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ABSTRACT

Some new estimations of scalar products of vector fields in unbounded domains are investigated. L,-estimations for the
vector fields were proved in special weighted functional spaces. The paper generalizes our earlier results for bounded
domains. Estimations for scalar products make it possible to investigate wide classes of mathematical physics prob-
lems in physically inhomogeneous domains. Such estimations allow studying issues of correctness for problems with
non-smooth coefficients. The paper analyses solvability of stationary set of Maxwell equations in inhomogeneous un-

bounded domains based on the proved L-estimations.
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1. Introduction

The estimations of scalar products of vector fields and
their norms play a significant role in proving the solva-
bility of mathematical physics problems. Many researches
are devoted to the study of estimates of the norms of
vector functions in different functional spaces [1-4]. But
in the most cases such estimations require the homoge-
neous areas when their parameters don’t depend on space
coordinates [5,6].

For inhomogeneous areas we suggest using esti-
mations of scalar products of vector fields for the mathe-
matical physics problems. In the publications [7-10]
some Ly-estimations of scalar product of vector fields in
the limited areas were obtained and was investigated the
possibility of their application to study the solvability of
different problems of electromagnetic theory.

It is natural to study problem formulations in non-ho-
mogeneous unbounded domains for most problems of
mathematical physics. In the publications [11,12] we
proved L,-estimations of scalar products of vector fields
in unlimited areas.

The paper is dedicated to solvability of a stationary set
of Maxwell equations in the whole R’ space, based on
the proved L,-estimations of scalar product in the
weighted functional spaces.

2. Main Functional Spaces

Let Qc R’ be an open subset of R® space (particu-

Copyright © 2012 SciRes.

larly Q=R?).
Let L, (Q) be a Banach space of functions u:Q — R,
summable with power p, where a norm is

lull, ) = (IQ|U(X)|pdx).

Let {Lp (Q)}sup be a Banach space of vector-func-
tions u:Q — R?,

u(x) = (U (x),u, (x),u; (x))
where u; €L, (Q), (i=1,2,3), with anorm
3 p 1/p
"u”{Lp(Q)}3 :(;"ui ”Lp(Q)j :
Let H,(div;Q) and H(rot;Q) be Banach spaces
H o (diV;Q) = {u € { Lp (Q)}3 sdivu € Lp (Q)} s

Hy(r0602) =< L, ()] ot L, (@)
with norms

. 1/p
iy = " e [ fdivad axf

1/p
"u"Hp(rot;Q) = {J‘Q|u|p dX+J.Q|r0tu|p dx} >

respectively.
We denote by H) (rot;Q) and Hy (div;Q) the clo-
sures of the set of test vector-functions in H (rot;Q)
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and H (div;Q), respectively.

The following estimates for scalar products of vector
fields in the bounded star-shaped domain Q c R’ with
the regular boundary were obtaned in [8,9,11].

Lemma 2.1. Let p>3/2, q=p/(p-1). There exists
aconstant C, (€, p)> 0, that for any
ueH{(rot;Q) and veH o (div;Q)

[ ((x)-»(x))dx

Q

X(| rotu ||{Lq (Q)}3 ”v"{Lp(Q)}3 +"”"{Lq(0)}3 "div‘)"Lp(Q)]’
Lemma 2.2. Let p>3/2, q=p/(p-1). There exists
aconstant C, (€, p)> 0, that for any
uc H(?(diV;Q) , VE Hp (diV;Q)

[ ((x)-»(x))dx

<C,(Qp)

<C.@ )l o Irov o

+"divu||Lq(Q) ”v"{Lp(ﬂ)}3 +"divu”Lq(Q) ”rOtv”{Lp(ﬂ)}3 j

Lemma2.3.Let p>3, q=p/(p-1). There exists a
constant C,(Q,p)>0, that for any ueH,(div;Q)
and veH, (rot;Q)

[ ((x)-¥(x)) dx

Q
(Il o ool o + vl o o |

The main result of this paper is a proof of similar
estimates for Q=R".

Let Q=R’. For each ¢ e€R and p>1 we define
Banach spaces of vector-functions:

<C,(Q,p)

H (o)

= {u e (L, (R)} (141 F) " rotu e{Lp(R3)}3},
He (diviR*)
= fue{L, (®)) {1]-P) " divue L, ()]

with the corresponding norms
1/p
p J
3 )
{ry0)

W, . - @wp
P 1/p
L,,(Q)] '

2+H(1+| & ) rotu

L (Q)

+ H(l+ |- )a/p divu

- p
=[P

Copyright © 2012 SciRes.

For p=2 [12] these spaces are defined as:
H* (rot;R3)= H (rot;R3),
He (diviR*) = Hy (div;IR*).

3. Estimations of Scalar Products

The main result of the current article is
Theorem 3.1. Let 1<p<ow, p=#3/2, q:Ll’
p -

1 . .
a>5max{p,q}. Then there exists a positive constant

C(a,p) . which does not depend on vector-functions
ueH; (rot;R3) and veH] (div;RS), and the inequa-
lity

H(l+| & ) rotu

s My O

Lp(ueﬁ)j
is correct.

In proving Theorem 3.1 the following statement is
used.

Lemma 3.2 [7]. Let Q be an open set in R’ (par-
ticularly, Q=R’) star-shaped on 0 Q. Then the fol-
lowing identities are true for all xeQ and each func-
tion ue {Cl (Q)}3

u(x)=grad, (.[Ol(u(z) : X)d‘[)+.[olr[rotzu(z)>< x|dz, (2)

IA
O
K
=
—

(1+ |- )a/p divy

+ ||u||{Lq(R3 )}3

)= rot (Ir[u xx]dz')+j.z'zxdivzu(z)dr,
0

3
z=1X, 7€[0,1]
Let rz|x|:(xf+x22+x§)l/2, E=1r, s=x/|x.
Then the identities (2) and (3) are equivalent to
u(rs) = grad, (Lr(u((fs) S)dé)

“)

+% jo'g[row(gs)x s]dé,

u(rs) = rot, (Iorf[u(fs)x S]df)
O]

+rizj;§2divu(§s)d§.

Proof (Theorem 3.1). Let p>3/2.Let u and v be
smooth vector-functions on R’
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ue {Cl <R3 )}3 ﬂH o (rot;R3 ),
velC (B)) NHe (div:R?).

Let B, denote a closed solid sphere with radius

R>0 centered at the origin and with the boundary 0B, .

Consider the integral

6 (IX])(m (x)-» (x)) . ©)

where 6, (|X|) is a function of scalar argument

1, r<R/2,
G (r)=4R/r—1, R/2<r<R,
0, r>R.

We use the representation (3) for the vector-function
v in the integral (6)

J.o <|x|><u<x>-v<x>>dx
_J ( rot(jr[v (rx xx]df))dx
+IBR (49R |X|) e (x .Iorzxdivv(z'x)dz-)dx= | +1,,

For the first of resulting integrals ( 1,) we use a vector
field relation

div[axb]=(rota-b)—(a-roth),

and then we invoke the Gauss-Ostrogradsky theorem and
use the fact that 6, (|x|) =0 when xe0B;. So

L= (eR (|x|)u(x).rot(j0‘r[v(rx)xx]df))dx
R
- I, (rot (6 (M) () [ (=] ax
or passing to spherical coordinates the operator rot
1= [as]" (

+Ldsj0 r ([gradHR (ryxu(rs)]- .foé[v(és) x5 | dej)dr
=1, +1,.

rotu rs J.g[v (fs xs]dg)dr

We estimate the first integral. Applying Holder’s in-
equality to I§|v és |d§ we get

) 1/q
ieh(es)ae <([i£p(esf ) p~[ﬂf@”}‘déJ
:(3_ql/q (I§ |v §S| dé‘)

then
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HE jsdsj:reR (r)lrotu(rs)| [ £ v (£s)|d&dr

<Wj‘sdsj:r3/q G (1)
([ (s dff)l/p dr
gm. Lds[( jfgz (&)’ dg)l/p

XJ.R AU
°(1+ rz)a/q

Applying Holder’s inequality to the second inner
integral, we have:

MSWI (€ (&) df)
-1 np r v R « q 1/q
x[jf%&} (_[0 r*(1+12) [rotu(rs)| dr)/ :

We can write the estimation as

|rotu(rs)|

r2/a (1 +r? )a/q |rotu(rs)|dr].

rPtdr

(1)

R FPO0 (1) Lo ldr o
Io (1+ rz;a(p-U dr< Jo (1+ r2 )a<p—1> +,L

<'|'rp tdr+ L RIPdr

2

1 1

-4 - @@ I_RP*MHH) .
p+2a(p—1)—p( )

It is obvious that if « > (/2 an expression
p—Za(p—l) <0, then

Ll

<C,(a,p,R H1+||) rotu

IIVII

C.(a,p.R)

2p-3) 5[ 1 ] 1 ve

— p

-(2e3) e[ L, (1~ )| -
p-1 p 2a(p-1)-p R2a(p-D-p

Let us estimate the integral | ,. It is evident the the

gradd, (|X|) = %r(r)-s , where

de(r) _ [-R/r*, R/2<r<R,
dr 0, otherwise.

Applying Holder’s inequality several times, we get
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a6,(r)
dr

P I/p
||1-2|3W{J.:/2rp1 dr]
xjsds(josz |v(t§s)|pd(§)]/p(jR r*[u(rs)] dr)l/q

ﬁ(f J My,
(_[dsj |u (rs) dr) )

The following estimation is obvious

P 1/p )
0<[IRr”“ er —[—2 _1]
R/2 p

Hense
/
) dsz r*|u(rs)[" dr — 0 when r — o <o,
s JR2

then [1,,| >0 when R—co.
Next we construct an estlmatlon for integral 1,. We
apply Holder’s inequality to I £ |d1vv és |d§

[ £ |divv £s)|dé

dé’

dé,(r)
dr

_j e £ (1+8)"" dive(&s)|dé

1/q
r 52
<[ | ————d
{J.O (1+§2)a(q71) 6&}

r a Y
x(jogz (1+& ) [divw(&s)] d§) '
So, we get an estimation for |, :

It,| gjsds(j0R§2(1+§2)“ |divv(§s)|pd§)]/p

g
XIOR[J‘OV((J:ﬁd(:] 0, (r)|u(rs)|dr.

1+§)

We use Holder’s inequality for the second integral
again.

| sjsds(jOR§2(1+§2 )a|divv((§s)|pd(§)l/p

p-1
RGP (r) r 52
X ,[0 rs(p") [Io (1 2\(@-D dé:} dr

+§)

x (J‘:r2 Ju(rs) dr)l/q

Let’s estimate the following integral

1/p
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&dg

R HF\‘,J r r "
Io r2(p(—l)) [,[0 (1+§2 )“(q‘”] dr
11 r 2d .
< .I.o r2e-h {J.o (l +§§2 )f(ql) ] dr

RO ; 24 -
+.[1 20D {L (1+§§2)iq_])} dr.

p-1
e P EdE
J.o rZ(P*I) [J.o (1+§2 )a(ql)J dr
11 r p-1 1
< J‘O—rz(p’l) (szdff) dr RETEI,
Denote x =2a(q-1) and consider

JJ‘ffdff J'ffd

a(q-1)

&)

When x<3 (i.e. a<%(p—l)),then

Teo-x 1 —K
J sjogz dé =3—r3

-K
and, respectively

R
p-1 <
} rz“’ o dr

1 R dr
(3 B K)'H L p(<=D(p-1)

1 1 1
= 1- < .
(3—1()‘)71(205— p)( Rzapj (3—1()'371 (2a-p)
If >3 we get

J<j§d§ j “

11 1 K
§+K—_3(l‘r’«—3j%<,(_3y
R 1 P! R d
.[1 m\]pldrg(?’(;{_?’)J jl rz(—;:l)
:( K jpl 1 (1_ 1)

3(k-3)) 2p-3L R

Sﬁ(s(:—sﬁpl'

At last, when x =3, then

—j _ &g dé 1 j cf B df

- 3/2

3q 3q

:l+i(r 2 _1J<L_r 2 s
3 3-¢ -0
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p-1
R poi 2 R dr
jl rz(P 1) J dr < (3_q} J‘l r(ZP*I)/Z

H
3-) U R
Thus, we obtain
RO (F)|
.[0 r2p-D .[o
and therefore
" ], Va
I1,|<(Cy (e p))’ Ld{(for |”(rs)|dr)
A 3 o /p
(e (1) favw(es) ag) }
<(Cy(a, p))l/p "””{Lq(BR)}3

Bringing together the constructed estimates, we derive
the following inequality for integral (6)

fo 0 (b (s () ()
<C (ap[HHH) ou,

par |
(1+§2 )a(qfl)

<C,(a,p),

(11 )" divw

Lp(Be)

LU

Lp(R3)||u||{Lq(Rs)}sj,

(ap)}.

Going to the limit for R — oo in the last inequality,
we will obtain estimation (1).

Note, that for 1< p<3/2 the theorem may be proved
similarly using the Equivalence (2).

+ H(1+ )" dive

where

C (e, p) = max{limC,, (@, p.R), C,

4. Discussion of the Stationary Problem of
Electromagnetic Theory

As an example of using the estimations proved in Section
3, we will consider a problem of determining the
magnetic field stretch H(X) in the whole R’ space
with a bounded conducting subdomain.

Stationary electromagnetic field is described by the set
of stationary Maxwell’s equations

4n

rotH (X) =Ta(x)(E(x)+Ee“ (x)). @)
rotE (X) =0, (®)
div(u(x)H(x))=0, )
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div(e(x) E(x)) = 4mp(x). (10)

Here xeR’. The conductivity of the atmosphere is
denoted as o el (R’). Let Q_ denotes a bounded
open star-shaped subset of R® defined by conditions

O'(X)ZG* >0, for almost allxe Q_, (11)

o(x)=0, foralmostallx e R\ Q_. (12)

Functions u, eel, <R3) are permeability and per-
mittivity. They satisfy the following conditions
0<u <p(x)su',xeR’
0<e&<e(x)<e forxeQ; e(x)=1forxe R’ \Q .

3
The E™ e {L2 (R3)} is a vector-function of the ex-
ternal electromotive force, which is asumed given and
satisfying the condition

E®(x)=0 foralmost all xe R\ Q.

Function pel, (R3) equals zero for almost all
xeR\Q,_ .
We introduce the necessary functional spaces

Ker(div; R3) = {u € {L2 (R3 )}3 divae = 0},

Ker(rot]R) { { )} :rotu = 0}

(R
Ker(divy;R3):{u L (RS)}3 pu < Ker (div; Rs)}

V(rot; Q)= {u { }3 rotu € { R3 )}
rotu(x) = 0 for almost all x € R’ \QU}.

Denote U (Q_ )= Ker(divy; R3)ﬂV (rot; Q). It is
readily proved that this functional space will be Hilbert
space relatively to scalar product

(u~v)U(QJ) = (u.v){Lz(R3)}3 +(r0tu-r0tv){L2(R3)}3 .

We name the solution of the Problem (7)-(10) the
functions H eU(Q,), Ee Ker(rot;R3) and
peH™ (RS) satisfying condition p(x)=0 for almost
all xeR\Q, .

The validity of (10) implies the distibution p for all
9eD(Q,) defined by the formula

p, >———I E(X)-gradp(x))dx.  (13)

Equation (7) in conductlng subdomain will be
".rotH = E + E™,
T

and in nonconducting subdomain (R*\Q_) it becomes
an identity.
Multiplying the last equation by roty, weU(Q,),
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integrating along Q_, and using E eKer(rot;]R3) or
j (E(x) roty (X)) dx = j )-roty (X)) dx = 0.

It becomes obvious that the problem of determining
the stationary magnetic field can be formulated as
follows:

Determine vector-function H €U (
integral identity

% o, (o7 (X)rotH ()-rotys (x)) dx

= jﬂo’ (Ee"t (X)'roty/(x))dx

for all functions y €U (Q,).
We need the following statement to prove the theorem
of solvability (Theorem 4.2) for the Problem (14).
Lemma 4.1 (Lax-Milgram [13]). Let V be a Hilbert
space over the field of real numbers. Let
a(--):VxV >R be a symmetric bilinear bounded coer-
cive form, f(-):V — R —linear bounded functional.
Then there exists a unique element u eV satisfying the

equality
a(u,v)=f(v)
forall veV.
Theorem 4.2 (Solvability of the Problem (14)). Let

oel,(R) satisfy (11), (12), E* efL,(R*)" and

E*(x)=0 for almost all xeR’\Q_. Then the solu-
tion HeU(Q,_) of the generalized Problem (14) exists
and is unique.

Proof. Let’s verify the conditions of the Lax-Milgram
lemma.

Let us denote

(H v =—J. )rotH( ) roty/(x))dx,

f(y)= jQJ(Em( )- oty (X)) dx.

Obviously, a(-,-) is a bilinear and symmetric form.
The finiteness is easily proved by condition (11):

Jo, (o (xrotue(x)-rotw (x)) ax
'[Qa (rotu(x) . rotv(x))dx .

Using the Cauchy-Bunyakovsky-Schwarz inequality,
we obtain

|a(u,v)|

2 12 5 12
4; (1, Jrorwof o) ([, oo o)
"”"u "v”U(Qo_)

Q,) satisfying the

(14)

la(u,v) :%

<

4no,

<

4no,
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Let’s show coercivity of the form a(-,-).

Whereas H €V (rot;R3) thus H H“Erot;ﬂ@) for
each a>1, ie. the vector-function H X) satisfies
estimation

2 1
|7 S;(H'ﬂH){Lz(Rz)f :

The following notation is used ||||: 3. Let’s

use Estimation (1)

e
et L2 (- ot o

. .? “? 4
(17 dwaHLZ(R})].

Since H €W (Q_ ), the last summand is zero. Then
using the Holder’s inequality, we obtain

||H||2 < c (:’ 2) esssup i - H(H M )0:/2 rotHH . ||H||

Hense

C(a,2)
H a3 <
" "{LZ(JR')} < P

where R =diamQ_. The estimates show the coercivity
of the bilinear form, because

||H Lzl(rot‘lR3) < [{Messsup,uj .(1+ RZ)” +1}
; P

x IQJ (rotH(x) : rotH(X))dX

2
< 4—T{(Messsup,u] (1+ R? )a +1J
c m

xesssupa-a(H,H).

esssupu - (1 +R’ )% ”rOtH"{LZ(Q )

s

Now we verify the conditions for functional f(-).
The linearity is obvious. Let’s show the finiteness using
the Cauchy-Bunyakovsky-Schwarz inequality

5 12 s 12
|f(.,,)|s( J, [ () dxj ( J, ot (x) dxj
S| {LZ(R3)}3 '"mt‘/l"u(g

Thus, all the constraints of the Lax-Milgram lemma
are satisfied, and the solution of the Problem (14) exists
and is unique.

Remark. The solvability of the studied problem is also
true when o is a positive-definite tensor. The scheme
of the proof is similar to Theorem 4.2.

Let HeU(Q,) satifies relation (14) for all
weU(Q,_). Let’s show that other indefinite functions
will be defined in Q_ from Equaitons (7)-(10) as values

Eext
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dependingon H .

We determine function E in the conductivity area by
equality

~ O rotH-E*.
4no

Let ve{D(Q,)}. Let’s extend v by zero in R’.
According to the Lax-Milgram lemma there is the unique
function ge Ker(rot; R3) , which for each
ne Ker(rot;R3) satisfies the equality

LR}(yg-r])dX = jga(uv-n)dx.

Then w=v-ge Ker(rot;R3) and as roty =rotv,
then y €U (Q, ). Therefore we obtain that

ng (E ~r0tv)dx = J.Qg (E ~1”Otl//)dX

_ c -1 ext —

= e (o- rotH - rotq/)dx - jﬂg (E ~rotl//)dx =0.
This shows that E e Ker(rot;Q,_ ).

The function peH™'(Q,) is defined by relation (13)

as shown above.

5. Conclusion

The paper was devoted to the proof of L,-estimation of
vector fields in weighted functional spaces. Also we
discussed a solvability of the problem of determinig the
magnetic field stretch in the whole R’ space. The proof
of solvability is based on the proved estimation.
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