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ABSTRACT 

This paper concerns the traveling wave formation in macroscopic traffic flow models. The dynamics involved in this 
problem is described following a close analogy to compressible fluid dynamics. It is well known that vehicle clusters 
appear along a highway when the homogenous steady state taken as a reference is linearly unstable. The cluster proper-
ties are determined in an approximate way in terms of the parameters proper to each model and are compared between 
them. 
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1. Introduction 

The study of density waves in traffic flow has constituted 
a subject of interest mainly in relation to the cluster for-
mation. Clusters appear in real traffic only under certain 
conditions, then it is interesting to understand the 
mechanisms inducing such a phenomenon. Microscopic 
models such as the car-following models have studied 
numerically the structure as well as the conditions under 
which traveling waves can be formed, see for example 
[1-3]. On the other hand, we know that the microscopic 
approach is not the only one to study traffic flow phe-
nomena. The macroscopic traffic flow models represent a 
possible approach when applied to study vehicle behav-
ior in a highway. The development of such models can 
be done either in a phenomenological way [4-13] or tak-
ing as a starting point a kinetic equation [14-17] from 
which the macroscopic equations can be obtained. Be-
sides, the car-following class of models can be written as 
continuum equations [18] which share the structure of 
most macroscopic models. In general, these models are 
based on an analogy between compressible flow in a Na-
vier-Stokes fluid and the traffic flow, but no matter their 
origin the structure is similar to compressible flow equa-
tions. The models written in this way have the advantage 
of being worked in terms of partial differential equations 
and, there are several numerical schemes to perform 
simulations [19]. Most macroscopic models have been 
studied to understand the appearance of the main traffic 
characteristics in closed circuits and some experiments 
have also been done [20]. All those models share some 
properties such as, the continuity equation and the equa-
tion of motion to describe the speed behavior and in gen-
eral, the structure of balance equations. Though in some  

cases we can choose some additional variables such as 
the speed variance [13,15,17], both in the phenomenol-
ogical or in the kinetic approach. Besides their origin, it 
is interesting to study the behavior predicted by the dy-
namics proposed by them. In particular, we are interested 
in the cluster formation, the conditions under which they 
can appear and, their characteristics. According to the 
modern traffic flow theory [21-23] the clusters appearing 
as a consequence of free flow instability correspond to 
what is called wide moving jams (J). It has been shown 
that the models based on the fundamental diagram (GM 
models) produce a transition F J , when the free 
flow becomes unstable. Also, such models present the 
homogeneous congested traffic state (HCT), which cor-
responds to homogeneous traffic at the high density re-
gion. Most GM models share the presence of HCT states, 
a characteristic which in fact, seems not to be present in 
real traffic. This property is not present in the Helbing’s 
improved model [13], though it is based on the funda-
mental diagram. Our study will be focused on macro-
scopic models with three and two variables to be deter-
mined by the dynamics. In the first place we have the 
Helbing’s improved model (model H) [13] with the den-
sity, the speed and the speed variance as relevant vari-
ables. In a second step we have studied the Ker-
ner-Konhäuser model (model K) [8,9] and the continuum 
car-following model (model CCF) as constructed by 
Berg and Woods [24], both describe the problem in terms 
of the density and the speed. All these models consider 
different pieces of information to be determined empiri-
cally, such as the fundamental diagram, the relaxation 
time or sensibility factor in the case of the CCF model, 
size of vehicles, safe distance, etc. The number of dy-  
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namical variables depends on the model complexity and 
the traffic characteristics they want to describe. It should 
be noticed that the model by Kerner-Konhäuser has rep-
resented a prototype for this kind of studies [8], since it 
can reproduce some qualitative properties of traffic flow. 
It has been shown that, under unstable conditions the 
models similar to it produce traveling waves with the 
soliton structure [25-28]. With this perspective in mind, 
it becomes interesting to study the presence of solitons in 
the other macroscopic models and show that they also 
share some characteristics even in the linearly unstable 
region. In particular, the contrast between model H with 
models K and CCF will be emphasized. In Section 2 we 
will point some general characteristics of the macro-
scopic models as well as the initial and boundary condi-
tions. Section 3 will be devoted to the Helbing’s im-
proved model and the formation of a soliton is shown. 
The Section 4 concerns the common characteristics of 
models K and CCF. Section 5 leads with the iterative 
method followed to obtain an approximate solution rep-
resenting a soliton in the highway, whereas in Section 6 
the clusters obtained with the three models are compared. 
Some concluding remarks are given in the last section. 

2. Common Features in the Macroscopic 
Models 

The macroscopic traffic flow models, called as GM 
models, consider the motion of vehicles in highways as 
the compressible flow of a fluid. This means that the 
number of vehicles is large enough to consider the sys-
tem as a continuum, in contrast with microscopic models 
where each vehicle is followed in its motion. The con-
tinuum approach describes the dynamics in the system by 
means of averaged variables such as the density  ,x t , 
the speed , the speed variance  ,V x t   ,x t and, some 
others. The number of macroscopic variables needed to 
understand the behavior varies according to the level of 
description we want to give.  It should be noted that we 
consider all vehicles traveling in one direction, along a 
highway with one lane, this fact makes the problem 
one-dimensional. Also, we consider the motion in a 
closed circuit in order to have periodic boundary condi-
tions. In this work we will consider three models [8,13,18], 
which share the structure of the balance equations for the 
relevant variables. First of all, we have the continuity 
equation for the density 

  0,V
t x

  


 
                (1) 

valid for the three models. The average speed satisfies a 
balance equation, in the case of models coming from a 
direct analogy with Navier-Stokes compressible fluid 
mechanics, such as the Helbing’s improved model (H) 
and the Kerner-Konhäuser model (K), it means 

 1 1
,e

V V P
V V

t x x


 
V

  
      

     (2) 

where  ,P x t  is the traffic pressure and   the average 
relaxation time. In the case of the model called as Con-
tinuum Car-Following (CCF) it comes from a discrete 
traffic model, in such a case the speed equation shares 
the structure, but it cannot be written as in Equation (2) 
as emphasized in Section 4. Model H also considers the 
speed variance dynamics as relevant in the description, it 
has the structure of a usual balance equation and will be 
given afterwards. All these models have the contribution 
coming from the fundamental diagram  eV  , which 
represents the speed profile to which the drivers tend 
with a relaxation time given by  . The fundamental 
diagram gives us a relation between the speed and the 
density when the system is in a homogeneous steady 
state. It considers all values between zero and their 
maximums in the speed and the density, meaning that 
such a relation exists even in the congested traffic region. 
It seems that this hypothesis is responsible for the lack of 
transition from free to synchronized phase F S

V

, in 
GM models. The fundamental diagram, as well as the 
relaxation time are taken from the empirical observations. 
The models studied here will take the speed e  given 
by the fundamental diagram which tends to the maximum 
speed max  allowed in the highway at low densities and, 
tends to zero when the density is near the maximum den-
sity max

V

  determined by the bumper-to- bumper distance. 
In this work we will take the usual correlation for the fun-
damental diagram [8,9] which is given as 

 
max

1

max 2
1

3

1 exp ,eV a
a

V a

  


  
    

   
     (3) 

where 6
1 3.92 10 ,a     , 3 , with a 

maximum speed 
2 0.25a  0.06a 

maxV 120 km h and the maximum 
density max 140 veh km  . The boundary conditions 
to simulate the solution are taken as periodic 

       
   
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   

,
    (4) 

they correspond to a closed circuit with a length given as 
. On the other hand, the initial conditions are chosen 

as follows 
2L

  2 0
1

2 1
2

,0 cosh
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e
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where the constants 1 2 0 1, , , , ,C C x x  

 

 will be given 
for each illustrated case. The homogenous steady state 
determined by  , ,e e e e eV    is a solution of the 
equations of motion in model H and, in the case of model 
K and CCF the corresponding state is given through 

.e e e ,V   The linear stability conditions associated to 
this state give us a way to begin the study of the mathe-
matical properties contained in them. The linear stability 
conditions in these models are studied by means of a 
linearization of the equations of motion around the ho-
mogeneous steady state (called as the equilibrium state), 
then 

   , expe ,x t ikx t                 (7) 

    , expe eV x t V V ikx t  ,            (8) 

    , expe e  ,x t ikx t             (9) 

where ,V  and  do not depend on position and time, 
 is the wave vector and 


k   can be a complex function 
of the wave vector. The linear stability around the ho-
mogeneous steady state is granted when Re 0  .The 
stability conditions determined in this way will be dif-
ferent for each model and they will be discussed in each 
particular case.  

When the density e  is chosen in the stable region, 
the perturbations around it decrease and the vehicles re-
cover the homogenous steady state. On the other hand, if 
we are working in the unstable region, the perturbations 
grow and it is necessary to go into a deeper analysis. 

3. Helbing’s Improved Model (H) 

To begin our treatment, we consider the macroscopic 
model introduced by Helbing in 1995 [13] to overcome 
some difficulties presented by the Kerner-Konhäuser 
model [8,9]. In particular it was found that model K pre-
sents some problems concerning a density greater than 
the maximum value for certain parameter values. Instead 
of such behavior, the Helbing’s improved model does not 
have such undesirable properties. It shares the continuity 
and the speed equations with the Kerner-Konhäuser’s 
model, Equations (1)-(2). Model H also considers the 
speed variance  ,x t  as a relevant variable and its 
evolution is determined by 

 

2 1

2
,e

P V J
V

t x x 




   
   

   

    

x
        (10) 

where the traffic pressure is proposed with a viscosity 
coefficient 0 and, a size correction for vehicles  
 s V l T V where  is the vehicle length 

and 

7.0 ml 

0.75 sT   is the preferred headway of the driver, 
in such a way that V T  represents a safe distance. 
These assumptions drive to a traffic pressure given as 

     
   
, ,

, .
1 ,

x t x t V
P x t

x t s V x


 








       (11) 


Notice that the traffic pressure resembles the corre-
sponding Navier-Newton constitutive equation, where 
we have a term playing the role of the hydrostatic pres-
sure, a viscosity coefficient with a size correction and, 
the speed gradient. On the other hand, the quantity 
 ,J x t  in Equation (10) represents the skewness in the 

speed distribution and can be seen as the analogous of 
the heat flow in compressible flow, it contains a kind of 
thermal conductivity coefficient 0  and the size correc-
tion, they are given as follows 

 

0

0

1

1

J x t, ,

,

,

x

s

s






 















              (12) 

the quantities 0 600 km h   and 0 600 km h   are 
constants. It is worth noticing that the structure of the 
traffic pressure and J , are very similar to the fluxes in 
usual fluid mechanics, however in traffic flow they do 
not have the same meaning. The finite size correction 

  max 1s V  l   when max   and, it has the 
effect to enhance the kinetic coefficients 0 0,   with a 
quantity which resembles the situation in a dense fluid. 
In contrast with Helbing’s work, in this paper the equi-
librium variance  e   is given through the variance 
prefactor  A   and the fundamental diagram, 

      ,eA V    2
            (13) 

the dimensionless variance prefactor is taken from corre-
lations based on the empirical observations [29], 

  max
0A A tanh 1 ,cA

  


  
      

   (14) 
 

where 0 0.008, 0.015, 0.28cA A      and 0.1   
are constants. 

Now, the homogeneous steady state is determined by 
    e, ,e e e eV    which are constants and satisfy 

the set of the equations of motion, as mentioned in Sec-
tion 2. The linear stability analysis goes along the steps 
given in Equations (7)-(9). Also, the real parts in   will 
determine the stability conditions, in fact, when Re 0   
we have stability. The real parts are developed in terms 
of the wave vector  and the leading terms are given as 
follows, 

k
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V
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
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(15) 

where we have written   ,e e eV V    

   ,e e e
V dV d   and   e e e

d d   

,

 to  

shorten the notation. The quantities 1 e es    
 e e es l V T  

1Im

 are both related with the finite size of 
vehicles. On the other hand, the imaginary parts deter-
mine the speed of long wave length perturbations, they 
are given as ,ck     

 2
2Im , Ime e e e e eV V T k V           3 k . Here  

the speed  is given as c

    ,e e e e ec V V                 (16) 

and it is determined by the characteristics in the funda-
mental diagram. When we take the expression given in 
Equation (3), we can see that  can be positive or nega-
tive as a function of 

c
.e  The negative value of the 

imaginary parts for the three roots in Equation (15) is 
shown in Figure 1. Equations (15) deserve some com-
ments, first of all, they were calculated up to second or-
der in the wave vector, meaning that they are approxi-
mated and only the leading terms are given. Second, the 
leading term in the real part of root 1  goes as  and 
it must be negative to have stability in the equilibrium 
state, otherwise this state is unstable. Hence, the stability 
condition is written as 

2k

   2 2 21e e e e e e e e eV s T              .   (17) 

 

 

Figure 1. Propagation speed of wavelength perturbations as 
functions of the density ρe, in model H. They are determined 
by the negative of the imaginary parts of roots γ1, γ2, γ3. 

As a third comment, we notice that the real parts in 
roots 2 3,   define a time scale proportional to  , 
which does not tend to zero in the limit when . As 
a summary, the real parts in the dispersion relation roots, 
define two time scales in the problem, one of them de-
termines the stability and the other one 

0k 

  is given 
according to the model. When the stability condition is 
satisfied as an equality we obtain marginal stability. 

In this model, the marginal stability reduces to a point 
corresponding to an equilibrium density 

11.7326 veh kme  . It means that for densities  

11.7326 veh km,e   the homogeneous steady state is 
not linearly stable. In this point, it is important to empha-
size that in model H, the homogeneous congested traffic 
state (HCT) is not present. This characteristic makes 
model H different from other GM models, where the 
stability region is bounded by a coexistence curve allow-
ing a HCT state at high densities. 

The simulation is done according to the expressions 
given in Section 2, with the following data  

128.0 veh km, 12.0 km, 8.0 veh km,e L C     

2 04.0 veh km, 0.5 km, 6.0 km,C x         

1 6.0 kmx   and the speed variance calculated accord-
ing to Equations (13)-(14) is given by 

     2
,0 28.0 91.234 km he ex     . Figure 2 shows 

the results for the density profile obtained with the 
two-step Lax-Wendroff method, after and 10.0 mint 

100.0 min,t   where it is permanent. The density pro-
file corresponding to 10.0 mint   describes the tran-
sient behavior, whereas the profile in  
presents the structure of a wide moving jam in a highway. 
Figure 3 shows the typical behavior for the speed vari-
ance obtained from the numerical simulation. 

100.0 mt  in

It is important to notice that the density e  chosen to 
implement the simulation corresponds to the linearly 
unstable region. As a result we have obtained a density 
profile in which the maximum density is less than max   
 

 

Figure 2. Density profile in Helbing’s improved model, dot-
ted line is taken after t = 10.0 min and t = 100.0 min (full 
line) of simulation. 
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and the speed is always positive. This result means that 
once the perturbation has occurred it grows and then, 
after a transient time interval, a permanent density profile 
is obtained. Also, the presence of this profile indicates a 
cluster (J) formation propagating along the highway. The 
cluster speed measured shows that it remains constant, 
once the traveling wave has acquired its permanent pro-
file. The data given in the simulation imply the existence 
of a cluster traveling upstream with a constant speed 
6.0 km h . Lastly, the characteristics of the cluster, such 
as the amplitude and width depend on the values taken 
for the model parameters, as will be shown in Section 6. 

As a second example, in Figure 4 it is shown the tem-
poral evolution of the density profile when  

35.0 veh kme  , which corresponds to a denser case 
in the unstable region. Also, the speed sc  increases, the 
perturbation travels upstream and, the simulation results 
show 7.2 km hsc  . The density profiles taken at dif-
ferent times show the same qualitative behavior as in the 
case given before. However the permanent density pro-
file becomes slightly wider than in the previous case. 
This result is clear taking into account that we have taken  
 

 

Figure 3. Typical behavior of the speed variance profile 
after t = 100.0 min, for a closed circuit of length L = 12 km. 
 

 

Figure 4. Temporal evolution of the density profile in the 
case ρe = 35.0 veh/km, the dotted line is taken at t = 10.0 min 
and the full line corresponds to t = 260.0 min. 

a bigger value for e . 

4. Second Order Models (K, CCF) 

Let us consider two macroscopic models which share the 
continuity and speed equations of motion, but do not 
consider the speed variance as determined by the dy-
namics. 

4.1. The Kerner-Konhäuser Model (K) 

In this model the traffic pressure is given according to a 
close analogy with fluid mechanics, in fact it corresponds 
to a particular case in model H. It is obtained when we 
neglect the size of vehicles, take a constant value for the 
speed variance, 0  in the traffic pressure and a viscos-
ity 0 . Then the traffic pressure is given as 

0 0 ,
V

P
x

  
  


             (18) 

and it resembles to the Navier-Newton constitutive equa-
tion for a viscous fluid. In our case the coefficient 0  is 
the analogous of the bulk viscosity, due to the com-
pressible character in the flow. The first term is the 
analogous of the hydrostatic pressure and, in this case is 
represented by the term 0 .The direct substitution of 
the traffic pressure in Equation (2) gives us 

 
2

0 0
2

1
,e

V V V
V V

t x x x

 
  
   

          
V  (19) 

where we can see in a clear way the analogy with the 
Navier-Stokes equation. Notice that the speed variance is 
not taken as a relevant variable, then we only need two 
equations of motion to describe the system. 

According to the stability considerations given in Sec-
tion 2, we linearize the set of Equations (1), (19) around 
the equilibrium state and calculate the real parts of roots 
 , hence 

  2 2 2 4
0Re ,e eV k O k               (20) 

 2 2 2 4
0

1
Re e eV k O k  

        .    (21) 

The imaginary parts of roots  
Im

 to lowest order in 
the wave vector are given as ck  , where  
gives us the propagation of long wave length perturba-
tion waves, its behavior can be seen in Figure 1. 

  c

The results shown in Equations (20), (21) show us 
immediately that in this model there exist two time scales, 
one is determined by the relaxation time   and the 
other one depends on the fundamental diagram and the 
value for the variance 0 . Besides they depend on the 
wave vector. In fact, Equation (20) determines the mar-
ginal stability and it contains the reference density e , 
in such a way that we can consider a kind of coexistence 
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curve which separates the space determined by  0,e   
in stability regions. Figure 5 shows the coexistence 
curve determined by the condition (marginal stability)  

0 ,e eV     the stability region corresponds to  

0e eV    and it is located outside the curve. This 
figure shows in a clear way that model K allows the ex-
istence of HCT states. It is important to notice that the 
roots   are given to leading orders in the wave vector 

. k
As a second step in the K model analysis, we recall 

that the stability regions are determined within the frame 
on the linearization of the equations of motion. It means 
that beyond the linear regime, this analysis cannot be 
taken. In fact, the present instabilities do not show them-
selves when we simulate the complete model, even when 
we work around densities e  chosen in the unstable 
region. 

The numerical simulation of this model starts with the 
initial conditions shown in Equations (5), (6) with  

0 16.0 km, 6.0 km, 0.5 kmx x        ,  

1 28.0 veh km, 4.0 veh km, 12 kC C   mL  and the 
equilibrium density 28.0 veh kme   in the unstable 
region when 0 45.0 km h  . Also, we take periodic 
boundary conditions for the density and the speed, as 
given in Equation (4). Figure 6 shows the results for 

and respectively. We ob-
serve that after a transient, the density presents a perma-
nent profile representing an upstream traveling wave 
with constant speed given as 

10.0 mint  100.0 mint 

14.4 km h . 
In all cases the speed and density profiles are coupled 

closely. The maximum (minimum) in density corre-
sponds to a minimum (maximum) in the speed. 

4.2. Continuum Car-Following Model (CCF) 

There are several microscopic models to study traffic 
flow, one of the most common class corresponds to the  
 

 

Figure 5. Stability regions in the Kerner-Konhäuser model. 
The maximum speed allowed in the highway is taken as 
Vmax = 120 km/h and the maximum density is taken as ρmax 
= 140 veh/km and, Θ0 = (45.0 km/h)2, τ = 30 s. 

 

Figure 6. Temporal evolution of the density profile in model 
K, the dotted line gives the profile for t = 10.0 min and the 
full line represents the permanent profile after t = 100.0 min, 
ρe = 28.0 veh/km, τ = 0.5 min. 
 
car-following structure. Though these models follow 
each vehicle while they are moving, Berg, et al. [18] con-
structed their continuum version. The main idea behind 
this method was to write the headway in terms of the 
density and its derivatives. With such a method it is pos-
sible to write the average speed equation as a continuum 
equation, which is given as 

 
22

2 2

1

( ) 1 1
,

2 3

e

e

V V
V V V

t x

V

x xx




   
  

 
     

              

      (22) 

where we have written the relaxation time   instead of 
the sensibility factor 1 ,a   as it is usual in this model. 
Equation (22) can also be written in a similar way as the 
Navier-Stokes equation, 

 

   
3

1

1 1
.

2 6

e

e e

V V
V V V

t x

V V

x x x



  

  

 
     

  
      




     (23) 

In contrast with the model K, now we have density 
dependence in the term equivalent to the hydrostatic 
pressure while the viscosity term depends on the density 
gradient instead of the speed gradient. In spite of these 
differences, the structure of the equation contains the 
same characteristics as Equation (19). The linear stability 
analysis can be done with the same procedure to obtain 

   2 2 4
1Re ,

2
e

e

V
c V k O k 


 

    
 

        (24) 

   2 2 4
2

1
Re ,

2
e

e

V
c V k O k 

 
 

      
 

   (25) 

where it is shown the two time scales and quantity  is c
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given in Equation (16). Consequently we also have a 
coexistence curve separating the space according to the 
stability characteristics. Figure 7 shows the regions in 
the space  ,1e   . On the other hand, the imaginary 
part of roots 1,2  determines the propagation speed of 
long wave length perturbations and, they are given as 

. Later on we will show 
that this model presents the same qualitative behavior as 
model K, due to the existence of the two time scales we 
have found in Equations (24), (25). 

Im , 2 eck V c k    

 

1 2Im 

 

We remark that models K and CCF have a coexistence 
curve which bounds the instability region. Stability oc-
curs outside the marginal stability curve shown in Fig-
ures 5, 7 giving place to the HCT states at the high den-
sity region. 

5. The Iterative Method 

A way to go further in the search for an explanation to 
this behavior, is provided by the method proposed by 
Berg and Woods [18]. By means of an iterative proce-
dure it is possible to calculate approximately the flux 
defined as  t, ,x t V x , ,Q x t  this method allows 
the identification of a traveling wave with the properties 
of a soliton. The main idea behind the approximation is 
based on the existence of several time scales in the prob-
lem [31]. In particular, the three models we have pre-
sented have two time scales given through the relaxation 
time   and the characteristics in the fundamental dia-
gram. Those time scales are separated clearly due to the 
fact that one of them is determined by experimental data 
and the other has a  dependence. Now, let us apply 
the iterative procedure to the models presented above. 

2k

To begin the procedure, the equations of motion (1, 2, 
22, 10) are written in a reference frame moving with 
constant speed sc . We introduce the variable sz x c t 

z
 

and, all derivatives will be indicated with a sub index . 
The continuity equation is then written as 

0,z s zQ c                  (26) 

 

 

Figure 7. Coexistence curve for the continuum car-follow- 
ing model. 

which can be integrated, the speed Equation (2) is written 
in terms of the flux     , ,Q x t x t V x t ,  

   2
2

1
,z

s z ec Q P V Q
 


           (27) 

where   2
z s zV c Q     in agreement with the con-

tinuity Equation (26). We recall that Helbing and Ker-
ner-Konhäuser’s models share the structure of the speed 
equation, the difference between them is given through 
the traffic pressure expressions. In a similar way, the 
speed equation in the continuum car-following method 
Equation (23) is also written in the new reference frame, 

   

 
2

2

1

1 1
,

2 3

s z e

z
e z zz

Q c V V Q

V

 


  
  

    

 
   

 

        (28) 

lastly, the speed variance equation is written as 

   2

2
2 .z

s z z eQ c P J
  


 

          
 

 (29) 

The first step in the iterative process is done with the 
consideration of a solution up to order zero in the 

-derivatives. It is clear that this solution is given as z

       0 0,eQ V .e              (30) 

To continue in a clear way, let us consider first the 
Helbing’s model where the -derivative for the traffic 
pressure is given as 

z

 
  

 

21 1
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   
    

 

 

 (31) 

The substitution of Equation (31) in the left hand side 
of Equation (27) gives us a value for the first order itera-
tion in the flux, 
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     

 

           
        

(32) 

where the bilinear or quadratic terms like  
have been neglected to this order. Now, the speed 

2, ,z z zQ  

 eV   given according to the fundamental diagram is 
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developed around the equilibrium density e  up to sec-
ond order terms,  

         ˆ ˆeV  

ˆ

21 2 .e e e e e eV V V         

and we have called the density deviation as e    . 
The direct substitution of Equation (32) and the 
 eV   expansion in Equation (26) drives us to, 

  0 ˆ ˆ1s e e
zzz ˆ 0,

e s

c V

c c c c
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  (33) 

where  is given in Equation (16) and c
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e e e e e

c c

V V


  



 

            (34) 

is determined in terms of the fundamental diagram and 
the speed sc . It should be noted that Equation (33) does 
not represent the complete solution as described in the 
simulation, instead it is an approximation of the model in 
which some small terms have been neglected. For exam-
ple, the fundamental diagram contains terms of all order 
in ̂ , there are derivatives of higher order than the ones 
considered in this approximation, also, some nonlinear 
terms in the derivatives are neglected. Equation (33) is 
the well known Korteweg-de Vries (KdV) equation for 
the density  , ,ˆ x t  when written in the moving refer-
ence system sc  [30]. The simplest solution can be 
found immediately and it is given as, 

   
   2
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ˆ , sec
4

e s ,
s e
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  
sc t

, ,e eV

 (35) 

where we recall that the quantities ec V , V   are 
evaluated in the density e , besides 0  . This solu-
tion is obtained by means of direct integration and two 
integration constants are taken as zero. The quantity 0  
corresponds to an integration constant and it is inter-
preted as the soliton center. Obviously, the soliton am-
plitude is given by 

z

  and it must be positive. Also, the 
quotient    s sc e  must be positive, when both 
conditions are valid simultaneously, they guarantee that 
the soliton amplitude be positive and the width a real 
quantity, as we will see soon. 

c c V

We now apply the same method to model K, taking the 
speed Equation (28) we find the first order approxima-
tion in the flux, 
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   (36) 

Also, we have neglected second order terms in the 
-derivatives. Now, we follow the same steps as in 

model H and find the corresponding KdV equation in this 
z

 
 
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 
     (37) 

which is essentially the same equation as in model H, the 
only difference being the presence of the vehicle size and 
safe distance as represented by  . 

Now, let us consider the set o  Equations (26), (27) in 
th

f
e case corresponding to the CCF model. The iterative 

procedure follows the same steps to obtain the first order 
correction to the flux, the result is given as, 

   (1) 2ˆ ˆ e eV
Q V c
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ˆ .

2 2e e e zz
e
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

    (38) 

The procedure described above is applied to obtain the 
evolution of the density in the moving reference frame, 
so 
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zzz z s z
e
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where   is given before. Equation (39) represents a 
wsoliton ith the same structure as given in Equation (33) 

with some differences to be compared later. 
Lastly, the variance corresponding to model H in this 

approximation can be written as 
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  (40) 

and we notice that it is not coupled with other quantities 

 with the three models, 

   

but the deviation in the density. 

6. Soliton Characteristics 

To compare the results obtained
let us define the soliton width, with respect to its center, 
and in terms of the density profile along the highway 
length, 
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z z z z
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          (41) 

This quantity can be calculated for the three models 
an

odel H Model K Model CCF 

d the results are shown in the following table. 
 

M


 

2
04π  

12
e s

e s

V c

c c








 

2
04π  

12
e s

e s

V c

c c



 

 2 6π e sc 
12 e

c

V 
 

 
All of them look very similar however, they contain 
plicitly the parameters introduced by the model itself, ex
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the speed sc  corresponding to the traveling wave and, 
the characteristics in the fundamental diagram. Notice 
that model H contains the size of vehicles and the safe 
distance through the quantity  . Figure 8 shows the 
comparison between them, for a given constant .sc  As 
we mentioned before the KdV s tion must satisfy cer-
tain conditions in order to have a physical solutio o be 
realized in traffic flow. In particular, we must ask the 
amplitude be a positive quantity and the width must be 
real. Due to the fact that these quantities are functions of 
the model parameters and the fundamental diagram, we 
can observe that it may exists some regions for which the 
soliton solution is not a valid one. On the other hand, the 
sign of the amplitude in models H and K depends on a 
quotient between the propagation speed of long wave-
length perturbations as  referred to 

olu
n t

sc  and given by 
Equation (16), which can be positive or negative accord-
ing to the density value e . Besides, in he denominator 
there is a combination of terms depending on the funda-
mental diagram. Also, t width depends on a similar 
combination of quantities, hence it is possible to con-
struct a line which divides the plane  ,e sc  in regions 
where the soliton exists. Figure 9 shows those regions 
for H and K models. 

 
width (km) 

 t

he 

 

Figure 8. Comparison between the soliton widths for models 
H and K. The speed cs = –10 km/h. 
 

 

The regions where the soliton solutions exist change 
according to the value of the equilibrium density e  
and the soliton speed sc , which is the speed of the ref-
erence frame. In fact, the simulation results show the 

0sc   meaning that the cluster travels upstream. In Fig- 
ure 9 we have drawn the complete region for sc  and we 
can observe that in the case when 0 120.0 km hsc   
the plane presents two regions where the soliton can be 
formed and a region where it is not. It means that the 
cluster can be formed for certain equilibrium densities, 
when the cluster travels downstream. In contrast, when 

0sc   there is a maximum density e  for which the 
cluster exists. Notice that models H and K share this 
characteristic, a fact which is explained with the observa-
tion that the conditions for the existence of the cluster are 
the same in both models. 

In a similar way we can construct the line allowing the 
soliton existence in the CCF model, where we see that 
there is only one line separating regions and, the soliton 
can travel upstream or downstream. Figure 10 shows the 
corresponding line in plane  ,e sc . 

7. Concluding Remarks 

The macroscopic modeling approach to traffic flow has 
acteristics of the behavior shown to reproduce some char

of vehicles in a highway. In particular, the model H does 
not present the HCT state in contrast to models K and, 
CCF. The three models take the same fundamental dia-
gram and in the linearly unstable region allow the forma-
tion of clusters which can be seen as wide moving jams 
(J). Besides the properties shown in the numerical simu-
lation, the iterative procedure has allowed us to find, in 
an analytical way, the approximate structure of such 
clusters. Numerical calculations have been done to show 
this behavior in microscopic models, however, it is in-
teresting to show that models including the size of vehi-
cle behave in the same way. Certainly, the calculation is 
an approximate one, but it gives the qualitative properties 
of the clusters. The comparison between these models 
 

 
Figure 9. The curve shows the separation between regions 
where it is possible to find a soliton solution in model H an
K. 

d 
Figure 10. Separation line for model CCF. 

Copyright © 2012 SciRes.                                                                                 WJM 



R. M. VELASCO  ET  AL. 

Copyright © 2012 SciRes.                                                                                 WJM 

60 

has shown that the macroscopic analogy with compressi-
ble fluid mechanics is fruitful to understand some char-
acteristics in traffic. 
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