
Journal of Software Engineering and Applications, 2012, 5, 76-84
http://dx.doi.org/10.4236/jsea.2012.52012 Published Online February 2012 (http://www.SciRP.org/journal/jsea)

Lightweight Approach to Connect Business Rules
with Aspects

Sandra Casas1, Claudia Marcos2, Cecilia Fuentes1, Juan Enriquez1, Graciela Vidal1

1UARG, Universidad Nacional de la Patagonia Austral, Rio Gallegos, Argentina; 2ISISTAN, Universidad Nacional del Centro de la
Pcia de Buenos Aires, Tandil, Argentina.
Email: scasas@unpa.edu.ar

Received November 28th, 2011; revised December 31st, 2011; accepted January 11th, 2012

ABSTRACT

Aspectual connection that compose business rule, refers to the code in charge of not only triggering the application of
the rules at certain events, but also gathering the necessary information for their application and incorporating their re-
sults in the rest of the core application functionality. We propose an approach to connect business rule with aspect sys-
tematically. This approach is agile, programming language-independent, business rules type independent and it can be
used in different stages of development. This approach considers the identification, analysis and construction of con-
nections with aspects, (aspectual connection). We use our experience and previous works to define the initial steps, and
complete them with the analysis of interactions and propose methods to implement aspectual connections code. We
have developed a tool that supports this approach.

Keywords: Business Rules; Connection; Aspectual Connections; Interactions; AOP; Volatile Concerns; AspectJ

1. Introduction

Business rules are statements about the enterprise’s way
of doing business. They reflect business policies. Orga-
nizations have policies in order to: satisfy the business
objectives, satisfy customers, make good use of resources,
and conform to laws or general business conventions [1].
Business rules become requirements, that is, they may be
implemented in a software system as means of require-
ments of this software system [2]. But business rules tend
to change over time due to new policies, new business
realities, and new laws and regulations, for these reasons
several approaches and technologies are created to sepa-
rate business rules implementation from core modules. In
all these approaches and technologies it is necessary ex-
plicitly connect business rules with core functionality.

The code that connects or links the business rules with
core functionality is spread across core modules. We
have named this code as connection code. A change in
the rule specification requires changes in all modules
where connection is present. These modifications are inva-
sive and time-consuming. Further, because business rules
are a lot more volatile compared to core business logic,
mixing them together causes the core system to become
just as volatile. For these reasons, AOP [3] is suitable
when providing mechanisms that allow to connect or to
integrate the business rules to the core modules without
altering these components. Just as it is stated in [4], AOP

facilitates the constant evolution of this type of concerns.
Aspectual connection that compose business rule, re-

fers to the code in charge of not only triggering the app-
lication of the rules at certain events, but also gathering
the necessary information for their application and incor-
porating their results in the rest of the core application func-
tionality. The aspectual connection must meet some re-
quirements for the business rule to be triggered. We have
identified in [5] that the development (design and im-
plementation) of connections with aspects is not a trivial
work, and they are needful strategies to manage some short-
comings, as when the same business rule could require
different connections in different domains; or when the
business rules require the connections to adapt or change
the domain; or when an interaction between excluded bu-
siness rules is detected. These situations and other re-
quire specific strategy to analysis aspectual connections
in previous steps of implementation stage. Some contri-
butions show how connections could be implemented
with aspects and with different AOP-tools [6-9]. The au-
thors analyses the scheme of design and implementation
with different goals but they only cover common and
ordinary scenarios.

Therefore, this work outlines an approach to connect
business rule with aspect. This approach considers the iden-
tification, analysis and construction of connections with
aspects, (aspectual connection). We use our experience

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects 77

and previous works to define the initial steps, and com-
plete them with the analysis of interactions and propose
methods to implement aspectual connections code. Unlike
to other works in this line, we address the interactions of
aspectual connections and propose a method that it is
thought to accept different design and implementation stra-
tegies with different aspect-oriented languages. Also we
have developed a tool that gives complete support to the
approach.

The outline of this paper is as follows: Section 2 will
expose Business Rules main concepts; Section 3 will pre-
sent the approach to connect business rule with aspects,
with a brief description of main concepts of the approach;
Section 4 will unfold the handling of interactions pro-
posed; Section 5 will present the method to construct as-
pect connection code; Section 6 will present the MACS
tool that supports this approach; Section 7 related works
are presented and Section 8 we will give our conclusions.

2. Business Rules

Business rules are statements about the enterprises way
of doing Business [10]. Organizations have policies in
order to: satisfy the business objectives, satisfy custom-
ers, make good use of resources, and conform to laws or
general business conventions. The business rule model
distinguishes between functional rules and non-Func-
tional rules. Functional rules are general policies regard-
ing the organization functionality. Macrosystem rules de-
scribe policies that constrain the behavior and structure of
the organization. Quality rules are demands of the or-
ganization on the characteristics of its processes or prod-
ucts. They usually reflect general policies related to quality
standards or expectations of the organization. Other classi-
cal classifications of business rules are proposed [11-13].
Two approaches and technologies to implement business
rules explicitly and separately from core functionality of
applications are: Object Oriented Patterns, using patterns,
such as the Rule Object Pattern [14] and Hybrid Systems,
which support explicit and separate representation of
rules in a rule-based language. An example is JESS [15].

However, the code which connects core functionality
with business rules is tangled and scattered in core mo-
dules, for this reason is considered a crosscutting concern.
Therefore, conventional approaches, as Object-Oriented Pa-
radigm, are not able or enough to avoid this kind of pro-
blem. On the other hand, the business rules are very vo-
latile as they change very frequently, and thus the volati-
lity is spread to the core, where the connections are ex-
plicit.

3. An Approach to Connect Business
Rule with Aspects

As aforementioned, in our previous works we have pre-

sented some preview of this approach: taxonomy to clas-
sify the aspectual connections, a template to document
aspectual connections (ACT) [5] and a mapping process
to generate automatically aspects [16]. After these expe-
riences we integrate these contributions to propose an
approach to connect business rule with aspects, systema-
tically. The main features and strengths of this approach
are:
1) It can be applied in different stages of development.

For example it can be applied during advanced design
when domain has been modeled or after the installation
of application, during maintenance stage.

2) It is valid for any type of business rules. For exam-
ple it can be used it to derivation, structural assertion or
action assertion [17] business rules.

3) It is independent of base-programming language and
aspect-oriented language.

4) It is lithe as it does not require another additional o
specific artifact (for example diagrams of UML), it is
oriented to obtaining real code instead of obtaining docu-
mentation and it consists of few steps. The approach is
addressed to software applications were core modules
and business rules are represented with traditional unit as
classes, from Object Oriented paradigm. We mention this
because of we have not had experiences with other tech-
niques, such as hybrid systems.

The approach consists of three steps: definition, analy-
sis and construction.

1) Definition of connections is the activity which spe-
cifies the required elements of connections in ACT and
classifies them according the taxonomy of aspectual con-
nections.

2) Analysis is the activity that detects interactions
among connections and tried to find resolutions of them.

3) Construction is the activity that generates the aspect
connection code. This task is the only one which is depe-
ndent of AOP-tool. However it could be adapted to dif-
ferent AOP-tools.

The approach is based on two main pillars: taxonomy
of connection and a template to register and document
elements of connections.

3.1. Taxonomy of Aspectual Connections

Aspectual connection that compose business rule, refers
to the code in charge of not only triggering the applica-
tion of the rules at certain events, but also gathering the
necessary information for their application and incorpo-
rating their results in the rest of the core application fun-
ctionality. The aspectual connection must meet some re-
quirements for the business rule to be triggered. Here it is
important to stress that a particular business rule could
require different aspectual connections in different appli-
cations or even in the same application if it must be trig-

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects 78

gered by different events. Then, according to the im-
posed domain constrains, we can clearly identify four
categories of aspectual connections: basic, query, change
and complex.

Basic aspectual connection: the connection triggers
the business rule in a specific point of the core functiona-
lity (event) the required information by the business rule
is either available in the event context or it is global sys-
tem information. The basic connection description needs
the following elements: 1) Business rule elements, such
as the class and method that encapsulates the business
rule, the required information by the business rule and
the business rule return. 2) Event elements, such as the
domain class and method that represent the event that
triggers the business rule, an indicator of when (before/
after/around) the business rule should be applied regard-
ing the event execution.

Query aspectual connection: the connection triggers
the business rule in a specific point of the core functiona-
lity but the information required by the business rule is
not available in the event context. Then connection must
first retrieve the information in order for it to be available
when the business rule is applied. In this case, the aspec-
tual connection should manage two events (pointcuts) and
two advices, each one with different purposes. The query
connection description needs the same elements of basic
connections, and also the event (class and method name)
where no contextual information should be retrieved plus
the data type.

Change aspectual connection: the connection should
add new properties (fields/methods) to the core func-
tionality components in order for the business rule to be
triggered. It means that the new business rule requires
adapting the domain vocabulary. Then, the connection must
support the domain adaptation such as the addition of
new fields and methods in existing classes. The change
connection description includes the same elements as
basic connections and the description of the properties
that should be added, such as new methods and fields.

Complex aspectual connection: this connection has the
same characteristics of query and change connections. The
connection has to update the domain for new business
rules to be applied, but the needed information for the
business rule condition is not available in the event context
that triggers the business rule. This connection has the
same elements that basic, query and change connections.

This taxonomy is independent of AOP language or
base language. It only depends on the domain design and
implementation and the requirements of new business
rules.

3.2. Aspectual Connection Templates (ACT)

ACT is a simple artifact to identify, register and docu-
ment the complete connection. In other words, all ele-

ments required by the connection could be detailed in
ACT. ACT is composed of 7 sections (Figure 1). Section
A identifies the connection. Section B identifies the
business rule that would be triggered by the connection,
class and method that encapsulates it. Section C identifies
the event that triggers the business rule and when the
business rule should be triggered (after/before/around).
Section D must be completed when the information re-
quired by the business rule is not available in the event
context that triggers the business rule, then in this section
identifies the event where information must be retrieved.
Section E must be completed when business rule requires
domain adaptations. Section F identifies the interactions
with other connections and the order in which they must
be executed. And the last section classifies the connec-
tion according to taxonomy decrypted previously.

ACT category is basic if the only completed sections
are A, B and C; it is query if Section D is also com-
pleted; it is change if Section E is also completed; and it
is complex when all sections are completed. Hence Sec-
tions A, B and C are mandatory. Section F is completed
during step 2 of the approach.

4. Interactions among Aspectual
Connections

Aspect interactions, also known as conflicts or interfe-
rences, have been the subjects of extensive research with
in AO community over the last years. An interaction arises
when several aspects need to be executed at the same
join point. This problem specifically, occurs when “the
behavior of one aspect is affected by the behavior of an-
other aspect”, so some interactions are negative and other
interactions are inoffensive. The problem can be boarded
from early development stages, but the real solution is
absolutely constrained by the capacities and mechanism

Figure 1. Aspectual connection template (ACT).

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects 79

of aspect oriented language used in the implementation
of connection with aspects. Even, most approaches pro-
vide primitive support by letting the programmer specify the
order of aspect execution. AspectJ [18] defines the de-
clare precedence construct to specify the order of aspects.
Strategies more flexible still are not supported by the po-
pular tools. Even so, it is an advantage to know the po-
tential interactions in aspect-oriented application in ad-
vance. Particularly in this sense, we have noted that, se-
mantically, it is not the same an interaction between log-
ging and profile aspects, than an interaction between as-
pects that connects two business rules of discount.

In the context of business rules, where connections are
implemented with aspects, an interaction could happen
when two or more business rules are triggered by the
same event.

4.1. Identification of Shared Events

The taxonomy of aspectual connections and ACT can
serve to analyses the interaction among connections. Ac-
tually it is possible to anticipate which type of interactions
can happen and what events are affected by them. Sup-
pose that C#1 and C#2 connections are documented in
two ACT, the potential interactions are described in Ta-
ble 1. The third column indicates what events (of ACT)
should present an interaction.

In this way, the interaction could be detected from ACT.
Whichever digital format ACTs are registered (such as
XML), a simple process could be executed in order to de-
tect automatically the interactions.

4.2. Risk Assessment and Recommendation
of Resolutions

After the interaction is detected it is possible to asses its
risk and reason about the resolution method required. If
the business rules are not mutually excluding, the critical
point is posed on the information used by each business
rules. The information required by business rules is in the
core modules, then connections transfer the information
from core to business rules. The aspect mechanism which
enables this operation is known as “Exposing Context”. For
example, in AspectJ-like languages it is possible to pass
the intercepted object and/or method arguments (by means
of this, target and args primitives). Another point to con-
sider is how event context is used by business rules
whose connections are superimposed. The information can
be used in three ways: to read, to write or to read/write.

The risk of interaction could be categorized in four le-
vels: null, low, medium and high.
1) Null Risk: this level of risk indicates the interaction

is not dangerous and then is not necessary an explicit re-
solution. This level of risk occurs when the information
used by two connections is not the same.

2) Low Risk: this level of risk denotes that although
aspects execution requires a sequence, this sequence is
not mandatory, then the order in execution is not crucial.
This level of risk occurs when the connection uses the
same information only for reading.

3) Medium Risk: this level of risk denotes that aspects
execution requires a sequence, this sequence is mandatory,
then an explicit resolution is required. This level of risk
occurs when both connections uses the same information,
one of them writes it, and the another reads it.

4) High Risk: this level of risk denotes that interaction
must be managed by developer because of both connec-
tions update the same information.

A simple example (Figure 2) is used to show how an
interaction can be analyzed. Suppose a store where an
invoice (Invoice) is issued when a customer (Customer)
buys any product (Item). An Invoice consists of some
fields such as number of invoice, date of invoice, Custo-
mer name, an array of items, subtotal, discount and total.
By default, discount field is initialized with cero and the
name of Customer is initialized when invoice is instant-
tiated. Customers have a rewards card in order to add up
points. Each time they make a purchase a business rule
(BR#1) calculates the points to credit to the card.

Table 1. Points of potential interaction.

C#1 C#2 Point of Interaction

Basic main event of C#1 = main event of C#2

Query main event of C#1 = main event of C#2

Query main event of C#1 = query event of C#2
Basic

Change main event of C#1 = main event of C#2

Query main event of C#1 = main event of C#2

Query main event of C#1 = query event of C#2

Query query event of C#1 = query event of C#2

Change main event of C#1 = main event of C#2

Query

Change query event of C#1 = main event of C#2

Change Change main event of C#1 = main event of C#2

Figure 2. Diagram of simple store.

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects 80

BR#1: After the system calculates the total of the in-
voice, every $10 a point must be credited to the rewards
card. BR#1 should be implemented by CreditRewards-
Card class and RCConnection is the aspectual connection
(Figure 3).

RCConnection is “query” connection, because of info-
rmation required by business rule, RewardsCard is not
available in the main event. RewardsCard object should
be retrieved previously, when the name of customer is
initialized.

BR#2: The anniversary of the store is next month, so a
special raffle would be organized. The customers partici-
pate with their purchases. After the system computes the
total of the invoice, every $15, 2 raffle tickets are given.
BR#2 is implemented by PrintRaffleTicket class and
PRTConnection is the aspectual connection (Figure 4).
PRTConnection is a “basic” connection.

Figure 5 shows how analysis can be performed. The
aspectual connections that are interacting are identified,
as well as the business rules that these connections trig-
ger. The shared event and the moment when the interact-
tion occurs are specified. Afterwards the event context
used by each business rule is analyzed. In this case, both
business rules read the same information (Invoice.total
field), but they write different information (RewardsCard
and Ticket objects). Then according to the indicated risk
proposed, the level of risk of this interaction is low.

Connection: RCConnection

Bussines Rule: CreditRewardsCard
Require: Invoice.Total
Return/change: RewardCard

Main Event: Invoice.calculateTotal()
description
When: after

Query Event: Invoice.setCostName()
When: after
Retrieve: Customer.RewardsCards

ChangeEvent:
Add-Field
Add-Methods

Interactions:

Category: query

Figure 3. ACT of RCConnection.

Figure 4. ACT of PRTConnection.

4.3. Interactions between Excluded
Business Rules

A more critical scenario is when two o more business
rules could be triggered by the same event, but only one
of them, could be applied. A special and superior busi-
ness rule governs and decides what business rule must be
executed. Using the same case of Figure 2, an example
can be:

BR#1: if date of purchase equals Sunday then apply a
discount of 5%.

BR#2: if the payment of purchase is with cash then a-
pply a discount of 7%.

Several special business (SBR) rules may be resolving
this interaction, for example:

SBR#1: all business rules must always be applied.
SBR#2: if the conditions of BR#1 and BR#2 are true,

then apply BR#2.
SBR#3: if subtotal is greater than $1000, then apply

BR#1, else apply BR#2.
As we stated before, the most popular and used AOP-

tools are not equipped with mechanisms to resolve this
type of situations suitably. Hence, the design and imple-
mentation of special business rule is more complex, any
module class or aspect should evaluate the condition and
trigger the correct business rule. Two alternatives could
be considered: 1) as any other business rule, the special
business rule should be encapsulated in a class and one
aspect connects it with the core module; 2) an aspect en-
capsulates the special business rule.

If we take the second option, the Figure 6 presents a
generic template in AspectJ. In this design it is clear and
evident that the aspect is resolving the interaction.

Figure 5. Analysis of interaction.

Figure 6. Resolving interaction using merge aspect.

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects 81

Another choice to resolve this interaction is based on
the use of “if” primitive of AspectJ. Figure 7 presents
generic templates of this possibility. In this design it is
not evident that pointcuts are designed to resolve an in-
teraction, there are not traces left of the presence of in-
teraction. Also, several AOP-tools do not dispose of “if”
primitive.

In spite of the drawbacks of the first option, where we
merge both connections in one aspect, other approaches
could support these methods with specific mechanisms.
A best solution, than AspectJ, it is to use another ap-
proach, for example, model of interactions [19].

5. Implementation of Aspect Connection
Code

In general, the implementation-level is considered as one
of the hardest in software development. Perhaps for this
reason, mapping strategies are always recommended. The
mapping strategies adopt different forms such as a tem-
plate, as a set of steps, as a guideline. Mapping strategy
could be applied in manually or automatically. In all
these cases, mapping strategies are welcomed.

The implementation of connections with aspects is
strongly influenced by two factors, 1) the AOP-tool used;
2) the adopted strategy to design and implement the con-
nections with aspects.

Aspect-language programming destination: AOP sup-
ports are very different, when we consider the composi-
tion mechanisms, programming structures, syntax and se-
mantic constructors, etc. Only to provide a simple idea of
this universe of AOP-tools, we mention AspectJ [18], Cae-
sar [20] and Spring [21], where all support AOP for Java
programs, but they are completely different. Then map-
ping strategy is specific of AOP-tool.

Strategies to design and to implement code of aspect
connection: Another decision to be taken is how the con-
nection would be implemented. In this sense, we have
observed two main strategies. 1) With the goal of achiev-
ing the reusability of aspects (pointcuts), Cibrán [8] pro-
poses the next guidelines: there will be an aspect expre-
ssing the event that determines the application time of the

Figure 7. Resolving interaction using if primitive.

business rule; an optional aspect exposing unavailable or
introducing unanticipated business object to the event,
and a last aspect that puts the previous ones together and
actually triggers the application of the business rule; 2)
Our strategy [5,16] proposes the implementation of each
connection in one aspect, then it is possible that one as-
pect may contain more than one pointcut and advice. The
pointcuts are less reusable but the system is easier to ma-
intain. Each strategy has advantage and shortcoming. In
this work it is not our intention to analyze the schemes of
modularization, our purpose is to prove that ACT and Taxo-
nomy could be used to map aspectual connections to real
code. In [16] we have mapped ACT to Spring AOP
Framework.

In this case, using the previous example, a query con-
nection is mapped to AspectJ aspects, applying the dif-
ferent strategies. Table 2 enumerates and summarizes steps
to map ACT to AspectJ using the guidelines of Cibrán and
an instance with ACT and aspect code is given in Figure 8.

Next, Table 3 enumerates and summarizes steps to
map ACT to AspectJ using our guidelines and an instan-
ce with ACT and aspect code is given in Figure 9.

Both examples are briefly presented. Afterwards the
AOP-tool and strategy of design and implementation are
selected; ACT should be registered in an actionable for-
mat (as XML) and equipped with more technical details
in order to perform automatically the mapping process,
with a set of specific mapping rules, as [16].

6. MACS

We have developed MACS, a tool to manage aspectual
connections, which follows the approach described in
previous sections and implements the presented strate-
gies. The developers only must to enter ACT in simple
form. Then MACS automatically performs: 1) applica-
tion of taxonomy for each aspectual connection; 2) exe-
cution of several metrics and queries; 3) detection of in-
teractions among aspectual connections; 4) generation of
aspects code in AspectJ or Spring. We have probe the
functionality of MACS with different cases.

Table 2. Steps to map ACT to AspectJ.

Step ACT Section AspectJ Code

1 C
Create an aspect expressing the pointcut
(event) that determines the application
time of the business rule (PCMain aspect).

2 D
Create an aspect exposing unavailable business
object to the main event (PCQuery aspect).

3 B-C
Create an aspect that puts the previous ones
together and actually triggers the application
of the business rule (PCTrigger aspect).

4 F
Add declare precedence sentence
in PCTrigger aspect.

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects 82

Figure 8. Instance of mapping aspectual connection using gui-
delines of Cibrán.

Table 3. Steps to map ACT to AspectJ.

Step
ACT

Section
AspectJ Code

1 A Declare aspect.

2 B
Declare and create a field for business
rule in aspect (br).

3 D
Declare a field for a value to retrieve in aspect (aux)
Declare query pointcut to intercept the query event
Create advise to query pointcut.

4 C
Declare main pointcut to intercept the main event
Create advise to main pointcut, where a
sentence inv the business rule using retain value.

5 F Add declare precedence sentence.

Figure 10 presents the kernel of MACS. Each aspec-

tual connection is represented as an object according to
its classification (BasicAC, QueryAC, ChangeAC or Co-
mpleAC). ACManager is responsible of manipulating all
aspectual connections. MetricsEngine class and Query-

Connection: RCConnection

Business Rule: CreditRewardsCard
Require: Invoice.Total
Return/change: RewardsCard

Main Event: Invoice.calculateTotal()
description
When: after

Query Event: Invoice.setCostName()
When: after
Retrieve: Customer.RewardsCards

ChangeEvent:
Add-Field
Add-Methods

Interactions: RCConnection, PRTConnection

Category: query

aspect PCConnection {

 RewardsCard aux;
 CreditRewardsCard br = new CreditRewardsCard();

pointcut query (Customer cos) : execution
Invoice.setCostName(Costumer) && args (cos);

after(Customer cos) : retrieve(cos)
 { aux = cos.getPointsCard();}

pointcut main (Invoice inv): execution
Invoice.calculateTotal(..) && this(inv);

after (Invoice inv) : main(inv)
 { return br.apply(inv.getTotal(), aux);}

declare precedence: RCConnection, PRTConnection;

}

1
2

3

4

5

Figure 9. Instance of mapping aspectual connection in only
one aspect.

Figure 10. Kernel of MACS.

Assistant class interact with the ACManager, because of
they require the aspectual connections container to apply
specific operations and calculus. In order to generate as-
pects code automatically in different AOP-languages, we
use Strategy pattern which is represented in Mapping-
Strategy, AspectJ classes, using the approach proposed by
Cibrán (AspectJ2 class) or our approach (Spring1 and
AspectJ1 classes). The system uses the category of as-
pectual connection to apply specific steps that map the
elements of ACT to code.

Interactions are objects that encapsulate information
showed in Figure 5. In these objects, a boolean field in-
dicates if the business rules are excluded. When this field
is true, the mapping is different; the system generates
only one aspect that merges the aspectual connections,
such as it is presented in Figure 6. This generated code is
not complete, the developer should write the condition of
if sentence.

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects 83

7. Related Works

Several methods were proposed to describe business
rules, such as templates [11,13], tables [11], natural lan-
guage [11], XML [22], OCL [23], etc. However, it is dif-
ficult to find notations or specific mechanisms to des-
cribe their connections. Even several classification of
business rules have been exposed [11,12,17], but it does
not exist a classification of the business rule connections.
In this sense ACT and the taxonomy of aspectual connec-
tions presented are relevant contributions.

Cibrán [24] presents a high-level business rule conne-
tions language, this notation specifies the details of the
rules integration with the core application and typically
denotes an event at which the rules need to be applied,
the exact moment when the rule needs to be applied at
that event, and the specification of how the required rule
information is made available to the rule. She only uses
this language to map automatically the connections to Jas-
Co [25] using her guidelines. Treatment of interactions is
superficially addressed, where actions are limited to us-
ing AOP-tools mechanisms, and interactions between ex-
cluded business rules is not contemplated.

Some works have dealt with aspectual connections to
compose business rules, but they have been addressed as
implementation with different AOP tool, such as AspectJ
[8], JasCo [26] and Spring AOP Framework [9]. [7] pre-
sents a template to implement the business rules with
AspectJ. [27] presents an experience of refactoring Busi-
ness rule with AspectJ, in an important J2EE application.
However, none of these works propose an approach or me-
thod to manage aspectual connections in order to its ana-
lysis, classification and automatic generation of code.

Other contributions consider the handling of volatile con-
cerns in early stages of software development. For ex-
ample, an interesting contribution is [4], the authors pre-
sent a method for handling volatile concerns during early
lifecycle software modeling. The method consists of se-
veral steps: concern classification, requirements refac-
toring, model instantiation and model composition. These
techniques improve the business rules ant their aspectual
connection in modeling activities but not their imple-
mentation directly and the interaction problem is lightly
analyzed. Along the same line, a framework is proposed
to identify volatile and crosscutting concerns at the re-
quirements level [28,29]. The identification of such con-
cerns is based on a crosscutting pattern and simple matrix
operations. The approach analyzes the dependence of
concerns and crosscutting concerns, but the interactions
between them are not directly considered.

8. Conclusions

In this work we outline an approach to connect business
rules with aspects. Our approach covers the next object-

tives: identification of elements of aspectual connections,
documentation and registration, classification, interactions
treatment and design and implementation of code of as-
pects. We have divided the activities into three main
steps: identification, analysis and construction. In other
words, this approach provides answers from beginning
(when the need of adding a new business rule arise) to
end (when a real code is generated).

The detection and analysis of interactions is done us-
ing ACT, it is not required the code. Our exam proposes
solution when the interactions include excluded business
rules and not excluded business rules. However in these
cases there appears evidence of weakness of AOP-tools.
These tools are not equipped with powerful and flexible
mechanisms to support complex relations and composi-
tions among aspects. Thereby, the options selected are in
agreement with current solutions.

The approach is independent of AOP-languages. ACT
and Taxonomy are used to generate aspectual connection
code in AspectJ or Spring AOP Framework. Also, we
have applied different strategies of design of aspects code.

The approach and specifics strategy as ACT and taxo-
nomy, have been implemented in MACS Tools, where we
could increase offered services with several queries and
metrics.

Notwithstanding, one restriction leads our approach:
an aspectual connection links one event with one busi-
ness rule. That is to say, if a business rule should be
linked with two or more events, then two or more con-
nections are required respectively. In the same way, if
two or more business rules are applied to the same event,
then, two or more connections are required respectively.
Only when an interaction between excluded business
rules is detected, we solved it using one aspect, but it is
not our philosophy, it is a possible solution in AspectJ.

9. Acknowledgements

This work was partially supported by the Universidad
Nacional de la Patagonia Austral, Santa Cruz, Argentina.

REFERENCES
[1] M. Jackson, “Software Requirements and Specifications,”

ACM Press & Addison Wesley, New York, 1995.

[2] J. Leite J and A. Padua, “A Client Oriented Requirements
Baseline,” Proceedings of the 2nd IEEE International
Symposium on Requirements Engineering, York, 27-29
March 1995, pp. 108-115.

[3] G. Kiczales, L. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier and J. Irwin, “Aspect-Oriented Pro-
gramming,” Proceedings Object-Oriented Programming,
11th European Conference, Jyväskylä, 9-13 June 1997.

[4] J. Araújo and J. Whittle, “Modeling Volatile Concerns as
Aspects,” In: E. Dubois and K. Pohl, Eds., CAiSE 2006,

Copyright © 2012 SciRes. JSEA

Lightweight Approach to Connect Business Rules with Aspects

Copyright © 2012 SciRes. JSEA

84

LNCS 4001, Springer-Verlag, Berlin, 2006, pp. 544-558.

[5] S. Casas, “Clasificación y Documentación de Conexiones
Aspectuales para Reglas de Negocio,” I Encuentro Inter-
nacional de Computación e Informática del Norte de
Chile, 2010.

[6] M. Cibrán, M. D’Hondt and V. Jonckers, “Aspect-Orien-
ted Programming for Connecting Business Rules,” Pro-
ceedings of the 6th International Conference on Business
Information Systems, Colorado, 5 June 2003.

[7] R. Laddad, “AspectJ in Action,” Manning Publications
Co., Greenwich, 2003.

[8] M. Cibrán and M. D’Hondt, “Composable and Reusable
Business Rules Using AspectJ,” Workshop on Software
engineering Properties of Languages for Aspect Tech-
nologies (SPLAT) at the International Conference on
AOSD, Boston, 17-21 March 2003.

[9] G. Vidal, J. Enriquez and S. Casas, “Integración de
Reglas de Negocio con Conectores Aspectuales Spring,”
11th Argentine Symposium on Software Engineering,
Buenos Aires, 2-3 September 2010.

[10] J. Leite and M. Leonardi, “Business Rules as Organizational
Policies,” IEEE IWSSD9: 9th International Workshop on
Software Specification and Design, Ise-shima, 16-18
April 1998, pp. 68-76. doi:10.1109/IWSSD.1998.667921

[11] R. Ross, “The BRS Rule Classification Scheme,” 2001.

[12] C. Date, “What Not How: The Business Rules Approach
to Application Development,” Addison-Wesley Longman
Inc, Reading, 2000.

[13] R. Ross, “Principles of the Business Rule Approach,”
Addison Wesley, Reading, 2003.

[14] Arsanjani, “Rule Object 2001: A Pattern Language for
Adaptive and Scalable Business Rule Construction,”
Technical Report, IBM T.J. Watson Research Centre,
Yorktown Heights, 2001.

[15] Jess homepage, 2011. http://www.jessrules.com/

[16] S. Casas and J. Enriquez, “Mapping Connection Tem-
plates to Spring Aspects to Integrate Business Rules,”
Workshop of Early Aspects AOSD, Pernambuco, 21
March 2011.

[17] Business Rule Group, “Defining Business Rules: What
Are They Really?” 2001.
http://www.businessrulesgroup.org/

[18] The AspectJ Programming Guide, 2011.

http://eclipse.org/aspectj

[19] C. M. Riveill, M. Blay-Fornarino and A. Pinna-Dery,
“Transparent and Dynamic Aspect Composition,” Work-
shop on Software Engineering Properties of Languages
and Aspects Technologies, VII AOSD, Bonn, 20 March
2006.

[20] CaesarJ Homepage, 2011. http://caesarj.org

[21] Spring Framework Guide, 2011.
http://www.springsource.org/

[22] XRules Homepages, 2011. http://www.xrules.org/

[23] B. Demuth, H. Hubmann and S. Loecher, “OCL as a
Specification Language for Business Rules in Database
Applications,” Proceedings of the 4th International Con-
ference on the Unified Modeling Language, Modeling
Languages, Concepts, and Tools, Springer-Verlag, Lon-
don, 2001. doi:10.1007/3-540-45441-1_9

[24] M. Cibrán, “Connecting High-Level Business Rules with
Object-Oriented Applications: An Approach Using Aspect-
Oriented Programming and Model-Driven Engineering,”
Ph.D. Dissertation, Universiteit Brussel, Brussel, 2007.

[25] D. Suvee, W. Vanderperren and V. Jonckers, “JAsCo: An
Aspect-Oriented Approach Tailored for Component Based
Software Development,” Proceedings of the 2nd Interna-
tional Conference on Aspect-Oriented Software Devel-
opment, Boston, 17-21 March 2003.

[26] M. Cibrán, M. D’Hondt, D. Suvee, W. Vanderperren and
V. Jonckers, “Linking Business Rules to Object-Oriented
Software Using JAsCo#,” Journal of Computational Me-
thods in Sciences and Engineering, Vol. 5, No. 1, 2005,
pp. 13-27.

[27] K. De Schutter, T. D’Hondt, V. Jonckers and H. Doggen,
“Experiences in Modularizing Business Rules into As-
pects,” ICSM 24th IEEE International Conference on
Software Maintenance, Beijing, 28 September-4 October
2008, pp. 448-451.

[28] J. Conejero, J. Hernandez, A. Moreira and J. Araújo,
“Discovering Volatile and Aspectual Requirements Using
a Crosscutting Pattern,” 15th IEEE International Re-
quirements Engineering Conference, New Delhi, 15-19
October 2007. doi:10.1109/RE.2007.33

[29] K. van der Berg, J. Conejero and J. Hernández, “Analysis
of Crosscutting in Early Software Development Phases
based on Traceability,” Transactions on AOSD, Special
Issue on Early Aspects, Springer-Verlag, Berlin, 2007.

http://dx.doi.org/10.1109/IWSSD.1998.667921
http://dx.doi.org/10.1007/3-540-45441-1_9
http://dx.doi.org/10.1109/RE.2007.33

