-
tocol. The intended secrecy property, along with its con-
ditions, are efficiently defined and checked as event-B

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 173

invariant.
The Tree-based Group Diffie-Hellman protocol (TGDH)

is intended for secure key generation. Figure 6 shows a
binary tree structure that represents the group members,
their own secret shares, and the secret sub-keys on every
node up to the root. As part of the protocol, a group
member can take on a special sponsor role, which in-
volves computing intermediate keys and broadcasting to
the group. Each broadcasted message contains the send-
ers view of the key tree, which contains each blind key
known to the sender [1].

A group key can be computed from any members se-
cret share and all blind keys on the co-path to the root.
Blind keys are the siblings of the nodes on the key path.
The members own secret share and all sibling blind keys
on the path to the root enable a member to compute all
intermediate keys on its key-path, including the root
group key.

The group key is calculated by each member based on
his/her key-path and blind keys. For instance, for a
member M3 at node , the key-path is the set of mes- 3n

 2 3
2 3 1, ,

n nn n n gg

4 5
6

1, ,
n nn gn gg

 
 
 

4 52 3
61

n nn n n gn gg g

sages . The set of blind keys ordered 3n g

as they appear up to the root is

2ng g . The group key at the root is calcu-

lated directly using the two sets:

GroupKey g

The protocol designers presented four types of security
properties: group key secrecy, forward secrecy, back-
ward secrecy, and key independence. The authors of [1]
provided an informal proof that their protocol satisfies
these security property. In this work, we provide a formal
proof for group key secrecy property under certain con-
ditions. This property can be described as a correct key
construction property, which guarantees that only group
members, who are of knowledge to their own private
shares, can calculate the group key at root. On the other
hand, an adversary, who knows all blind sub-keys cannot
find a full path to calculate the root key.

We illustrate our method on a group protocol com-
posed of three members, then we apply a join event for a
fourth member. Figure 7 shows the modification on the
tree structure when a new member joins the group, we
define the group protocol components before and after
this event takes place. Assuming that a passive adversary
is monitoring the group activity, the knowledge set is
built based on the blind keys interchanged between
members. Based on this, we show all group protocol
components, including secrecy property, and the equiva-
lent event-B model including the invariant, before the

Figure 6. Tree-based GDH protocol binary tree structure.

Figure 7. Join event in the TGDH protocol.

join event takes place:

 1 21 2
3 31 2 1 2

1 2 3, , , , , , , ,
n nn nn n gn n n n gM n n n g g g g g g

 1 2
31 2

1 2 3, , , ,
n nn gn nS n n n g g

 0 , in
iK n g

 1 2
31 2, , , , ,i

n nn nn n g
iK n g g g g g

1 2
3

n nn gGroupKey g

  0 0K  , , KMwhere the sets of messages  
S  

n

,
and .

Then, we show the same components after the join
event of a new member with a new secret contribution

4 . Note that group key secrecy has the same definition
and should be valid always, before and after a join (or
leave) event takes place.




1 2
3 3 41 2 4 1 2

3 4 3 41 2

1 2 3 4

,

, , , , , , , , , , ,
n nn n nn n n n n g

n n n nn ng g g

M n n n n g g g g g g g

g



 3 41 2
3 41 2 ,

1 2 3 4, , , , ,
n nn nn nn n g gS n n n n g g

 3 41 2
31 2 4, , , , , , ,i

n nn nn nn n n g g
iK n g g g g g g g

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 174

3 41 2 n nn ng gy gGroupKe

GroupKey        

K S

5.1. Secrecy Model in Event-B Invariant

The event-B model for the protocol components is de-
scribed below. We describe the current status of the
group by initializations appropriate sets for messages and
keys. The secrecy property is defined as an invariant that
combines a set of conditions to be satisfied at the ini-
tialization and after executing the event:    .
Some of the protocol characteristics can also be encoded
within this invariant, such as K M S  M

 

. We also
define an event to represent the protocol action (join/
leave).

The TGDH protocol components are defined within
the event-B model. The group key has basically the same
definition, and secrecy property is defined as an event-B
invariant that contains, in addition to group key secrecy,
certain conditions on messages sets to ensure the consis-
tency of the map,

K S GKey K      K M S M  

 

.

An event-B definition that captures the behavioral se-
mantics of a join event which will result in updating the
intruder’s set of knowledge is described as follows:

MACHINE M0
SEES P0
VARIABLES

K GKey S
pwn

INVARIANTS
inv1: K Key GKey  Key  S M 
inv2: pwn  N × N K 
inv3: K ∩ S =   GKey  K

EVENTS
Initialisation

begin
act1: M := {n1, n2, n3, pwn(g, n1), pwn(g, n2),

pwn(g, n3), pwn(g, n1 * n2),
pwn(g, n2 * n3), pwn(g, pwn(n1 * n2)),
pwn(g, n3 * g(n1, n2))}

act2: K := {ni, pwn(g, ni), pwn(g, n1),
pwn(g, n2), pwn(g, n3),
pwn(g, pwn(g, n1 * n2))}

act2: Key := {pwn(g, n3 * pwn(g, n1 * n2))}
act3: S := {n1, n2, n3, pwn(g, n1 * n2),

pwn(g, n3 * pwn(g, (n1 * n2)))}
act4: GKey := {pwn(g, n3 * pwn(g, n1 * n2))}

end
Event join

any
n4

where
grd1: n4  M

then
act5: M := M {n4, pwn(g, n4), pwn(g, n3 * n4),

pwn(g, pwn(g, n3 * n4) * pwn(g, (n1 *
n2)))}



act6: S := S {n4, pwn(g, n3 * n4), pwn(g,
pwn(g, n3 * n4) * pwn(g, (n1 * n2)))}

act7: GKey := pwn(g, pwn(g, n3 * n4) * pwn(g,
(n1 * n2)))

act8: Key := Key {GKey}
act8: K := K {n4, pwn(g, pwn(g, n3 * n4))}

Event IntEvnt
any

m1, m2
where

 K  m2 K 



3 41 2
=

n nn ng gGKey g

I

grd1: m1
then

act1: K := K {pwn(m1, m2)}
END
The intruder set of knowledge is modeled with K in

the above model, and is initialized with the public set of
knowledge. We assume the intruder has access to the
knowledge of users leaving the group. Therefore, with
the execution of each event, this knowledge is updated
dynamically. The function pwn models the exponent op-
erator used to calculate keys. After the join event is exe-
cuted, the new key will be generated and added to that
set of secret keys based on the contribution of the joined
member, n4, as follows:

For the verification of the invariants, we first consider
the static case of key construction under the assumption
that basic DH key construction (on tree leaf nodes) is
correct. We then consider the dynamic case by applying
events such as join and leave and verify the correctness
of key construction for a bounded tree size and bounded
number of events. The event-B invariant has been proven
totally. The number of generated proof obligations are
three, all proof obligations are discharged, and then the
initial model of the group key protocol is validated. The
event-B invariant, I, defined in the Rodin platform above,
implies the group protocol secrecy semantically, 

|
.

The event-B tool guarantees that M I . We have
shown in the previous section that the group protocol G
is mapped into an event-B model M. Therefore, we can
conclude the correctness of the secrecy property  for
the protocol model G, | .

The proposed solution allows us to verify the required
property, however, one limitation of our approach is its
applicability on bounded number of participants and
protocol events, this issue will be addressed in the future
work. Another limitation is due to the fact that we verify

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 175

 3 4
3 4 2

2 3 4, , , ,
n nn n n gS n n n g g 

3 4
2

n nn g
cGroupKey g 

the property under the execution of a single event. How-
ever, this approach is sufficient for the target property,
where key distribution is abstracted away because we are
concerned only with modeling key construction but not
key distribution or authentication property. Even though
there are some limitations for the approach, event-B can
be used in modeling specific protocols behaviors, like
key construction, and tree-based protocol primitives can
be modeled directly in event-B for safety properties veri-
fication.

5.2. Forward Secrecy Model with Event-B
Refinement

We illustrate the method on a group protocol composed
of four members, then we apply a leave event for a spe-
cific member. Figure 8 shows the modification on the
tree structure when a new member leaves the group, we
define the group protocol components before and after
this event takes place. This represents the abstract model.
When a new member joins the group, the knowledge set
is built based on the blind keys interchanged between
group members and the observing member’s old set of
knowledge who left the group earlier (Figure 8). This
represents the refined model.

In Figure 8(a), the current set of messages, secret set
of messages, and the current group key are defined, re-
spectively, as follows:

1 21 23 3,
n nn nn n gg g 

 


1 2
31 2 ,

n n
n gn ng g 

 
 

1 2
3

n n
n g

aey g

1 2
3 3 42 , , ,

n nn n nn gg g

 3 41 2
3 4 , n nn nn n g gg

3 41 2 n nn ng g
b g

1 2 1 2
1 2 3, , , , , , ,n n n n gM n n n g g g



1 2 3= , , ,S n n n

GroupK

Then, after member M4 joins the group, as shown in
Figure 8(b), the above variables become:


1 2 4 1

1 23 4 3 41 2
3

1 2 3 4, , , , , , , ,

, ,

n n n n

n nn n n nn nn gg g g

M n n n n g g g g g

g g g

 


1 2
1 2 3 4, , , , ,n nS n n n n g

GroupKey

The next step, is that we let member 1M , who will be
assumed to be dishonest later, leave the group, where a
new secret share 2 is generated as in Figure 8(c). The
above variables become:

n


4 1 2

3 43 4
2

, , ,

 ,

n n n

n nn n n gg

g g

g 

31 2 2

1 23 41 2 1 2
3 4 3

1 2 2 3 4, , , , , , , ,

, , , ,

nn n n

n nn nn n n nn n n gg g g

M n n n n n g g g g

g g g g

  


Finally, Figure 8(d) is the join (or similarly leave)
event on which we will check invariant for the refined
model. The event represents the join event for the new
member 5M . 1M is a dishonest user who will take
advantage of this event. We first illustrate secrecy, then
forward secrecy:



31 2 2 4

3 4 5 21 2
5 3 4 5 21 2

1 2 3 43 4 5 2 3 41 2
3 2

1 2 2 3 4 5, , , , , , , , , , ,

, , , , , , ,

, , ,

nn n n n

n n n nn nn n n n nn n g g g

n n n nn n n n n nn nn g n gg g g g

M n n n n n n g g g g g

g g g g g g g

g g g g





 

  




 3 4 5 2 3 4
3 4 5 2 2

2 3 4 5, , , , , , , n n
n n n n n nn n n g g gS n n n n g g g g

 

5 2 3 4n n n ng g
dGroupKey g




5

The intruder knowledge, K, as viewed by a member
monitoring the group from outside, before M joins the
group is defined as:

 3 41 2
31 2 2 4= , , , , , , , ,i

n nn nn nn n n n g g
iK n g g g g g g g g

5

Then we show the set of messages when member M
joins the group:

Figure 8. Forward secrecy in the TGDH protocol. (a) M1 is
member of the group; (b) M4 joins the group; (c) M1 leaves
the group; (d) M5 joins the group.

Copyright © 2012 SciRes. IJCNS

A. GAWANMEH ET AL. 176




1 2 2

3 4 5 2

, , , , ,

,

in nn n n
i

n n n ng g

K n g g g g g

g g





 1 2
3 54, , , ,

n nnn gg g g

1

Secrecy implies that the intruder monitoring the group
should not be able to calculate the group key GroupKeyd
(or any secret share or sub-key).

In forward secrecy, the set of messages K is refined
with the knowledge gained by user M while member
in the group, and is denoted K  :



5 2
3 4

3 4

, , ,

,

n nn g

n ng g

g g

g



5 2 3 4n n n ng gg




GroupKey

1 2 2

1 2 1 2
3 5 1 2

1, , , , , ,

, , ,

in nn n n
i

n n n nn g n n n

K n n g g g g g

g g g g

  


dGroupKey

f d         

Group key protocol secrecy properties were defined as
invariants in Rodin platform, the tool generates proof
obligations that were successfully discharged using
event-B proof control. The results achieved here are im-
portant because our method allows semi-automated veri-
fication of these properties under dynamic operation of
the protocol. In addition, the method allows modeling
protocols at different levels of abstraction, where the
model can be further refined in order to include more
details about the protocol operation.

6. Conclusions

In this paper, we provided invariant checking approach
for group key secrecy and forward secrecy. We used
event-B invariants to model and verify group key secrecy,
then, on top of this, we used event-B refinement to model
and verify forward secrecy. For this purpose, a formal
link between the semantics of the group protocol model
and event-B was established. The result was combining
the event-B and group protocol model to be able to use
specific features in event-B to model protocol actions
and verify the required property. However, we restrict
the group protocol model to be verified to certain condi-
tions in order to guarantee the correctness of the method
and the applicability of first-order logic theorem proving.
This includes the number of participants, abstracting the
exponentiation operator for Diffie-Hellman style proto-
cols, and finally, applying a single protocol event.

We applied this approach on a group key protocol, the
tree based Group Diffie-Hellman protocol and provided
invariant checking for secrecy under the static and the
dynamic case by applying a single event (join/leave). In
contrast to our work, the authors of this protocol [1] pro-

vided an informal, non-intuitive and simple proof for
secrecy property.

Even though our approach can model and verify only
invariant properties, while liveness related properties
cannot be modeled in our approach, we believe that in-
variant checking is adequate to model secrecy related
properties. This is due to the target model and the verify-
cation tool, namely, event-B and Rodin platform. Event-
B supports only safety related properties which are mod-
eled and verified as invariants. In addition, a limited class
of liveness properties can be modeled using invariants,
such as termination, while more general liveness proper-
ties are not supported yet in Event-B. Hoang and Abrial
[23] have an ongoing research for reasoning about live-
ness properties in Event-B.

As future work, an interesting issue to be considered is
modeling and verifying liveness security properties using
event-B. In addition, an extension of the event-B based
model to handle a parameterized number of participants
shall be explored. It will also be interesting to investigate
modeling backward secrecy and key independence using
event-B.

REFERENCES

[1] Y. Kim, A. Perrig and G. Tsudik, “Tree-Based Group
Key Agreement,” ACM Transactions on Information and
Systems Security, Vol. 7, No. 1, 2004, pp. 60-96.
doi:10.1145/984334.984337

[2] J. Abrial, “Modelling in Event-B: System and Software
Engineering,” Cambridge University Press, Cambridge,
2009.

[3] J. Abrial, “The B-Book: Assigning Programs to Mean-
ings,” Cambbridge University Press, Cambridge, 1996.
doi:10.1017/CBO9780511624162

[4] C. Metayer, J. Abrial and L. Voisin, “RODIN Deliverable
3.2: Event-B Language,” Technical Report Project IST-
511599, School of Computing Science, University of
Newcastle, Newcastle, 2005.

[5] A. Gawanmeh, L. J. B. Ayed and S. Tahar, “Event-B
Based Invariant Checking of Secrecy in Group Key Pro-
tocols,” Local Computer Networks, IEEE Computer So-
ciety Press, New York, 2008, pp. 950-957.

[6] M. Steiner, G. Tsudik and M. Waidner, “Diffie-Hellman
Key Distribution Extended to Group Communication,”
Conference on Computer and Communications Security,
ACM Press, London, 1996, pp. 31-37.

[7] J. Abrial, M. Butler, S. Hallerstede and L. Voisin, “An
Open Extensible Tool Environment for Event-B,” Inter-
national Conference on Formal Methods and Software
Engineering, Lecture Notes in Computer Science, Sprin-
ger-Verlag, Berlin, Vol. 4789, 2006, pp. 588-605.

[8] “Rodin Platform,” 2011. http://www.event-b.org

[9] F. Fabrega, “Strand Spaces: Proving Security Protocols
Correct,” IOS Journal of Computer Security, Vol. 7, No.
2-3, 1999, pp. 191-230.

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.1145/984334.984337
http://dx.doi.org/10.1017/CBO9780511624162

A. GAWANMEH ET AL.

Copyright © 2012 SciRes. IJCNS

177

[10] L. Paulson, “The Inductive Approach to Verifying Cryp-
tographic Protocols,” IOS Journal of Computer Security,
Vol. 6, No. 1-2, 1998, pp. 85-128.

[11] F. Crazzolara and G. Winskel, “Events in Security Proto-
cols,” ACM Conference on Computer and Communica-
tions Security, ACM Press, London, 2001 pp. 96-105.

[12] C. Cremers and S. Mauw, “Operational Semantics of
Security Protocols,” Scenarios: Models, Transformations
and Tools, LNCS, Springer-Verlag, Berlin, Vol. 3466,
2005, pp. 66-89. doi:10.1007/11495628_4

[13] A. Gawanmeh, A. Bouhoula and S. Tahar, “Rank Func-
tions Based Inference System for Group Key Manage-
ment Protocols Verification,” International Journal of
Network Security, Vol. 8, No. 2, 2009, pp. 207-218.

[14] N. Stouls and M. Potet, “Security Policy Enforcement
through Refinement Process,” Formal Specification and
Development in B, LNCS, Springer-Verlag, Berlin, Vol.
4355, 2007, pp. 216-231. doi:10.1007/11955757_18

[15] N. Benaissa, D. Cansell and D. Mery, “Integration of
Security Policy into System Modeling,” Formal Specifi-
cation and Development in B, LNCS, Springer-Verlag,
Berlin, Vol. 4355, 2007, pp. 232-247.
doi:10.1007/11955757_19

[16] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat,
F. Cuppens, Y. Deswarte, A. Miege, C. Saurel and G.
Trouessin, “Organization Based Access Control,” Inter-
national Workshop on Policies for Distributed Systems
and Networks, IEEE Computer Society Press, New York,
2003, pp. 120-131.

[17] D. Bert, M. Potet and N. Stouls, “GeneSyst: A Tool to
Reason about Behavioral Aspects of B Event Specifica-

tions. Application to Security Properties,” Formal Speci-
fication and Development in Z and B, LNCS, Springer-
Verlag, Berlin, Vol. 3455, 2005, pp. 299-318.
doi:10.1007/11415787_18

[18] M. Butler, “On the Use of Data Refinement in the De-
velopment of Secure Communications Systems,” Formal
Aspects of Computing, Vol. 14, No. 1, 2002, pp. 2-34.
doi:10.1007/s001650200025

[19] N. Chridi, M. Turuani and M. Rusinowitch, “Decidable
analysis for a Class of Cryptographic Group Protocols
with Unbounded Lists,” Computer Security Foundations
Symposium, IEEE Computer Society Press, New York,
2009, pp. 277-289.

[20] N. Dalal, J. Shah, K. Hisaria and D. Jinwala, “A Com-
parative Analysis of Tools for Verification of Security
Protocols,” International Journal of Communications, Net-
work and System Sciences, Vol. 3, No. 10, 2010, pp. 779-
787. doi:10.4236/ijcns.2010.310104

[21] Y. Li and J. Pang, “Extending the Strand Space Method
with Timestamps: Part I the Theory,” International Jour-
nal of Communications, Network and System Sciences,
Vol. 1, No. 2, 2010, pp. 45-55.

[22] J. Abrial, “Extending B without Changing It (for Devel-
oping Distributed Systems),” 1st Conference on the B
method, Putting into Practice Methods and Tools for In-
formation System Design, Institut de Recherche en Infor-
matique de Nantes, 1996, pp. 169-190.

[23] T. Hoang and J. Abrial, “Reasoning about Liveness Prop-
erties in Event-B,” International Conference on Formal
Engineering Methods, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Vol. 6991, 2011, pp. 456-471.

http://dx.doi.org/10.1007/11495628_4
http://dx.doi.org/10.1007/11955757_18
http://dx.doi.org/10.1007/11955757_19
http://dx.doi.org/10.1007/11415787_18
http://dx.doi.org/10.1007/s001650200025
http://dx.doi.org/10.4236/ijcns.2010.310104

