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ABSTRACT 

Some new estimations of scalar products of vector fields in unbounded domains are investigated. Lp-estimations for the 
vector fields were proved in special weighted functional spaces. The paper generalizes our earlier results for bounded 
domains. Estimations for scalar products make it possible to investigate wide classes of mathematical physics prob- 
lems in physically inhomogeneous domains. Such estimations allow studying issues of correctness for problems with 
non-smooth coefficients. The paper analyses solvability of stationary set of Maxwell equations in inhomogeneous un- 
bounded domains based on the proved Lp-estimations. 
 
Keywords: Estimations; Scalar Product; Vector Field; Functional Spaces; Maxwell Equations; Solvability;  
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1. Introduction 

The estimations of scalar products of vector fields and 
their norms play a significant role in proving the solva- 
bility of mathematical physics problems. Many researches 
are devoted to the study of estimates of the norms of 
vector functions in different functional spaces [1-4]. But 
in the most cases such estimations require the homoge- 
neous areas when their parameters don’t depend on space 
coordinates [5,6]. 

For inhomogeneous areas we suggest using esti- 
mations of scalar products of vector fields for the mathe- 
matical physics problems. In the publications [7-10] 
some Lp-estimations of scalar product of vector fields in 
the limited areas were obtained and was investigated the 
possibility of their application to study the solvability of 
different problems of electromagnetic theory. 

It is natural to study problem formulations in non-ho- 
mogeneous unbounded domains for most problems of 
mathematical physics. In the publications [11,12] we 
proved L2-estimations of scalar products of vector fields 
in unlimited areas. 

The paper is dedicated to solvability of a stationary set 
of Maxwell equations in the whole  space, based on 
the proved Lp-estimations of scalar product in the 
weighted functional spaces. 

3

2. Main Functional Spaces 

Let  be an open subset of  space (particu- 

larly 

3   3

3   ). 
Let  pL   be a Banach space of functions :u   , 

summable with power , where a norm is  p

  = d( )
p

Lp
u u x

  .x  

Let   31/ p

pL 
:u

 be a Banach space of vector-func- 
tions ,  3

        1 2 3= , ,x u x u x u xu  

where   ,i pu L   ( ), with a norm  = 1, 2,3i

 3

1/3

( ) ( )
=1

=
p p

p

iL L
i

pu
 

 
 
 
u . 

Let  v;dipH   and  be Banach spaces  rot;pH 

       3
= : div ,p pH L    u u pLdiv;  

        3 3
= : rotp p pH L L    u urot;  

with norms  

 1/

(div; )
= d div d ,

pp p

H p
x x

  
 u u u  

 1/

(rot; )
= d rot d

pp p

H p
x x

  
 u u u , 

respectively. 
We denote by  0 rot;pH   and  the clo- 

sures of the set of test vector-functions in 
0 div;pH 

 rot;pH   
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and , respectively. div;pH 
The following estimates for scalar products of vector 

fields in the bounded star-shaped domain  with 
the regular boundary were obtaned in [8,9,11]. 

3  

Lemma 2.1. Let > 3 2p ,  =q p p 1 . There exists 
a constant , that for any  

 and 
1 

0 rot;qH 
, > 0C p

u  div;pH v   

      

     3 3
3

1

( ) ( ) ( )( )
rot

Lq

x x






 

u v d ,

div .
L L Lp q p

x C p

  

  

 
 


u v u v 


 

Lemma 2.2. Let > 3 2p ,  =q p p 1 . There exists 
a constant , that for any  

,   
 , > 0C p

pHv
2 

 0 div;qH 

   

u  div; 

 

   

   

3 3
2 ( ) ( )

3 3
( ) ( ) ( ) ( )

d

( , ) rot

+ div div rot .

L Lq p

L L L Lq p q p

x x x

C p



 

   



  


 


 u v

u v

u v u v

 

Lemma 2.3. Let , > 3p  =q p p 1 . There exists a 
constant  3 ,C p > 0 , that for any  0 div;qH u  
and    rot;pH v

      

     

3

3 3
( ) ( ) ( ) ( )

d ,

rot div
L L L Lq p q p

x x x C p


   

  

   
 

 u v

u v u v .3

 

The main result of this paper is a proof of similar 
estimates for . 3  

3Let . For each       and  we define 
Banach spaces of vector-functions:  

1p 

 
        
3

3 3/3 2 3

rot;

= : 1 | | rot

p

p

p
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L




   



u u ,pL 

3
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3 /3 2

div;
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p
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with the corresponding norms  

 
 

 

1

/2
3 3, ,rot
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= 1 | | rot
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p
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u u u , 

 
 

1

/2
3, ,div
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= 1 | | div
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p

p
L Lp p

pp 


 

 
  


u u u

For  [12] these spaces are defined as:  = 2p

  
  

3 3
2

3 3
2

rot; = rot; ,

div; = div; .

H H

H H

 

 

 
 




 

3. Estimations of Scalar Products 

The main result of the current article is  

Theorem 3.1. Let , 1 < <p  3 2p  , =
1

p
q

p 
, 

1
> max{ , }

2
p q . Then there exists a positive constant  

 ,C p , which does not depend on vector-functions 
 3rot;qH u  and , and the inequa- 

lity  
 3div;pH  v 

    

   
     

    
 

3
3

3
3

3

2 3
3

23

d

, 1 | | rot

   1 | | div

q

LpLq

p

Lq Lp

x x x

C p









   




   


 u v

u v

u v





 

 (1) 

is correct. 
In proving Theorem 3.1 the following statement is 

used. 
Lemma 3.2 [7]. Let   be an open set in  (par- 

ticularly, 

3
3  

 

) star-shaped on . Then the fol- 
lowing identities are true for all  and each func- 
tion 

0
x

 31C u   

       
0 0

= grad d rot d ,x zx z x z
1 1

x       u u u (2) 

      
1

1 2

0
0

= rot d div d ,

= [0,1]

x zx z x x

z x

z   

 

   



 u u u

， .

 (3) 

Let  1 22 2 2
1 2 3 , =r x x x x   = r  , =s x x .  

Then the identities (2) and (3) are equivalent to  

     
 

0

0

= grad d

1
             rot d ,

r

x

r

rs s s

s s
r

 

  



   





u u

u
         (4) 

    
 

0

2
2

0

= rot d

            div d .

r

x

r

rs s s

s
s

r

  

  

  







u u

u
         (5) 




. Proof (Theorem 3.1). Let > 3 2p . Let  and  be 
smooth vector-functions on   

u v
3
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3
1 3 3

3
1 3 3

rot; ,

div; .

p

q

C H

C H









u

v




 

 
 

Let RB  denote a closed solid sphere with radius 
 centered at the origin and with the boundary > 0R RB . 

Consider the integral  

     3 d ,R x x x x  u v


           (6) 

where  R x  is a function of scalar argument  

 
1, 2,

= 1, 2 <

0, > .
R

r R

r R r R r R

r R




  



,  

We use the representation (3) for the vector-function 
 in the integral (6)  v
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For the first of resulting integrals ( 1I ) we use a vector 
field relation  

    div = rot rot ,   a b a b a b  

and then we invoke the Gauss-Ostrogradsky theorem and 
use the fact that   = 0R x  when Rx B . So  

       
       

1

1 0
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or passing to spherical coordinates the operator   rot
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We estimate the first integral. Applying Hölder’s in- 
equality to  

0
d

r
s   v  we get  
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Applying Hölder’s inequality to the second inner 
integral, we have:  
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We can write the estimation as  
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Let us estimate the integral 1,2I . It is evident the the  
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R

R
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  , where  
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,
 

Applying Hölder’s inequality several times, we get  
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The following estimation is obvious  
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So, we get an estimation for 2I :  
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We use Hölder’s inequality for the second integral 
again.  
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Let’s estimate the following integral  
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1
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Bringing together the constructed estimates, we derive 
the following inequality for integral (6)  
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where  

      1,1 2, = max lim , , , ,
R

C p C p R C p 


.  

Going to the limit for  in the last inequality, 
we will obtain estimation (1). 

R 

Note, that for 1 < < 3 2p  the theorem may be proved 
similarly using the Equivalence (2).  

4. Discussion of the Stationary Problem of  
Electromagnetic Theory 

As an example of using the estimations proved in Section 
3, we will consider a problem of determining the 
magnetic field stretch  xH  in the whole  space 
with a bounded conducting subdomain. 

3

Stationary electromagnetic field is described by the set 
of stationary Maxwell’s equations  

        ext4π
rot ,x x x x

c
 H E E      (7) 

 rot = 0,xE                  (8) 

    div = 0,x x H              (9) 

      div = 4π .x x E

3

x           (10) 

Here . The conductivity of the atmosphere is 
denoted as 

x
 3L    . Let   denotes a bounded 

open star-shaped subset of  defined by conditions  3
  * > 0,  for almost all ,x x          (11) 

  3= 0,  for almost all \ .x x          (12) 

Functions  , L   3  are permeability and per- 
mittivity. They satisfy the following conditions  

 
   

* 3
*

* 3
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0 < , ;
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x x

x x x x 

  

   

  

   


 

 

The   ext 3
2LE 

3

 is a vector-function of the ex- 
ternal electromotive force, which is asumed given and 
satisfying the condition  

 ext 3= 0 for almost all \ .x x  E   

Function  3
2L    equals zero for almost all  

3 \x   . 
We introduce the necessary functional spaces  

     
     

       

3
3 3
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3
3 3
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3
3 3
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Ker div; = : div = 0 ,

Ker rot; = : rot = 0 ,

Ker div ; = : Ker div; ,

L

L
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u u

u u
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        3 3
1 3 3
2 2rot; = : rot ,V W L  u u   

  3rot = 0 for almost all \ .x x  u   

Denote     Ker div ; rot;U V  3   . It is 
readily proved that this functional space will be Hilbert 
space relatively to scalar product  

             3 33 3
2 2

= rot rot
U L L

   u v u v u v  .  

We name the solution of the Problem (7)-(10) the 
functions  U  H ,  and   3Ker rot;E  

 3
3 \

1H 
x

 satisfying condition  for almost 
all 

  = 0x
  . 

The validity of (10) implies the distibution   for all 
     defined by the formula  

      1
, = grad d

4π
.x x x


   


    E x    (13) 

Equation (7) in conducting subdomain will be  

1 erot = ,
4π

c    H E E xt  

and in nonconducting subdomain ( 3 \  ) it becomes 
an identity. 

Multiplying the last equation by , rotψ  U  ψ , 
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integrating along 

  
, and using  or   3Ker rot;E 

    rot d =x x ψ

 U

3( ) rot d = 0x x


 E ψ E


x x . 

It becomes obvious that the problem of determining 
the stationary magnetic field can be formulated as 
follows: 

Determine vector-function  H  satisfying the 
integral identity  

      
  

rot d
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c 1
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E
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for all functions  ψ

:f V

 . 
We need the following statement to prove the theorem 

of solvability (Theorem 4.2) for the Problem (14). 
Lemma 4.1 (Lax-Milgram [13]). Let  be a Hilbert 

space over the field of real numbers. Let  
 be a symmetric bilinear bounded coer- 

cive form, —linear bounded functional. 
Then there exists a unique element  satisfying the 
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V
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  3
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Theorem 4.2 (Solvability of the Problem (14)). Let  

 3L  
ext

  satisfy (11), (12),  and  

  = 0xE  for almost all x   . Then the solu- 
tion  U H   of the generalized Problem (14) exists 
and is unique. 

Proof. Let’s verify the conditions of the Lax-Milgram 
lemma. 
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1

*

, =
4π

rot
4π

c
a x x x

c


















u v rot rot d

rot d .

x

x x x



 

u v

u v
 

Using the Cauchy-Bunyakovsky-Schwarz inequality, 
we obtain  
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> 1 , i.e. the vector-function  xH  satisfies 
estimation  
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2
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2
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using the Hölder’s inequality, we obtain  
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Now we verify the conditions for functional  f  . 
The linearity is obvious. Let’s show the finiteness using 
the Cauchy-Bunyakovsky-Schwarz inequality  

     

    3

1 2 1 2
2 2ext
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3

2

d rot d

          rot .
UL

f x x x
 



 



     
  

 

 ψ E ψ

E ψ


x 
  

2
x x x
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u v

u v
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Thus, all the constraints of the Lax-Milgram lemma 
are satisfied, and the solution of the Problem (14) exists 
and is unique. 

x 


 

Remark. The solvability of the studied problem is also 
true when   is a positive-definite tensor. The scheme 
of the proof is similar to Theorem 4.2. 

Let  U  H  satifies relation (14) for all  
 U  ψ . Let’s show that other indefinite functions 

will be defined in   from Equaitons (7)-(10) as values 
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depending on H . 
We determine function E  in the conductivity area by 

equality  

ext= rot
4π

c


 .E H E  

Let . Let’s extend v  by zero in . 
According to the Lax-Milgram lemma there is the unique 
function , which for each  

 satisfies the equality  

 

Ker
3

 v 

rotg
 rot;





3
3;

Kerη

   3 d = d .x x


 


  g η v η


 v g


 

Then  and as , 
then 

 3Ker rot;ψ 
U

 rot = rotψ v

 

 
ψ . Therefore we obtain that  

 

   1 ext

rot d

rot

= rot d

= rot d rot d = 0.
4π

x x

c
x x

 

 


 

 

 

  

 

 

E v E ψ

H ψ E ψ
 

This shows that  Ker rot;  E
 1H    

. 
The function is defined by relation (13) 

as shown above. 


5. Conclusion 

The paper was devoted to the proof of Lp-estimation of 
vector fields in weighted functional spaces. Also we 
discussed a solvability of the problem of determinig the 
magnetic field stretch in the whole  space. The proof 
of solvability is based on the proved estimation. 

3
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