
Technology and Investment, 2010, 1, 114-117 
doi:10.4236/ti.2010.12014 Published Online May 2010 (http://www.SciRP.org/journal/ti) 

Copyright © 2010 SciRes.                                                                                   TI 

Sub-Optimal Generation Portfolio Variance with       
Rate of Return Regulation 

Stanley Keith Berry 
Professor of Economics and Business, Hendrix College, Conway, Arkansas, USA 

E-mail: berry@hendrix.edu 
Received October 26, 2009; revised January 18, 2010; accepted January 20, 2010 

Abstract 
 
This paper demonstrates that continuation of traditional rate-of-return electric utility regulation of transmis-
sion and distribution assets will impede the ability of customers to optimize their generation portfolios. Un-
der linear price regulation, with increasing (decreasing) returns to scale customers will choose a more (less) 
risky generation portfolio than they would with no transmission and distribution asset rate-of-return regula-
tion. Similar problems arise under non-linear (two-part) pricing of transmission and distribution assets. When 
the per-unit price is set at marginal cost, with increasing (decreasing) marginal cost, customers will choose a 
more (less) risky generation portfolio than they would with no transmission and distribution asset regulation. 
With price caps the optimal generation portfolio is chosen. 
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1. Introduction 
 
The US electric utility industry is currently in the middle 
of a massive transition from being a highly regulated 
industry to one that is partially deregulated. In the past, 
companies in the industry were vertically integrated with 
three distinct functional sectors: generation, transmission, 
and distribution. Those functions are being unbundled, 
either by regulatory fiat, or by the actual sell-off of assets. 
In the future, US consumers will have a rich array of 
choices with regard to generation sources, while the tran- 
mission and distribution (T & D) sectors, and will still 
continue to be regulated by either state or federal com-
missions.1 

A major reason for this restructuring is to unleash 
competitive forces in the generation market, so as to de-
crease generation prices to the ultimate consumer. Con-
sumers would also have a broader array of choices, in 
terms of price, price risk, and service quality. In particu-
lar, it is important that customers be allowed to optimize 
their portfolio in terms of generation price risk and price 
level without hindrance from regulators. 

Unfortunately, because T & D assets are utilized to ob-
tain the generation product, regulatory policies can have a 
bearing on customers’ decisions with regard to their gen-

eration portfolio mix. In particular, with traditional rate- 
of-return regulation customers may choose a sub-optimal 
level of generation risk, a result that is inconsistent with 
the avowed desire to allow customers the opportunity to 
choose an optimal generation portfolio mix.2 Consequently, 
the type of regulation currently employed in T & D regu-
lation may have to be modified significantly. 

In Section II we consider the market-induced trade-off 
between generation price risk and generation price level, 
and derive the unconstrained optimizing level of variance 
chosen by customers. This is used as a benchmark for 
Sections III and IV. In Section III we consider the impact 
of traditional rate-of-return regulation with linear pricing 
when T & D asset regulation is factored in. Section IV 
expands upon Section III by using non-linear regulatory 
pricing of T & D assets. 
 
2. Unconstrained Model of Generation 

Portfolio Optimization 
 
Assume a T & D utility that provides only regulated T & 
D services. Consumers purchase generation services in 
the competitive market on their own, with the electric 
energy transmitted over the T & D utility’s wires. 

Define: 
p = regulated price of T & D service; 1See [1] and [2] for an overview of electricity restructuring issues. 

2See [3] and [4] for discussion of the rate-of-return method. E(.) = expectations operator; 
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u = stochastic disturbance term associated with the 
price of generation, where E(u) = 0; 
 2 = E(u2) = variance in the price of generation; 
g0( 2) + u = stochastic generation cost; 
g0( 2) = E[g0( 2) + u] = expected generation cost; 
q(p + g0[ 2] + u ) = quantity demanded; and  
C(q) = cost function for providing T & D services. 
Note that q is a function of the sum of T & D and gen-

eration prices. 
Let the consumers’ utility function, for given u, be 

given as U(p + g0[ 2] + u)). Assume this is of the Von 
Neuman-Morgenstern (V-M) type (see [5]). The utility 
function is, then, unique up to a linear transformation. In 
the selection of suppliers in the generation market by 
consumers, the expected generation price, g0, obtainable 
by consumers is an inverse function of the variance,  2. 
In order to obtain a lower average generation price con-
sumers have to accept a higher variance.3 This function 
can be reflected as g0( 2) where g' =  g0/ ( 2) < 0, and  

2g0 / ( 2)2 > 0.4 
We can use a Taylor series approximation to express 

the expected utility of consumers as5 

E[U(p + g0[ 2] + u)] = U(p +g0) + (1/2)  2U"     (1) 

where U' = U(p + g0)/ p = U(p + g0)/ g0 < 0. This 
represents the rate of change in utility with a change in 
generation price. Further, U" =  2U(p + g0)/ p2 =  2U(p 
+ g0)/ g0

2. If consumers simply maximize their expected 
utility with respect to generation price variance, without 
any consideration of regulation on T & D operations, 
they would maximize (1) with respect to  2 producing 

U'g' + ½U" = 0.            (2) 

This can be re-expressed as 

½(U"/U') = –g'.            (3) 

The Pratt-Arrow measure of absolute risk aversion 
with regard to price in this case is U"/U'.6 Equation (3) 
implies that utility maximization requires that one-half of 
the degree of absolute risk aversion be equal to the rate 
of trade-off between the level of generation prices and 
the variance of generation prices. If consumers are risk 
averse with regard to price, then U" < 0 and U"/U' > 0 

because U' < 0. Since U is a V-M preference function, 
U"/U' is a unique measure (even with linear transforma-
tions). Let us assume constant absolute risk aversion so 
that U"/U' =  is constant, and is, consequently, inde-
pendent of both the T & D price and the generation price. 

As customers accept greater risk,  2, in their portfolio 
of generation sources, the expected generation price falls 
by an amount that is greater than the minimum required 
by customers. Without regulatory constraint, customers 
would optimally choose 1

2 of generation portfolio vari-
ance. For variance less than 1

2 an increase in  2 de-
creases g0 by an amount greater than that amount re-
quired by consumers (given as ½). For variance greater 
than 1

2 a decrease in  2 increases g0 by an amount less 
than that consumer would have been willing to bear. 
 
3. Generation Portfolio Optimization with 

Regulation of T & D Assets Using Linear 
Pricing 

 
Let us now explicitly introduce regulation of T & D as-
sets into our model. Assume that g0( 2) + u and  2 are 
exogenously determined; that is, they are not determined 
by the regulator, but by competitive generation market 
conditions. We also assume that the regulated T & D 
utility has profit requirements on its T & D services, 
given as 0 ≤ E[pq – C(q)].7 This can be simplified to 0 ≤ 
pq0 – C(q0), where q0 = q(p + g0).

8 In this case, the regu-
lator's goal is to maximize E[U(p + g0[ 2] + u])] with 
respect to p, subject to the profit constraint 0 = pq0 – 
C(q0). Customers maximize E[U(p + g0[ 2] + u])] with 
respect to  2, subject to the same profit constraint. 

The Lagrangian function is then 

E[U(p + g0[ 2] + u])] + [(pq0 – C[q0])]      (4) 

where  > 0 is the Lagrangian multiplier. Substitution 
from (1) into (4) yields the following Lagrangian expres-
sion 

U[(p + g0)] + (1/2)  2U" + [(pq0 – C[q0])].  (5) 

Assuming constant absolute risk aversion the first- 
order conditions are: 

U' = –[(p – C'[q0])q0' + q0],             (6) 3Alternatively, we could say that in order to obtain lower price risk, 
market forces require the consumer to accept greater average genera-
tion prices. 

4The positive sign of the second derivative implies that additional in-
crements of risk reduce average generation price, in the market, by 
smaller and smaller amounts. 

5A function f(x + a) can be expressed in a Taylor series as f(x) + a( f/ x
+ a2/2!( 2f/ x2) + a3/3!( 3f/ x 3) + …. [6]. A reasonable approxima-
tion is then f(x + a) = f(x) + a( f/ x) + a2/2! ( 2f/ x2). Applied to this 
case, it implies that E[U(p + g0[ 2] + u)] can be approximated as  [U(p
+ g0[ 2]) + uU'(p + g0[ 2]) + ½u2U"( p + g0[ 2])] du = U(p + g0[ 2]) + 
E(u)U'(p + g0[ 2]) + ½E(u2) U"( p + g0[ 2]). Since E(u) = 0 and E(u2) 
=  2, this produces U(p + g0[ 2]) + E(u)U'(p + g0[ 2]) + ½E(u2)U"(p + 
g0[ 2]) = U(p+ g0[ 2]) + ½ 2 U"( p + g0[ 2]). 

U'(g'+ ½) = –g'[(p – C'[q0])q0'],         (7) 

6This can be seen from [7], Equations (4a)-(6), where we substitute p +
g0 for x. 

7Throughout we assume that C(q) implicitly includes the cost of capital
See [8] for discussion of this point. 

8Since q(p + g0 + u) is stochastic, pq – C(q) is as well. Consequently, 
the constraint is expressed as 0 = E[pq – C(q)]. Using similar Taylor 
series expansion as discussed in footnote 5 we obtain E[pq – C(q)] = 
pq0 – C(q0) – ½ 2pq0" – ½ 2C"(q0)(q0')

2 – ½ 2 C'(q0)q0". The latter 
three terms are of small order of magnitude so that we can reasonably 
approximate E[pq – C(q)] as pq0 – C(q0). 
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where C' =  C(q)/ q and q' =  q/(p + g0) =  q/ p =  q / 
g0.With increasing returns to scale, the term p – C'[q0] is 
positive.9 Since  > 0, and g', q', U' < 0, 

g' + ½ > 0.               (8) 

Consequently, 

½ > –g'.                 (9) 

With the regulatory profit constraint on T & D assets, 
customers choose to have a generation portfolio variance 
of 2

2 > 1
2 which is a riskier generation portfolio than 

the portfolio they would choose without regulatory con-
straint on T & D assets (from in Section II).10 

An intuitive explanation for this is that consumers 
have a regulatory-induced incentive to seek a greater 
amount of generation portfolio risk. That greater 2

2 re-
sults in a lower value of g0 and a corresponding greater 
amount of q. Given a regulatory constraint 0 < pq0 - 
C(q0), and since p – C'[q0] > 0, consumers realize that 
with a larger 2

2, the regulator will have to lower the 
regulated T & D price, p, with attendant T & D pricing 
benefits to the consumers. Consequently, by increasing  2 
above 1

2 consumers obtain the additional benefit of a 
correspondingly lower value of the T & D price, p. 

Alternatively, with decreasing returns to scale, the te- 
rm p – C'[q0] is negative, and consumers choose 3

2 < 
1

2 for their level of generation portfolio risk. That smaller 
3

2 results in a greater value of g0 and a corresponding 
smaller amount of q. Given the regulatory constraint and 
since p – C'[q0] < 0, consumers realize that with a 
smaller 3

2 the regulator will have to lower the regulated 
T & D price, p, with attendant T & D pricing benefits to 
the consumers. Consequently, by decreasing  2 below 
1

2, consumers obtain a correspondingly lower value of 
the T & D price, p. 

This sub-optimal behavior has effects on the size of 
the T & D system as well. Given the profit constraint pq0 
– C(q0) = 0 we can calculate the change in p with a 
change in  2 by taking the total differential of the profit 
constraint: 

(pq0' + q0 – C'[q0]q0')dp + (pq0'g' – C'[q0]q0'g')d( 2) = 0, 

(10) 

which implies 

dp/d( 2) = –(pq0'g' – C'[q0]q0'g')/(pq0' + q0 – C'[q0]q0'). 

(11) 

The change in q0 associated with a change in  2 is: 

dq0/d( 2) = (dq0/dp)(dp/d( 2)) + dq0/d( 2).     (12) 

Substitution from Equation (11) into Equation (12) 
produces 

dq0/d( 2)  
= –q0'(pq0'g' – C'[q0]q0'g')/(pq0' + q0 – C'[q0]q0') + q0'g' 
= (q0q0'g')/(pq0' + q0 – C'[q0]q0').             (13) 

The denominator of the above expression is the change 
in profits with a change in price, which is greater than 
zero by Equation (6). Further, since q0', g' < 0, dq0/d( 2) 
> 0. As shown above, with increasing returns to scale, 
customers choose a riskier generation portfolio (2

2 > 
1

2 ). This implies that q0, and the size of the T & D sys-
tem is greater than it would be if customers had chosen 
the optimal generation portfolio variance, 1

2. With in-
creasing returns to scale, and rate-of-return regulation, 
the T & D system is larger than optimal.11 

The reason this sub-optimal behavior occurs is beca- 
use of the responsiveness of q to g( 2). We can evaluate 
that sensitivity by considering the impact of demand 
elasticity,  = –( q0/q0)/( p/p), on the amount by which 
2

2, or 3
2, deviates from the optimal variance, 1

2. Di-
viding (6) by (7) and rearranging terms produces 

–q0(g' + ½) = ½ (p – C'[q0])q0'.       (14) 

Dividing both sides of (14) by –q0 and p produces: 

g' + ½ = ½ [(p – C'[q0])/p],          (15) 

where (p – C’)/p is the price mark-up (or mark-down). 
For a given price mark-up (or mark-down), the greater 
the elasticity, the greater the deviation of the consumers’ 
choice of sub-optimal variance from the optimal variance, 
1

2. 
However, with price caps applied in regulation of T & 

D assets, customers no longer have an incentive to incur 
greater (or smaller) generation risk than is optimal.12 A 
regulatory price cap, pc, fixes prices for an indefinite 
period. As profits change, there are no offsetting changes 
in prices, as there is in traditional rate-of-return regula-
tion. Consequently, consumers simply maximize 

U(pc + g0) + (1/2)  2U"(pc + g0),        (16) 

with respect to  2 to obtain the same result as in (3). 
Consumers will choose the optimal level of generation 
portfolio risk when price caps are applied to T & D regu-
lation. 
 
4. Generation Portfolio Optimization with 

Regulation of T & D Assets Using 
Non-Linear Pricing 

 
Let us assume the same model as in Section III, but as-
sume that the regulator employs non-linear pricing (two-part 
rates) with regard to the T & D assets.12 Let the fixed T 

9Since under rate-of-return regulation p = C/q, when C/q > C' we have 
increasing returns to scale. 

10The average generation price is, also, lower than would be obtained 
without constraint. Our focus, however, in this paper is on generation 
portfolio variances. 

11With decreasing returns to scale, the T & D system would be smaller 
than optimal. 
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& D charge be F and the T & D per unit price be p. The 
consumers’ utility function is U(F, p + g0[ 2] + u). As-
sume an income-compensated demand function of the 
form q(p + g0[ 2] + u). Finally, assume that the regulator 
sets p equal to marginal cost, C', as is often the case in 
two-part pricing regimes.13 The regulatory profit con-
straint is 0 = E(F + [C'(q0)q0 – C(q0)]), which can be 
simplified to 0 = F + [C'(q0)q0 – C(q0)] [10-12]. In this 
case, the regulator's goal is to maximize E[U(F, p + g0[ 

2] + u)] with respect to F, subject to 0 = F + [C'(q0)q0 – 
C(q0)]. Customers maximize E[U(F, p + g0[ 2] + u)] 
with respect to  2, subject to the same profit constraint. 

The Lagrangian is 

U [F, p + g0] + (1/2)  2U" + (F + [C'(q0)q0 – C(q0)]) (17) 

with  > 0.The first-order conditions are: 

U/F = –                   (18) 

U'[g' + ½] = –g'q0'[C'(q0) + C"(q0)q0 – C'(q0)] 

= –g'q0'[C"(q0)q0].                          (19) 

Increasing marginal cost, C"(q0) > 0, implies that g' + 
½ > 0 (since  > 0 and g', q', U' < 0). In that case con-
sumers choose a level of variance that is greater than 1

2, 
such as 2

2. Conversely, decreasing marginal cost, C"(q0) 
< 0, implies g' + ½ < 0. When that occurs, consumers 
choose a level of variance that is less than 1

2, such as 
3

2. However, imposing price caps on the fixed charge 
and the per-unit price lead to the same optimal genera-
tion portfolio as in the linear pricing case.15 
 
5. Conclusions 
 
This paper has demonstrated that continuation of tradi-
tional rate-of-return electric utility regulation of trans-
mission and distribution assets will impede the ability of 
customers to optimize their generation portfolios. Under 
linear price regulation, with increasing (decreasing) re-
turns to scale customers will choose a more (less) risky 
generation portfolio than they would with no transmis-
sion and distribution asset rate-of-return regulation. Fur-
ther, the size of the T & D system is greater (smaller) 
than optimal, with increasing (decreasing) returns to 
scale. The degree by which the portfolio variance devi-
ates from the unregulated optimum increases as demand 
elasticity increases. However, with price cap regulation 
of transmission and distribution assets, consumers choose 

the optimal generation portfolio. 
Similar problems arise under non-linear (two-part) pric-

ing of transmission and distribution assets. When the per- 
unit price is set at marginal cost, with increasing (de-
creasing) marginal cost, customers will choose a more 
(less) risky generation portfolio than they would with no 
transmission and distribution asset regulation. Setting a 
price cap on both the fixed charge and the per-unit price 
leads to the same optimal generation portfolio as in the 
linear pricing case. 

This implies that the success of deregulation of elec-
tricity generation is closely intertwined with the type of 
regulatory regime employed by the regulator on those as-
sets still under regulation. Rate-of-return regulation will 
cause sub-optimal results in the generation market. The 
regulator has to utilize alternative regulatory methods, such 
as price caps, so as to avoid unwanted interference in the 
generation market. 
 
6
 

. References 

[1] P. L. Joskow, “Restructuring, Competition and Regula-
tory Reform in the US Electricity Sector,” Journal of 
Economic Perspectives, Vol. 11, No. 3, Summer 1997, pp. 
119-138. 

[2] S. Angle and G. Jr. Cannon, “Independent Transmission 
Companies: The For-Profit Alternative in Competitive 
Electric Markets,” Energy Law Journal, Vol. 19, No. 2, 
1998, pp. 229-279. 

[3] J. C. Bonbright, A. L. Danielsen and D. R. Kamerschen, 
“Principles of Public Utility Rates,” 2nd Edition, Arling-
ton, Public Utilities Reports, Inc., Virginia, 1980, pp. 
573-575. 

[4] C. F. Jr. Phillips, “The Regulation of Public Utilities,” 
Arlington, Public Utilities Reports. Inc., Virginia, 1988.  

[5] I. Horowitz, “Decision Making and the Theory of the 
Firm,” Holt Rinehart and Winston, Inc., New York, 1970. 

[6] A. C. Chiang, “Fundamental Methods of Mathematical 
Economics,” 3rd Edition, McGraw-Hill, Inc., New York, 
1984, pp. 257-258. 

[7] J. W. Pratt, “Risk Aversion in the Small and in the Large,” 
Econometrical, Vol. 32, No. 1-2, January-April 1964, pp. 
122-136. 

[8] W. J. Baumol and D. F. Bradford, “Optimal Departures 
from Marginal Cost Pricing,” American Economic Re-
view, Vol. 60, No. 3, 1970, pp. 265-283. 

[9] J. P. Acton and I. Vogelsang, “Introduction: Symposium 
on Price-cap Regulation,” Rand Journal of Economics, 
Vol. 20, No. 3, 1989, pp. 369-372. 

12See [2-4], and the “Symposium on Price-Cap Regulation” in [9] for 
discussion of price caps. 

13See [10] and [11] for discussion of two-part tariffs. 
14Similar to the discussion in footnote 8, 0 ≤ E(F + [C'(q0)q0 – C(q0)]) 

can be approximated as 0 ≤ F + [C'(q0)q0 – C(q0)] because of the rela-
tively small order of magnitude of several terms in a Taylor series 
expansion. 

15If a price cap is set on just the fixed charge or the per-unit charge, 
sub-optimal results are obtained. 

[10] T. R. Lewis and D. E. M. Sappington, “Regulating a Mo-
nopolist with Unknown Demand,” American Economic Re-
view, Vol. 78, No. 5, December 1988, pp. 986-998. 

[11] K. E. Train, “Optimal Regulation: The Economic Theory 
of Natural Monopoly,” the MIT Press, Cambridge, Mas-
sachusetts, 1991. 

[12] R. Coase, “The Marginal Cost Controversy,” Economical, 
Vol. 13, No. 51, 1946, pp. 169-189. 


