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ABSTRACT 

Trial and error method can be used to find a suitable design of a fuzzy controller. However, there are many options in-
cluding fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimiza-
tion algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents 
a novel application of the Bacterial Foraging Optimization algorithm (BFO) to design a fuzzy controller for tracking 
control of a robot manipulator driven by permanent magnet DC motors. We use efficiently the BFO algorithm to form 
the rule base and MFs. The BFO algorithm is compared with a Particle Swarm Optimization algorithm (PSO). Per-
formance of the controller in the joint space and in the Cartesian space is evaluated. Simulation results show superiority 
of the BFO algorithm to the PSO algorithm. 
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1. Introduction 

A wide variety of control strategies were proposed to 
control robot manipulators. PID controls are certainly the 
most widely adopted control strategy in industry because 
of its simple structure and robust performance in a wide 
range of operating conditions. Although PID control of-
fers the simplest and yet most efficient solution to many 
real world control problems [1], optimally tuning gain is 
quite difficult [2]. Alternatively, fuzzy control as a model- 
free approach is simply designed to control complicated 
systems [3]. To form fuzzy rules, an exact knowledge of 
model is not required. Fuzzy controller is an intelligent 
controller using linguistic fuzzy rules to include informa- 
tion from experts. Consequently, fuzzy control of robot 
manipulators has attracted a great deal of researches to 
overcome uncertainty, nonlinearity and coupling by pro-
viding a model free control [4]. To design a Fuzzy Logic 
Controller (FLC), a major task is to determine fuzzy 
rules, Membership Functions (MFs) and scaling factors. 
Therefore, the controller is tuned until a desired perfor- 
mance is achieved. The evolutionary algorithms such as 
Bacterial Foraging Optimization (BFO), Particle Swarm 
Optimization (PSO), Genetic algorithm (GA), and Simu-
lated Annealing (SA) are getting popular because of their 
abilities to find the global minima in both continuous and 
non-continuous domains.  

Since a foraging organism takes a necessary action to 

maximize the energy per unit time under considering all 
the constraints such as sensing and cognitive capabilities, 
natural foraging strategy can be applied to real-world op- 
timization problems. Based on such evolutionary idea, 
Passino proposed BFO as an optimization algorithm [5]. 
BFO algorithm is a new evolutionary computation tech-
nique, which also includes powerful optimization tech-
niques like PSO [6] and ant colony optimization [7]. To 
improve BFO search performance, several researchers 
have extended the basic BFO to deal with multi-modal 
and high dimensional functions [8-10]. BFO algorithm 
has also been combined with other evolutionary algo-
rithms [11] in order to reduce the convergence time and 
enhance the accuracy. Over certain real-world optimiza-
tion problems, BFO has been reported to outperform 
many powerful optimization algorithms like GA [12] and 
PSO algorithms [13].  

The PSO algorithm proposed by Kennedy and Eber-
hart [6], has proved to be very effective for solving com-
plex optimization problems. The underlying motivation 
for the development of PSO algorithm was social behav-
ior of animals such as bird flocking and fish schooling. 
Generally, PSO is characterized as a simple concept, 
easy to implement, and computationally efficient. Unlike 
the other heuristic techniques, PSO has a flexible and 
well-balanced mechanism to enhance the global and local 
exploration abilities [14].  
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Trial and error method is a major task to find a suitable 
design of a fuzzy controller. We may use an optimization 
algorithm to achieve an optimal design. This paper pre-
sents a BFO algorithm to design a fuzzy PID controller 
for trajectory tracking control of a robot manipulator 
driven by permanent magnet DC motors. Performance of 
the BFO algorithm is compared with a PSO algorithm in 
terms of Integral Time Absolute Error (ITAE) in the joint 
space and Integral Square Error (ISE) in the Cartesian 
space. This paper is organized as follows: Section 2 in-
troduces dynamics of the robotic system. Section 3 de-
signs a fuzzy PD + I controller. Section 4 applies the 
BFO and PSO algorithms for tuning the fuzzy PD + I 
controller. Section 5 presents simulation results and Fi-
nally Section 6 concludes the paper. 

2. Manipulator Dynamics 

Robust control of robot manipulators is difficult because 
of complexity robot dynamics. The dynamics of an n-link 
robotic manipulator driven by permanent magnet dc mo-
tors is characterized by a set of highly nonlinear and 
strongly coupled second order differential equation [15] 
as 
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 is a vector of generalized gravitational forces, 
 is a vector of motor voltages,  

m m, , n nK K R J B r R   are constant diagonal matri-
ces of torque constant, back emf constant, resistance, 
inertia, damping and reduction gear ratio of motors, re-
spectively. 

3. Fuzzy PD + I Controller 

Fuzzy PID controller is implemented as fuzzy PD + I 
controller as shown in Figure 1. Each fuzzy set consists 
of a number of MFs to describe the heuristic variables in 
a mathematical manner. The motor voltage is the output 
of fuzzy controller while the joint position error and its 
derivative are its inputs. MFs for the inputs and output of 
the controller are five fuzzy sets namely NB (Negative 
Big), NM (Negative Medium), Z (Zero), PM (Positive 
Medium) and PB (Positive Big). 

The following assumptions are given to design the 
FLC: 
 MFs are triangular specified with three points. 
 The physical range of inputs are scaled between [–1, 

1]. 
 Axes of the first and the last MF are at –1 and 1, re-

spectively. 
 Number of fuzzy sets is an odd integer greater than 

one. 
 MFs are arranged such that the second point of each 

MF is coincident with the third point of the left one 
and the first point of the right one.  

Then, number and position of second point of MFs are 
selected as two design parameters. 

Position of the MF is specified by spacing parameter 
where one indicates an even spacing, while any value 
larger than unity indicates that the MFs are close together 
in the center of the range and more spaced out at the ex-
tremes as shown in Figure 2. This method of designing 
the MFs is introduced in [16]. 

The rule-base also is designed based on the ideas pre- 
 

 

Figure 1. Fuzzy PD + I controller. 
 

 

Figure 2. Effect of spacing parameter on MFs. 
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sented in [16]. In specifying a rule base, characteristic 
spacing parameter for each variable and characteristic 
angle for each input variable are used to construct the 
rules. The characteristic spacing parameters and the cha-
racteristic angle determine how the space is partitioned. 
The angle determines the slope of a line through the ori-
gin on which seed points are placed. The positioning of 
the seed points is determined by a similar spacing me-
thod as was used to determine the centers of the MFs as 
illustrated in Figure 3 where seed points are blue circles 
and grid-points are red circles. The lines on the graph 
delineate the different regions corresponding to different 
consequents. The parameters for this example are 1 for 
both input spacing, 0.85 for the output spacing and 40˚ 
for the angle. Table 1 shows the derived fuzzy rules. 

4. Bacterial Foraging Optimization  
Algorithm 

The BFO algorithm can be explained by four processes 
namely, chemotaxis, swarming, reproduction, and elimi-
nation-dispersal [6]. Below we briefly describe each of 
these processes. 
 

 

Figure 3. Sample decision plane. 
 

Table 1. Fuzzy rules. 
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Chemotaxis: This process simulates the swimming and 

tumbling movements of an E. coli cell by a set of rigid 
flagella. An E. coli bacterium can move in two different 
ways. It can swim for a period of time in the same direc-
tion or it may tumble, and alternate between these two 
modes of operation for the entire lifetime. This alterna-
tion between the two modes enables the bacterium to 
move in random directions and search for nutrients. 
Suppose  , ,i j k l  represents i-th bacterium at j-th 
chemotactic, k-th reproductive and l-th elimination-dis- 
persal step. C(i) is the run length which is a constant in 
basic BFO algorithm. In computational chemotaxis, the 
movement of the bacterium is represented as 

           1, , , ,i i Tj k l j k l C i i i i        (2) 

where   indicates a vector in the random direction 
whose elements lie in [–1, 1]. 

Swarming: It is always desired that when any one of 
the bacteria reaches the better location, try to attract other 
bacteria so that they reach the desired place more rapidly. 
The effect of swarming is to make the bacteria congre-
gate into groups and move as concentric patterns with 
high bacterial density. Mathematically, swarming can be 
represented by 
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where Jcc(h,P(j,k,l)) represents the objective function 
value to be added to the actual objective function (to be 
minimized) to present a time varying objective function, 
S is the total number of bacteria, p is the number of vari-
ables to be optimized, which are present in each bacte-
rium and 1 2, , ,

T

p        is a point in the p-dimen- 
sional search domain. dattractant, wattractant, hrepellant, wrepellant 
are different coefficients that should be chosen properly. 

Reproduction: The least healthy bacteria eventually 
die while each of the healthier bacteria (each with the 
lower cost function) asexually split into two bacteria, 
which are then placed in the same location. Thus, the 
population size after reproduction is maintained constant. 

Elimination and dispersal: A gradual or sudden changes 
in the location where a bacterium population lives may 
occur due to noxious substance, the temperature rises 
abruptly in the area or some other influence. Events can 
kill or disperse all the bacteria in a region. This reduces 
the chances of convergence at local optima location. To 
simulate this phenomenon in BFO algorithm, some bac-
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teria are chosen, according to apreset probability Ped, to 
be dispersed and moved to another position within the 
environment. 

The BFO algorithm parameters are denoted as p, S, Nc, 
Ns, Nre, Ned, Ped, where p is dimension of the search space, 
S is the total number of bacteria in the population, Nc is 
number of chemotactic steps, Ns is swimming length, Nre 
is number of reproduction steps, Ned is number of elimi-
nation-dispersal events, Ped is elimination-dispersal pro- 
bability. The parameters selected for the proposed BFO 
algorithm are shown in Table 2. 

It is certainly impossible to explore all the potential 
uses of BFO in this single article, but we briefly point to 
the some of them. It should seem at least plausible that 
there are applications of the methods to optimization, op- 
timal control, adaptive estimation and control, and model 
predictive control. 

4.1. Particle Swarm Optimization 

PSO is a population-based optimization method inspired 
by the social behavior of animals such as bird flocking 
and fish schooling. Like evolutionary algorithms, PSO 
algorithm conducts search using a population of particles, 
corresponding to individuals. Each particle has a velocity 
vector vi and a position vector xi to represent a possible 
solution to the optimization problem. The first positions 
and velocities of a PSO algorithm are randomly initial-
ized within a population. At the next iteration, position 
and velocity of each particle are updated by the two val-
ues. The first value, pbest, is the personal best position of 
particle that it has achieved so far. The other, gbest, is 
obtained by choosing the overall best value from all par-
ticles. The new velocity for each particle is updated by 
the following equation 

         1
1 1 2 2pbest gbestt t t

n n d d d dv wv c r x c r x      t

t
n
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where , 1  and 2c  are called the coefficient of iner-
tia, cognitive and society study, respectively. The 1  
and  is uniformly distributed random numbers in [0, 
1]. 

w c
r

2r

Changing velocity enables every particle to search 
around its individual best position and global best posi-
tion. Based on the updated velocities, each particle changes 
its position as following  

     1t t
n nx x v                   (5) 

 
Table 2. Parameters of BFO algorithm. 

S Nc Ns Nre Ned Ped 

10 30 4 5 4 0.25 

4.2. Optimization of FLC Using BFO Algorithm 

In this paper, spacing parameter for MFs of input/output 
variables, spacing parameters and angle parameters for 
rule base and input/output scaling factors of FLCs are 
determined with BFO algorithm. Figure 4 illustrates the 
block structure of the FLC optimizing process using BFO 
algorithm. All parameters of the FLC are updated at 
every final time (tf). The method of tuning PID parame-
ters is based upon minimizing the ITAE of joints. If qd(k) 
is desired trajectory and q(k) is output trajectory then 
error e(k) is 

    de k q k q k                 (6) 
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where e(kj) is the system error at k-th sampling instant 
for j-th joint. Tuning process of FLC parameters with 
PSO is similar to BFO algorithm. 

5. Simulation Results 

The objective of this section is to verify the performances 
of the Fuzzy-BFO based controller and the Fuzzy-PSO 
based controller. Results of the tuning methods are tested 
in terms of ITAE in joint space and ISE in Cartesian 
space. The desired Cartesian space trajectory is a spiral 
path. Integral Square Errors ISEX, ISEY and ISEZ are 
calculated to compare controller performance stated as 
follows 
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where      , ,d d dx k y k z k    and      , ,x k y k z k    
are desired and output Cartesian space points at k-th   
sampling instant. The ability of control system for re-
jecting disturbances is simulated. For checking the ro-
bustness of controller a disturbance torque D is applied 
as an example in the form of 
 

 

Figure 4. Tuning of FLC parameters by BFO algorithm. 
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 29sin 2 5D t                 (9) 

Initial angles of all three joints are set to zero, however 
spiral trajectory is starting from a non-zero value in  
Figure 6. Fitness function curve of PSO tuning is shown 
in Figure 5. Performance of the second joint for tracking 
spiral trajectory and corresponding error are shown in 
Figures 6 and 7, respectively. We can see a good track-
ing, where the tracking error of the joint is very small. 
Tables 3 and 4 give the values of the two cost functions, 
ISE and ITAE, with and without disturbance for the con-
trollers. As can be seen, the Fuzzy-BFO based controller 
 

 

Figure 5. Fitness function in PSO algorithm. 
 

 

Figure 6. Performance of second joint angle. 
 

Table 3. Fitness function (ISE) in Cartesian space. 

Without Disturbance With Disturbance 
 

ISEX ISEY ISEZ ISEX ISEY ISEZ 

BFO 0.1684 0.0397 0.0147 0.1689 0.0398 0.0149

PSO 0.1807 0.0452 0.0934 0.1809 0.0453 0.0947

is better than the Fuzzy-PSO based controller. Consider-
ing the results confirm a powerful ability of rejecting 
disturbances. Figures 8 and 9 show desired and tracked 
trajectory for tuned controllers. With comparing per-
formances in simulations, it can be concluded that the 
BFO algorithm is superior to the PSO algorithm in term 
of accuracy of response. 

6. Conclusion 

In this paper, we have presented a comparison study of 
using BFO and PSO algorithms for a design of a fuzzy 
PID controller to tracking control. Performances of con-
trollers in the cases of with and without disturbances are  
 

Table 4. Fitness function (ITAE) in joint space. 

 Without Disturbance With Disturbance 

BFO 0.6255 0.6378 

PSO 0.9342 0.9379 

 

 

Figure 7. Joint space error of second joint. 
 

 

Figure 8. Performance of FLC using BFO algorithm. 
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Figure 9. Performance of FLC using PSO algorithm. 
 
compared for the above approaches in joint space, as 
well as in Cartesian space. The simulation results show 
that BFO algorithm is superior to PSO algorithm in term 
of accuracy of response. An improvement of this work 
can be made by designing an online adaptive controller 
based on BFO algorithm. 
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