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ABSTRACT 

This paper presents an efficient genetic algorithm for solving multiobjective transportation problem, assignment, and 
transshipment Problems. The proposed approach integrates the merits of both genetic algorithm (GA) and local search 
(LS) scheme. The algorithm maintains a finite-sized archive of non-dominated solutions which gets iteratively updated 
in the presence of new solutions based on clustering algorithm. The use clustering algorithm makes the algorithms prac-
tical by allowing a decision maker to control the resolution of the Pareto set approximation. To increase GAs’ problem 
solution power, local search technique is implemented as neighborhood search engine where it intends to explore the 
less-crowded area in the current archive to possibly obtain more nondominated solutions. The inclusion of local search 
and clustering algorithm speeds-up the search process and also helps in obtaining a fine-grained value for the objective 
functions. Finally, we report numerical results in order to establish the actual computational burden of the proposed 
algorithm and to assess its performances with respect to classical approaches for solving MOTP. 
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1. Introduction 

The transportation problem is considered a special prob-
lem of resource allocation, which can be formulated as a 
linear programming problem, where the constraints have 
a special structure. In its classical form the transportation 
problem minimizes the cost of transporting some com-
modity that is available at m sources (supply nodes) and 
required at n destinations (demand nodes). The source 
parameter ( i ) may be production facilities, warehouse, 
etc. Whereas the destination parameter ( i ) may be 
warehouse, sales outlet, etc. The penalty ( ij ) that is, the 
co-efficient of the objective functions, could represent 
transportation cost, delivery time, number of goods 
transposed, unfulfilled demand, and many others. Thus 
multiple penalty criteria may exist concurrently which 
leads to the research work on multiobjective transporta-
tion problem. Until now, many researchers also have a 
great interest in the multiobjective transportation prob-
lem, and a number of methods had been proposed for 
solving it [1-8]. 

a
b

C

A large class of interesting problems, including many 
optimization problems, has no reasonably fast, guaran-
teed algorithms for solution. In some applications a near 
optimal solution is acceptable if it can be computed rea-
sonably quickly; one approach to finding such solutions 
is to use a Population based algorithms that, given suffi-

cient time, can find solutions as close to the real optimum 
as we wish. Michalewicz et al. [5,6] firstly discussed the 
use of genetic algorithm (GA) for solving linear and non- 
linear transportation problems. They used these problems 
as an example of constrained optimization problems, and 
investigated how to handle such constraints with GA. 
The matrix representation was used to construct a chro-
mosome and designed the matrix-based crossover and 
mutation in their investigation. Gen et al. [7] further ex-
tended Michalewicz’s work to bicriteria solid transporta-
tion problem. They embedded the basic idea of criteria 
space approach in evaluation phase so as to force genetic 
algorithm towards exploiting the nondominated points in 
the criteria space.  

Also, Gen et al. [8] have proposed a new approach 
which is spanning tree-based genetic algorithm for solv-
ing MOTP. Spanning tree-based encoding was imple-
mented with Prüfer number and adopted to represent a 
balanced transportation solution.  

Evolutionary algorithms suffer from the large size 
problem of the Pareto set e.g. [9]. Therefore some meth-
ods have been proposed to reduce the Pareto set to a 
manageable size. However, the goal is not only to prune 
a given set, but rather to generate a representative subset, 
which maintains the characteristics of the generated set 
[10]. Also evolutionary algorithms such as, genetic algo-
rithms (GAs) can be used as a global optimization tool 
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for continuous and discrete functions problems. However, 
a simple GA may suffer from slow convergence, and 
instability of results [11,12]. GAs’ problem solution 
power can be increased by local searching. In this study a 
new local random search algorithm in order to reach a 
quick and closer result to the optimum solution. Local 
search techniques have long been used to attack many 
recent optimization problems [13-15]. The basic idea is 
to start from an initial solution and to search for succes-
sive improvements by examining neighboring solutions. 
The proposed local search technique is based on a dy-
namic version of pattern search technique. Pattern search 
technique is a popular paradigm in Direct Search (DS) 
methods [16].  

In this paper we present an improved genetic algorith 
to solve MOTP, The algorithm is an iterative multiobjec-
tive algorithm with an external population of Pareto op-
timal solutions that best conform a Pareto Front. Also, 
GAs’ problem solution power can be increased by local 
searching, where we present a new local random search 
algorithm in order to reach a quick and closer result to 
the optimum solution. The remainder of the paper is or-
ganized as follows. This paper is organized as follows; 
Preliminaries is reviewed in Section 2. Section 3 gives 
out the definition of MOTP. The original algorithm is 
presented in Section 4. Experimental, results and discus-
sions are discussed in Section 5. Conclusion follows in 
Section 6. 

2. Preliminaries  

A general multiobjective optimization problem is expres- 
sed by [17]:  
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where     1 , , k f x f x
 , , , n

 are the k objectives functions, 

1 2x x x
n

 are the n optimization parameters, and 
 is the solution or parameter space.  S R

Definition 1. [10] (Pareto optimal solution): *x  is said 
to be a Pareto optimal solution of MOP if there exists no 
other feasible x  (i.e., x S ) such that,  

   *
j jf x f x  for all  and  1,2, ,j m 

   *
j jf x f x  for at least one objective function. 

Definition 2. Clustering algorithm [18]. 
Let us describe the clustering algorithm which reduces 

the size of the external population with size N  to  
(where 

N
N N ) The clustering approach forms  clus- 

ters from 
N

N  population by initially assuming each of  

N  members to be a separate cluster, thereafter all 
2

N 
 
 

  

Euclidean distances in the objective space are computed. 
Then, the two cluster with the smallest distance are 
merged together to form one bigger cluster. This process 
reduces the number of cluster to 1N  . The inter-cluster 
distances are computed again and another merging is 
done. This process is repeated until the number of clus-
ters is reduced to . With multiple population member 
occupying two clusters, the average distance of all 
pair-wise distances between solutions of the two clusters 
is used. Figure 1 illustrates this procedure. 

N

This is especially important in higher dimensional ob-
jective spaces, where the clustering algorithm can reduce 
the required number of solutions considerably. Also, it 
makes the algorithms practical by allowing a decision 
maker to control the resolution of the Pareto set ap-
proximation by choosing an appropriate clusters number. 

3. Multiobjective Transportation Problem 

In real-life situations, the transportation problem (TP) 
usually involves multiple, conflicting, and incommensu-
rate objective functions. This type of problem is called 
multiobjective transportation problem (MOTP). The 
mathematical model of MOTP can be stated as follows: 
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Figure 1. The clustering algorithm. 
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kwhere         1 2, , ,kF x F x F x F x   is a vector 
of K objective functions, the superscript on both  kF x  
and  are used to identify the number of objective 
functions (k = 1, 2, ···, K), and m and n are the number of 
sources and destinations, respectively.  

k
ijC

The above problem implies that the total supply 
1

m

i
i

a

  

must be equal to the total demand 
1

n

j
j

b

 . when total  

supply is equals to the total demand (i.e., total flow) the 
resulting formulation is called a balanced transportation 
problem. In this paper, we assume a balanced transporta-
tion problem, where the unbalanced transportation prob-
lem can be converted to a balanced transportation prob-
lem after including a dummy origin or a dummy destina-
tion. The solution of this problem is called a nondomi-
nated solution (if we refer to the objective function) and 
an efficient solution (if we refer to the decision variables 
space). 

4. The Proposed Algorithm 

Genetic algorithms [11,12,19] are such a class of evolu-
tionary based algorithms that start with a population of 
randomly generated candidates and “evolve” toward bet-
ter solutions by applying genetic operators, modeled on 
the genetic processes occurring in nature. In the follow-

ing sub-sections, we present an im

 

proved evolutionary 
algorithm for solving the MOTP.  

me equal to the

amount. That is  for each sub-chromo-  

ate structure of chromosome using 
proposed approach. 

ich the 
nondominated set of solutions can be found [20]. 

4.1. Initialization Stage  

The genetic representation is a kind of data structure 
which represents the candidate solution of the problem in 
coding space. In order to form the appropriate design of 
chromosome, first consider each chromosome consists of 
a sequence of m sub-chromosome (m is the number of 
supplies). Each sub-chromosome (Figure 2) consists of n 
genes (n is the number of demands). All chromosome are 
generated randomly such that the sum of total genes of 
each sub-chromoso  corresponding supply  

1
ij i

j

some i. In the example problem in Figure 3, we have two 
supplies (m = 2) and three demands (n = 3). In order to 
design the appropri

n

Gene a

4.2. Evaluation of Non-Dominated Solutions 

A population of size N  can be evaluated according to 
non-domination concept. Consider a set of population 
members, having K (K > 1) objective function values. the 
following procedure explains the algorithm by wh

 

Figure 2. Structure of chromosome for MOTP with n sources and m destinations. 

 

 
(a)                                                   (b) 

Figure 3. Illustration of c Chromosome structure.   hromosome’s representation. (a) Transportation graph; (b) 
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Step

N  and , compare so- 
lu

 0: Begin with i = 1. 
Step 1: For all 1,2,j  , j i
tions ix  and jx  for domination. 
Step 2: If for any j . ix , is dominated by jx , mark 

ix  as “dominated”. 
Step 3: If all solutions (that is, when i N  is 

re

: arked “dominated” 
ar

tes an externally finite size 
ar

4.3. Selection Stage 

) operator is intended to improve 

ached) in the set are considered, Go to Step 4, else in-
crement i  by one and Go to Step 1. 

Step 4 All solutions that are not m
e non-dominated solutions. 
The algorithm initially loca
chive of observed nondominated solutions. 

Selection (reproduction
the average quality of the population by giving the high- 
quality chromosomes a better chance to get copied into 
the next generation. The selection directs GA search to-
wards promising regions in the search space. We propose 
a random-weight approach [20] to obtaining a variable 
search direction towards the Pareto frontier. Suppose that 
we are going to maximize k objective function. The 
weighted-sum objective is given as follows: 

k

       1 1
1

k k i i
i

f x w f x w f x w f x


      

where x  is a string (i.e., individual),  f x  is a com-
bined fitness function,  if x  is the it ective and h obj  

1

1
k

w w
   is a cons t for i i

i
 
 

tant weigh if x . 

We employ roulette wheel selection as selection mech- 
anism in this study. Where, the individuals on each gen-
eration are selected for survival into the next generation 
according to a probability value proportional to the ratio 
of individual fitness over total population fitness; this 
means that on average the next generation will receive 
copies of an individual in proportion to the importance of 
its fitness value. The probability of variable selection is 
proportional to its fitness value in the population, ac-
cording to the formula given by 

     
    

min

min

,

x

f x f 
p x

f x f
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where,  p x , selection probability of a string x  in a 
population   and  

    min minf f x x    

4.4. Crossover Operators 

exchange information be-The goal of crossover is to 
tween two parents chromosomes in order to produce two 
new offspring for the next population, we present a 
modified uniform crossover, where one offspring is con-
structed by choosing every sub-chromosome with a pro- 
bability P  (usually 0.5P   is used) from either par-
ent, as shown in Figur

In the example problem in 
e 4.  

Figure 4 we have four sup-
pl

4.5. Mutation Operators 

ndom process where one 

ies (that is, we have four sub-chromosomes). The sec-
ond and fourth sub-chromosome are exchanged between 
parents. It is interesting here to note that all offspring's 
chromosome are feasible. 

A mutation operator is a ra
genotype is replaced by another to generate a new chro-
mosome. Such a mutation operator first select a gene 
randomly from ith sub-chromosome and then replace it 
with a random integer within the interval of  0, ia , all 
other genes in ith sub-chromosome are generated such that 
the sum of all genes in the ith sub-chromosome equal 

to the ith supply ,
n

Gene a as shown in Figure 5. 
1

ij i
j

In the example problem in Figure 5, we have four sup-
plies, 1 211,  21,a a   3 14a   and 4 17a   the first 
gene i e is  (random 
integer 

n the first sub-chromosom mutated
   10, 0,11a  ) and all other genes in the 1st sub 

chromosom ated such that the sum of all genes 
equal to the supply amount  

5

G a G G

e are gener

1 1 2 3 4 5
1

11j
j

G G G


        . 

 

 

Figure 4. Graphs visualizing the crossover operators. 
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Figure 5. Graphs visualizing the mutation operators. 
 

Through this mutation operator, the population’s fea-
si

4.6. Update Function 

s the structure of the pro-

bility was preserved. 

Algorithm 1 (Figure 6) show
posed algorithm. The purpose of the function generate is 
to generate a new population in each iteration t, using the 
contents of the old population ( 1)tP   and the old archive 
set ( 1)tA   in association with t ult of recombination 
and tion of parents. The function update gets the 
new population ( )tP  and the old archive set ( 1)t

he res
muta

A   and 
determines the up d one, namely ( )tdate A . Also, the func- 
tion LS is to explore the less-crowde ea in the current 
archive to possibly obtain more nondominated solutions. 

As a result the proposed algorithm which is based on 

d ar

the (GA) uses a finite memory, successively updates a 
finite subset of vectors that dominate all vectors gener-
ated so far. It guarantees that the subset contains only one 
element which are not dominated by any of the generated 
vectors. This puts limits to the size of the archive ac-
cording the cluster algorithm Accordingly the algorithm 
is more practical where a decision maker is able to con-
trol the resolution of the Pareto set approximation ac-
cording his needs. Also it guarantees an optimal distribu-
tion of solutions [9]. The algorithm has a low computa-
tional time where, the computational time grows with the 
number of archived solutions. The proposed algorithm is 
capable to consider many objective functions. Accord-
ingly it provides the facility to consider more criteria in 
MOTP problem. 
 

(0) (0)
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1. t 0

2. Create P ,
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4. : 1
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6. : update( , )    {update arch

t t t

t t t
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A P

while t false

t t
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A A P
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ive (algorithm 2)}
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9. Output : t

end while

A A

A



 

Figure 6. Algorithm 1. 

4.7. The Local Search 

s a dynamic ver-
ique. This study examines the 

e external archive 

The local search p
sion of pattern search techn

hase is implemented a

usefulness of a dynamic version of pattern search tech-
nique [21] to improve the solution quality of MOTPs. 
The search procedure looks for the best solution “near” 
another solution by repeatedly making small changes to a 
starting solution until no further improved solutions can 
be found. 

The local search is started by loading the Pareto solu-
tions in th A . For every solution mx  

)
in

n
 the archive, we have  X n

m R A  , where the 
changes on the values for each imension ( 1, 2, ,i    
can be defined as  


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where k is number of trial ( to obtain pre-
ferred solution than m number in 

max0, ,k k 
r  is the rando
arch radius. 

) 
Xm , 

the range [0,1], R  is the se
W e  s u c c e s s i v e l y  l o o k  a t  t h e  p o i n t s  

   , 1,2, ,i

k
m mx x x i n      , until we find e x  

for which    j j tf x f x   for at least one objective. If 
we find no x  such that    j j tf x  f x , then mx x  . 
Then we u  solutions by non dominated 
ones and th ominated o . This situ  
is represented in Figure 7 for the case in 2R . Without  
 

pdate the Pareto
e d nes are removed ation

 

Figure 7. Mechanism of dynamic pattern search in R2. 
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loss of generality, the elements discussed above are syn-
thesized to evolve the proposed approach. The pseudo 
code of the proposed algorithm is given in Figure 8. 

5. Experimental, Results and Discussions 

The proposed algorithm was implemented on 2.7-MHz 
PC using MATLAB 6.5. To confirm the effectiveness of 
the algorithm on the transportation problem, three nu-
merical problems were used in the computational studies. 
Table 1 lists the parameter setting used in the algorithm 
for all runs. Let us consider the following numerical ex-
ample presented by many researchers [3,4,22,23,24] to 
illustrate the application of the proposed algorithm. 

Problem 1:  

n do 

pro y 
sing different methods. The interactive approach in [24] 

proach in [4] gave the following results: Z1 
= 170 and Z2 he fuzzy approach in  [23] gave 
the following results: Z1 = 160 and Z2  IFGP 
appr ] gave ing results: Z1 = 168 and 
Z2 = 185. lso, the obtaine  result fro ] are 
(143,265 156,200), (1 5), (18 ). 
The pro sed approach i his stud u-
tions as in Figure 9. It is obviously t  ob-
tained he proposed algorithm dom r re-
sults ob ed by other di ent approac

Problem 2: 
Let nsider the following nu -

The problem has the following characteristics: 
Supplies: 1 2 38,  19,  17.a a a    
Demands: 1 2 3 411,  3,  14,  16.b b b b     
Penalties:  

1 2

1 2 7 7 4 4 3 4

1 9 3 4 ,    5 8 9 10C C

   
      

8 9 4 6 6 2 5 1
   
      

To evaluate the performance of the suggested ap- 
 

Local search phase by adaptive pattern search 
Input : , search radiusA  

0k  , load the Pareto solutions from the external archive  

while ax k k  do m

for 1j  :  

   , 1, ,k

m mx x x e i
i      n  

If mx x   do 

  

               end if              
end for,

end while 

 {replace the old solution}mx x

 1k k   

Output A  

Figure 8. The pseudo code of the proposed approach. 
 

able 1. Parameters values used by the proposed algorithm 
for 

Value 

T
all runs. 

Parameter 
Problem 1 em 2 Probl

Problem size 3 4  4 5  

Number of objective 3 

Population e 15 15 

Mutation rate 

Crossover rate 0.95 

Maximum generation 100 100 
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sented in [3,4]. The problem has the following character-
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 
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To evaluate the performance of the suggested ap-
proach, let us consider the solution of th lem by 
us nt methods. The fuzzy appro n 4] pro-
vi owing results: Z1 = 112, Z2 = 106 and Z3 = 
80 other hand, the interactive approach in [3]  
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ing differe ach i [
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Figure 9. Comparison between the proposed algorithm and 
different approaches for first problem. 
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gave the following results: Z1 = 127, Z2 = 104 and Z3 = 
76. 

Figure 10 shows the obtained Pareto frontier, The ob-
tained results by the proposed algorithm dominate the 
results obtained by The fuzzy approach in [4] and the 
interactive approach in [3]. From the previous result, it 
was concluded that Integration of GA and local search 
technique has improved the quality of the founded solu-
tion, Also it guarantee the faster converge to the Pareto 
optimal solution. GA has provided the initial set (close to 
the Pareto set as possible) followed by local search 
method to improve the quality of the solutions. However, 
because of its stochastic behavior, GA may suffer from 
slow convergence. In order to reach a quick and closer 
result to Pareto optimal solution, and to improve the eff

utions that best 

6.

proach has been effectively applied  

i-
ciency of the GA, the algorithm maintain an external 
archive of the observed nondominated sol
conform a Pareto Front. 

 Conclusions  

In this paper, an improved algorithm for solving MOTP 
was presented. Our approach has two characteristic fea-
tures. Firstly, the algorithm is an iterative multiobjective 
genetic algorithm with an external population of Pareto 
optimal solutions that best conform a Pareto front. Sec-
ondly the algorithm implements GA to provide the initial 
set (close to the Pareto set as possible) followed by local 
search method to improve the quality of the solutions. It 
is concluded that Integration of GA and local search 
technique has improved the solution’s quality. To avoid 
an overwhelming number of solutions clustering algo-
rithm saves the most representative solutions, which gets 
iteratively updated in the presence of new solutions. The 
main features of the proposed algorithm could be sum-
marized as follows: 

1) The proposed ap
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Fi
third problem. 

to olve the MOTP, with no limitation in handing higher 
dimensional problems. 

2) The proposed algorithm was able to find well dis-
tributed of the Pareto-optimal curve in the objective 
space. 

3) The proposed algorithm keeps track of all the feasi-
ble solutions found during the optimization and therefore 
do not have any restrictions on the number of the 
Pareto-optimal solutions found. 

4) The inclusion of local search speeds-up the search 
process and also helps in obtaining a fine-grained value 
for the objective functions. 

5) The success of our approach on most of the test 
problems not only provides confidence but also stress the 
importance of hybrid evolutionary algorithms in solving
multiobjective optimization problems. 

 Genetic Algorithm and TOPSIS Te- 

athematics, Vol. 87, No. 13, 2010, pp. 3017-3029.  

gure 10. Pareto set using the proposed algorithm for the 
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