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Abstract 
 
This research investigates the potential of near infrared spectroscopy (NIRS) for the detection and quantifi-
cation of pesticides in aqueous solution. Standard solutions of Alachlor and Atrazine (ranging in concentra-
tion from 1.25 - 100 ppm) were prepared by dilution in a Methanol/water solvent (1:1 methanol/water (v/v)). 
Near infrared transmission spectra were obtained in the wavelength region 400 - 2500 nm; however, the 
wavelength regions below 1300 nm and above 1900 nm were omitted in subsequent analysis due to the poor 
signal repeatability in these regions. Partial least squares analysis was applied for discrimination between 
pesticide and solvent and for prediction of pesticide concentration. Limits of detection of 12.6 ppm for 
Alachlor and 46.4 ppm for Atrazine were obtained.  
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1. Introduction 
 
In order to enhance monitoring of pesticides it is neces-
sary to develop low cost, rapid methods for their detec-
tion which can be integrated into water flow systems [1]. 
Vibrational spectroscopy comprises a group of methods 
that may be applied for monitoring water quality. Among 
the broad spectrum of techniques belonging to this fam-
ily, to date Fourier Transform Infrared (FT-IR) and At-
tenuated Total Reflectance (ATR) spectroscopy in the 
mid infrared (MIR) wavelength range (2500 - 16,000 nm) 
have been developed for contaminant detection in water 
[2]. Due to the high absorption of MIR light by water, 
these techniques have depended on the use of pre-en- 
richment steps such as solid phase microextraction. Me- 
thods based on the coating of the ATR crystals with 
polymer films with affinity for certain contaminants have 
also been demonstrated. One example is a method de-
veloped for pesticide detection employing PVC coated 
ATR crystals; in that study, detection limits around 2 
ppm were reported for Atrazine and Alachlor [3]. How-
ever, a 15 minute enrichment time followed by 5 min 
water wash was required for each measurement. Such 

relatively lengthy measurement times rule out the possi-
bility of on-line monitoring. 

In the lower wavelength near infrared (NIR) range 
(750 - 2500 nm), the absorption coefficient of water is 
around 100 to 1000 times less than that in the MIR. This 
facilitates greater sample thickness and direct measure-
ment of water samples. In addition, NIR spectroscopy 
(NIRS) is ideally suited for rapid online measurements. 
However, NIR spectra are more complicated to analyse 
than IR spectra due to the combination and overlapping 
of vibrational modes present In order to extract useful 
information, it is necessary to apply multivariate tech-
niques such as principal components analysis (PCA), 
partial least squares regression (PLSR) etc. [4]. Never-
theless, the detection of low concentrations of contami-
nants in aqueous solution has been demonstrated using 
NIRS; researchers recently reported the use of NIRS for 
prediction of metal concentration in aqueous solutions 
using NIR transmission spectroscopy, with reported lim-
its of detection ranging from 10 - 40 ppm [5]. Although 
metals do not absorb light in the NIR, their presence is 
detectable due to the interaction of metal ions with OH 
bonds in water. Aquaphotomics aims to exploit such in-
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teractions between water and NIR light to extract infor-
mation on the state of aqueous systems [6]. Water is the 
main component in numerous biological (and many non 
biological) systems; however, its structure is perturbed 
by the presence of various components such as salts, 
proteins, sugars and other bio molecules. With this in 
mind, Aquaphotomics aims to characterize the effect of 
various perturbations on water structure using NIR. 
Should changes in the water absorbance patterns arising 
from various contaminants be sufficiently distinguishable, 
the framework of Aquaphotomics shows potential for 
contaminant detection in aqueous systems. 

The objective of this work is to evaluate the potential 
of NIRS and Aquaphotomics for the detection of pesti-
cides directly in aqueous solution. Although researchers 
have demonstrated the potential of NIRS for the detec-
tion of pesticide residues on foods [7,8], to our best 
knowledge there are no previous studies reporting the 
use of NIRS for detecting pesticides directly in aqueous 
solution. Alachlor and Atrazine, were selected as test 
analytes for this study. During the 1980s, Alachlor was 
introduced as a substitute for Atrazine. These two herbi-
cides have subsequently become important in monitoring 
of large scale water bodies and are commonly used in 
studies on the development of pesticide contamination 
detectors [3]. Atrazine, one of the most frequently ap-
plied herbicides in the USA is a triazine pesticide and 
Alachlor, a major corn herbicide, is an acetanilide (Fig-
ure 1). The maximum contaminant level of each under 
the US EPA Safe Drinking Water Act (SDWA) is 3 and 
2 μg/L (3 and 2 parts per billion (ppb)), respectively [9]. 
 
2. Materials and Methods 
 
2.1. Sample Preparation 
 
Due to the low solubility of the selected pesticides in 
water, working stock solutions at 100 mg·L–1 were pre-
pared by direct dilution in a solvent of 1:1 methanol/ 
water (v/v) using deionized water from a Milli-Q water 

purification system (Millipore, Molsheim, France) [10]. 
Further dilutions were made by serial dilution in this 
solvent to create a series with the following concentra-
tions: 50, 20, 10, 5, 2.5, 1 mg·L–1 (ppm). The dilutions 
were made with the same solvent in order to ensure that 
changes in the absorbance signal were due to the pesti-
cide and not due to the changing concentration of solvent. 
Methanol and standard quantities of Alachlor (catalogue 
number: P-102NM-250) and Atrazine (catalogue number: 
P-005NM-250) were purchased from Wako Pure Chemi- 
cal Industries (Tokyo, Japan). 

The experimental work was carried out in three stages. 
In the first stage (carried out between Dec 2010 and April 
2011), relatively high pesticide concentrations were 
tested (5, 10, 50 and 100 ppm). This high range of con-
centrations was examined in order to test the feasibility 
of the method. In the secondary stage (carried out be-
tween June and August 2011), lower pesticide concentra-
tions were employed to further test the detection limit of 
the proposed method (1.25, 2.5, 5, 10 and 20 ppm). In 
the third stage (carried out in November 2011), interme-
diate pesticide concentrations were tested (1.25, 2.5, 5, 
10, 25 and 50 ppm). For the first two stages, each ex-
periment was repeated 6 times (twice per day on three 
different days), while for the final stage, each experiment 
was repeated four times (twice per day on two different 
days). The second experimental day for each stage was 
chosen as an independent test set, and the calibration 
dataset was composed of the remaining data. 
 
2.2. NIR Spectra Collection  
 
Transmittance spectra were acquired using an NIR Sys-
tem 6500 spectrophotometer (Foss NIR-System, Laurel, 
USA), fitted with a quartz cuvette with 1 mm optical 
path length. Spectra were measured over the wavelength 
region of 400 - 2500 nm, in 2 nm steps. The spectral data 
were transformed to pseudo-absorbance units (log(1/T), 
where T = transmittance). Transmittance spectra of the 
samples of different pesticide concentrations were col-  

 

Figure 1. Chemical structure of Atrazine and Alachlor.  
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lected in random order at a temperature of 28˚C ± 1˚C. 
The temperature of the sample holder was measured after 
each spectral acquisition. Five consecutive spectra were 
acquired from each sample. In order to monitor any po-
tentially interfering signals, two control measurements 
were taken during each experiment. The first control was 
a sample of the solvent while the second consisted of 
measuring the empty space (air) between the light source 
and detector. These controls were measured at the begin- 
ning, middle and end of each experiment. The duration 
of each experiment was approximately two hours. 
 
2.3. Data Analysis  
 
All data analysis was carried out in Matlab (The Math-
Works, Inc., Natick, MA) using in house functions. A 
number of data pre-treatments were applied to the spec-
tra, as follows: mean centering, multiplicative scatter 
correction (MSC), extended multiplicative signal correc-
tion (EMSC), 1st and 2nd derivative Savitsky-Golay (SG) 
pretreatments and standard normal variate (SNV) pre-
treatment [4]. In order to improve model robustness, 
calibration models were made using all 5 consecutive 
spectra. These models were then applied to mean of 5 
consecutive spectra in the test set. 

The EMSC model can be described as follows: 

0 1 2X b b X b I                (1) 

where X represents an observed spectrum, b0, b1 and b2 
are constants, I is the spectrum of an interferent (in prac-
tice multiple interferent terms can be included in the 
model), X  is a reference spectrum (usually the mean) 
and ε is the residual. The constant terms can be estimated 
by multiple linear regression and a corrected spectrum 
X̂  may be calculated by rearranging Equation (1):  

0 2

1 1

ˆ X b b I
X

b b 1

X
b


              (2) 

The resultant EMSC corrected spectra are orthogonal 
to those of the interferents. In our example, 1st principal 
component (PC1) spectra of the controls were used as 
interferent spectra.  
 
2.3.1. Exploratory Analysis 
Principal component analysis (PCA) [4] was used for 
exploratory analysis and to examine the wavelength 
ranges at which the experiments were most repeatable. 
 
2.3.2. Classification 
Partial least squares discriminant analysis (PLSDA) [4] 
was employed to discriminate between the solvent and 
pesticide-containing solutions. The spectra of the solvent 
were designated a dummy index of 0 while those of the 

pesticide were designated a value of 1. PLS regression 
was applied to the data and a threshold was applied to the 
subsequent PLS predictions; any predicted value above 
the threshold was designated as belonging to class 1 
while the converse were designated as belonging to class 
0. In order to avoid model overfitting, the method pro- 
posed by Gowen et al. was employed [11]. The % correct 
classification for each model on the independent test set 
was calculated. 
 
2.3.3. Predictive Modelling 
Calibration models were built to predict pesticide con-
centration using PLS regression (PLSR) [4]. In order to 
avoid model overfitting, the method proposed by Gowen 
et al. was employed [11]. After selecting the optimal 
number of latent variables for inclusion, root mean 
squared error of prediction (RMSEP) was calculated 
based on the predictive performance of the model on the 
test set. Due to the nonlinear distribution of pesticide 
concentrations, a log transformation was also applied; 
however, this did not improve the predictive ability of 
the models. Therefore only results for predictive models 
built using the original units of concentration are re-
ported here. 
 
2.3.4. Limit of Detection Calculation 
The limit of detection of the procedure was calculated 
using Equation (3) [12]: 

LoD = meanblank + 1.645SDblank + 1.645SDlow (3) 

Where the subscript blank refers to a sample not con-
taining the pesticide and low refers to a sample contain-
ing a low concentration of the pesticide. In this study, the 
spectra of the solvent were used as blank samples, while 
spectra of pesticide solutions containing 1.25 - 2.5 ppm 
were used as low samples.  
 
2.4. Safety Considerations 

Alachlor and Atrazine are hazardous materials and were 
handled under standard laboratory safety conditions.  
 
3. Results and Discussion 
 
3.1. Spectra of Pesticide Solutions 
 
The mean log(1/T) spectra of the Atrazine and Alachlor 
solutions are plotted in Figure 2. The main features of 
these spectra are major absorbance peaks at 1450, 1940 
and 2270 nm, and there a significant baseline effect is 
evident, which increases with wavelength (Figure 2(a)). 
The mean spectra of the Atrazine and Alachlor solutions 
re indistinguishable. However, when they are subtracted  a   
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Figure 2. (a) Mean (mean of 5 - 100 ppm concentration) spectra of Atrazine and Alachlor solutions; (b) main regions of dif-
ference between pesticide and solvent shown in normalised (root square difference scaled between 0 - 1) difference spectra of 
100 ppm pesticide—solvent; (c) main regions of difference between Atrazine and Alachlor shown in difference spectra of 
mean Atrazine and Alachlor spectra shown in (a); (d) main regions of difference between Atrazine and Alachlor shown by 
subtracting the spectra shown in (b).  

from each other (Figure 2(c)), it is evident that the main 
regions of difference occur around 1420 and 1900 nm. In 
order to further investigate the spectral changes occur-
ring due to the addition of Atrazine or Alachor to the 
water/methanol solvent, the average spectrum of the sol-
vent was subtracted from the average spectrum of the 
100 ppm pesticide solutions (Figure 2(b)). The root 
square of the difference spectra was scaled to the 0 - 1 
range to improve clarity and enable comparison of the 
spectral regions affected by the addition of pesticides. 
The wavelength regions most affected by the addition of 
pesticide, for both Alachor and Atrazine, occurred at 

1450, 1908, 1974 and 2274 nm. The regions around 1450 
and 1908 nm may be attributed to the first overtone and 
combination region of OH stretching and bending vibra- 
tions (for pure water, these occur within the ranges 1455 
- 1476 nm and 1875 - 1910 nm [13]), the 1974 nm region 
corresponds to the combination of NH stretching and 
bending vibrations and the 2274 nm region is probably 
due to CH combination vibrations [14]. When these 
spectra are subtracted from each other (Figure 2(d)), it is 
evident that the main regions of difference between A- 
trazine and Alachlor occur around 1420 and 1900 nm. 
These wavelength regions are related to the perturbation 
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of the OH stretching and bending combination vibrations 
in the solvent. 
 
3.2. Repeatability of Experiments  
 
In order to investigate which wavelength regions would 
be most suitable for data modeling, the data was split 
into different wavelength ranges, from 700 - 2500 nm in 
steps of 300 nm. Principal component analysis (PCA) 
was applied to the data for each day/wavelength range 
and the 1st PC loadings for each day were compared, as 
plotted in Figure 3. The root square value at each wave-
length range is shown to avoid any confusion caused by 
sign ambiguity in PC loadings. It can be observed from 
the PC1 loadings that the data from the wavelength re- 
gion < 1200 nm and greater than 1900 nm is far noisier 

than that in the regions in between these wavelengths. 
The noise evident at the spectral edges can be related to 
the performance of the detector which is generally of 
lower efficiency at those wavelength regions. However, 
these noise features also arise due to the characteristics 
of the sample: the absorbance of the solvent exceeded 2 
absorbance units at wavelengths greater than 1900 nm, 
due to the high absorption of light in this region. This 
indicates that the response of the detector is nonlinear in 
this region. It may also be observed that the Alachlor 
data showed greater repeatability (top line, Figure 3) 
than the Atrazine data (bottom line, Figure 3), especially 
in the 1300 - 1600 nm region. The wavelength region 
that appeared least noisy and most repeatable was 1300 - 
1900 nm. For this reason, subsequent analysis was car- 
ried out in the following wavelength ranges: 1300 - 1600,  

 

Figure 3. Root squared First PC loading for PCA applied to raw absorbance data from (a) high concentration Alachlor (top 
line) and Atrazine (bottom line) experiments; (b) low concentration Alachlor (top line) and Atrazine (bottom line) experi-
ments, where wavelength range is indicated above each plot. Experimental day is represented is by colour (red = day 1, blue = 

ay 2, green = day 3). d   
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1600 - 1900 and 1300 - 1900 nm. In these regions the 
most striking features in the PC1 loadings were a peak 
around 1400 nm and another at around 1900nm corre- 
sponding to OH bonds in the solvent. Similar observa- 
tions can be made for the low concentration experiments, 
shown in Figure 3(b). 
 
3.3. High Concentration Experiments 

(5 - 100 ppm) 
 
3.3.1. Discrimination of Pesticide and Solvent 
The first task of the analysis was to investigate the po-
tential for NIRS to discriminate between the solvent and 
samples of solvent containing pesticide. The data in the 
1300 - 1900 nm wavelength region were subjected to a 
range of spectral pretreatments and calibration models 
were constructed as described in Section 2.3.2. In spite 
of applying numerous spectral pretreatments to the data, 
it was found that raw log(1/T) data was optimal for dis-
crimination between pesticide solutions and solvent (Ta-
ble 1). For the Alachlor dataset, 100% correct classifica-
tion (CC) was achieved by mean centering the raw log 
(1/T) data and building the model in the 1600 - 1900 nm 
wavelength range, while for the Atrazine dataset, 85% 

correct classification (CC) was achieved by mean cen-
tering the raw log (1/T) data and building the model in 
the 1300 - 1600 nm wavelength range (although the same 
classification performance was achieved by application 
of SNV or EMSC pretreatment in the 1600 - 1900 nm 
range). 
 
3.3.2. Prediction of Pesticide Concentration 
After discriminating the samples according to the pres-
ence or absence of pesticide, the next objective was to 
predict the amount of pesticide present. For this purpose, 
PLSR was applied. The model performance in terms of 
RMSEP on the independent test set for the range of pre-
treatments tested is shown in Table 2. For the Alachlor 
dataset, the model resulting in the lowest prediction error 
(11.3 ppm) was one built on SNV pretreated and mean 
centered data in the 1300 - 1900 nm range. As for the 
Atrazine data, the best performing model (RMSEP = 
15.7) resulted from the application of second derivative 
Savitsky Golay pretreatment (SG2) to data in the 1300 - 
1600 nm wavelength range followed by mean centering. 
This is the same wavelength range that was optimal for 
the classification of Atrazine, as discussed in the previ-
ous section. The poorer performance of prediction mod-  

Table 1. Discrimination of pesticide and solvent for “High concentration” (5 - 100 ppm) experiments, where % CC represents 
the percentage correct classification of the independent test set and nlv the number of latent variables used in the PLS-DA 
model. 

  1300 - 1600 nm 1600 - 1900 nm 1300 - 1900 nm 

Pesticide Pretreatment nlv % CC nlv % CC nlv % CC 

Alachlor Raw 10 53.3 11 66.7 10 60 

 Raw mn 9 73.3 9 100 9 60 

 SNV 10 53.3 10 60 9 60 

 SNV mn 9 53.3 9 73.3 8 66.7 

 SG1 10 53.3 11 60 11 93.3 

 SG1 mn 9 73.3 11 93.3 10 93.3 

 SG2 9 60 11 73.3 11 66.7 

 SG2 mn 9 80 12 93.3 10 93.3 

 EMSC 10 73.3 9 93.3 9 80 

 EMSC mn 10 73.3 9 86.7 8 86.7 

Atrazine Raw 9 80 9 75 11 60 

 Raw mn 9 85 9 70 11 60 

 SNV 8 80 9 85 10 65 

 SNV mn 8 80 10 60 9 60 

 SG1 9 80 12 60 11 70 

 SG1 mn 8 75 11 55 11 75 

 SG2 8 80 11 85 10 75 

 SG2 mn 8 80 11 65 10 65 

 EMSC 9 70 9 70 10 75 

 EMSC mn 8 70 9 85 10 75 
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Table 2. Prediction of pesticide concentration for high concentration (5 - 100 ppm) experiments, where RMSEP represents 
the root mean squared error of prediction of the independent test set and nlv the number of latent variables used in the PLSR 
model. 

  1300 - 1600 nm 1600 - 1900 nm 1300 - 1900 nm 

Pesticide Pretreatment nlv RMSEP nlv RMSEP nlv RMSEP 

Alachlor Raw 8 76.5 9 39.4 8 18.6 

 Raw mn 6 58.3 8 32.7 6 23.5 

 SNV 9 42.9 8 51 7 15.2 

 SNV mn 9 68.8 10 30.8 6 11.3 

 SG1 10 55.4 9 33.6 11 11.7 

 SG1 mn 7 85.9 8 43.8 7 63.1 

 SG2 9 69.4 10 39.5 8 45.7 

 SG2 mn 8 38.7 9 37.6 8 62.5 

 EMSC 8 380.9 9 53 7 84 

 EMSC mn 7 413.9 8 31.9 6 76.3 

Atrazine Raw 8 19.4 9 31.7 9 36.2 

 Raw mn 9 21.9 10 33.6 9 33.3 

 SNV 8 22.9 9 24.7 8 27 

 SNV mn 8 22.9 9 29.3 8 26.8 

 SG1 8 21.9 12 26.3 10 20 

 SG1 mn 8 18.3 12 27.1 11 18.5 

 SG2 7 16.1 11 33.5 9 20.7 

 SG2 mn 8 15.7 11 35.5 9 17.4 

 EMSC 9 318.8 9 125.7 9 421.4 

 EMSC mn 9 291.1 9 126.1 9 634.9 

 
els for Atrazine as compared to Alachlor—or both clas- 
sification (see previous section) and quantification—is 
remarkable. This may be related to the lower repeatabil-
ity of the AT data, as observed in the PC loading plots 
(Figure 1). 
 
3.4. Low Concentration Experiments  

(1.25 - 20 ppm) 
 
3.4.1. Discrimination of Pesticide and Solvent 
Analysis of the high concentration experiments revealed 
that RMSEP values of 10 - 15 ppm could be obtained, 
indicating the feasibility of the proposed method. Sub-
sequent experiments were carried out to examine the 
potential of NIRS for detection of pesticides in lower 
concentrations. Similar to the results for the high con-
centration dataset, the best results for discrimination be-
tween pesticide and solvent was achieved using raw log 
(1/T) data (Table 3). 100% correct classification was 
achieved for the Alachlor dataset with a model built on 
mean centered log(1/T) data in the 1300 - 1900 nm 
wavelength range. Models built on the 1600 - 1900 nm 
range, which was the optimal range for the high concen-
tration Alachlor experiment, performed poorly in this 

case, achieving not greater than 71% correct classifica-
tion. This indicates that different mechanisms underlie 
the classification model for high and low concentration 
datasets and that the first overtone of the OH stretching 
and bending vibrations (1300 - 1600 nm) is important for 
the prediction of lower concentrations of pesticides. The 
best model for the Atrazine dataset was achieved for 
mean centered log(1/T) data in the 1300 - 1600 nm range, 
with a classification accuracy of 83.3% attainable. In the 
case of Atrazine, the 1300 - 1600 nm wavelength region 
was optimal for discrimination between pesticide-con- 
taining solutions and solvent for both high and low con-
centration datasets. 
 
3.4.2. Prediction of Pesticide Concentration  
The optimal calibration model for the prediction of A-
lachlor concentration was built on EMSC pretreated data 
in the 1300 - 1600 nm wavelength range, resulting in an 
RMSEP of 4.4 ppm, while that for Atrazine was built on 
EMSC pretreated data in the wavelength range 1300 - 
1900 nm, resulting in an RMSEP of 15 ppm (Table 4). 
These low prediction errors indicate the potential of 
NIRS for prediction of low concentration of pesticide in 
queous solution. In order to examine the potential of  a   
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Table 3. Discrimination of pesticide and solvent for low concentration (1.25 - 20 ppm) experiments, where % CC represents 
the percentage correct classification of the independent test set and nlv the number of latent variables used in the PLS-DA 
model. 

  1300 - 1600 nm 1600 - 1900 nm 1300 - 1900 nm 

Pesticide Pretreatment nlv CC nlv CC nlv CC 

Alachlor Raw 10 70.6 13 58.8 11 94.1 

 Raw mn 9 70.6 14 70.6 11 100 

 SNV 9 70.6 13 64.7 10 88.2 

 SNV mn 8 70.6 12 70.6 10 100 

 SG1 10 70.6 11 64.7 11 76.5 

 SG1 mn 9 70.6 12 64.7 11 88.2 

 SG2 10 70.6 12 58.8 10 64.7 

 SG2 mn 10 76.5 11 58.8 9 64.7 

 EMSC 10 58.8 13 64.7 8 58.8 

 EMSC mn 9 64.7 10 52.9 8 58.8 

Atrazine Raw 9 72.2 9 72.2 10 72.2 

 Raw mn 9 83.3 9 72.2 10 72.2 

 SNV 9 61.1 10 61.1 10 66.7 

 SNV mn 9 61.1 11 66.7 9 66.7 

 SG1 9 61.1 11 66.7 11 66.7 

 SG1 mn 10 66.7 11 61.1 11 66.7 

 SG2 10 66.7 11 66.7 10 66.7 

 SG2 mn 10 66.7 11 61.1 10 66.7 

 EMSC 9 55.6 8 55.6 9 55.6 

 EMSC mn 9 50 7 61.1 9 66.7 

 
NIRS for detection of pesticides in aqueous solution for a 
wider range of concentrations, it was necessary to com-
bine the high and low concentration datasets and to build 
models to predict the range of concentrations tested. This 
is the topic of the following sections.  
 
3.5. Combined Data (1.25 - 100 ppm) 
 
3.5.1. Discrimination of Pesticide and Solvent 
In order to test the feasibility of the method for a wider 
range of concentrations, the high (5 - 100 ppm), low 
(1.25 - 20 ppm) and intermediate (1.25 - 50 ppm) con-
centration data were combined (Table 5). The maximum 
achievable classification accuracy for the Alachlor data-
set was 78.8%, achieved by a model built on mean cen-
tered EMSC pretreated data, while that for Atrazine was 
72.4%, achieved by a model built on mean centered SG1 
data. Again, the Alachlor samples were better classified 
than the Atrazine ones. For both of the pesticides, the 
1600 - 1900 region was optimal for classification. The 
sensitivity of the best model was 0.87 for Alachlor and 
0.76 for Atrazine, while the specificity was 0.76 for 
Alachlor and 0.59 for Atrazine. 
 
3.5.2. Prediction of Pesticide Concentration 
When prediction models were built on the combined data, 

the best performing model for prediction of Alachlor 
concentration was found for mean centered SG1 pre-
treated data in the 1300 - 1900 nm range, with an RMSEP 
of 6.4 ppm achieved, while the best performing model 
for prediction of pesticide concentration in the Atrazine 
experiments was one built on SNV mean centered data in 
the 1300 - 1600 nm range, with an RMSEP of 16.6 ppm 
achieved (Table 6). The limit of detection (LOD) achie- 
vable by the best model for Alachlor and Atrazine pre-
diction was calculated as 12.6 ppm for Alachlor and 46.4 
ppm for Atrazine. These LODs are comparable to those 
reported for the detection of metal contamination in 
aqueous samples using NIR transmission spectroscopy 
(reported as being in the range 10 - 40 ppm) [5], and are 
an order of magnitude higher than those reported for 
methods employing polymer enrichment combined with 
FT-IR spectroscopy in the wavelength range 4 - 16 μm 
(approx 2 ppm) [3]. 
 
4. Conclusions 
 
The potential of NIRS for detection of pesticides in 
aqueous solutions was examined using Alachlor and 
Atrazine as test analytes. Calibration models indicated 
that the 1300 - 1900 nm wavelength range, including the  
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Table 4. Prediction of pesticide concentration for low concentration (1.25 - 20 ppm) experiments, where RMSEP represents 
the root mean squared error of prediction of the independent test set and nlv the number of latent variables used in the PLSR 
model. 

  1300 - 1600 nm 1600 - 1900 nm 1300 - 1900 nm 

Pesticide Pretreatment nlv RMSEP nlv RMSEP nlv RMSEP 

Alachlor Raw 5 11.6 8 14.2 7 15 

 Raw mn 5 11.6 7 13.9 6 14.4 

 SNV 4 11.5 7 13.3 6 13.8 

 SNV mn 4 13.9 6 13.4 5 14.3 

 SG1 6 13.4 9 14.7 6 14.9 

 SG1 mn 5 13.2 9 14.3 6 14.5 

 SG2 6 12.6 7 12.3 7 14.6 

 SG2 mn 6 13.6 7 13 6 14.5 

 EMSC 6 4.4 7 17.4 7 30.5 

 EMSC mn 7 12.7 8 15.8 8 18.2 

Atrazine Raw 8 19.8 8 20.2 9 19.6 

 Raw mn 8 26.6 10 23.4 9 22.8 

 SNV 7 20.3 8 19.4 8 21.9 

 SNV mn 7 21.6 8 19.7 8 21.2 

 SG1 9 22.2 11 21.7 10 21.5 

 SG1 mn 9 30.4 11 24.8 9 30.6 

 SG2 8 21.3 11 21.2 10 21.6 

 SG2 mn 8 24 10 23.4 9 29.5 

 EMSC 8 18.9 9 58.6 7 15 

 EMSC mn 9 26.8 9 37.5 10 26.4 

 
Table 5. Discrimination of pesticide and solvent for com-
bined data (1.25 - 100 ppm), where % CC represents the 
percentage correct classification of the independent test set 
and nlv the number of latent variables used in the PLS-DA 
model. 

  1300 - 1600 1600 - 1900 1300 - 1900
Pesticide  nlv % CC nlv % CC nlv % CC
Alachlor Raw 12 59.6 12 57.7 10 59.6 

 Raw mn 12 59.6 12 67.3 9 65.4 
 SNV 12 57.7 12 61.5 9 61.5 
 SNV mn 11 55.8 11 61.5 8 61.5 
 SG1 11 59.6 12 51.9 11 65.4 
 SG1 mn 11 61.5 11 63.5 10 75 
 SG2 11 53.8 13 53.8 12 63.5 
 SG2 mn 10 57.7 12 63.5 11 71.2 
 EMSC 12 55.8 11 59.6 11 50 
 EMSC mn 11 57.7 11 78.8 10 51.9 

Atrazine Raw 9 69 11 70.7 11 65.5 
 Raw mn 9 67.2 12 70.7 11 65.5 
 SNV 9 62.1 11 69 10 69 
 SNV mn 9 67.2 11 70.7 11 67.2 
 SG1 10 60.3 12 70.7 12 63.8 
 SG1 mn 10 62.1 12 72.4 12 62.1 
 SG2 10 63.8 11 62.1 11 67.2 
 SG2 mn 9 62.1 11 62.1 11 67.2 
 EMSC 10 63.8 13 55.2 12 53.4 
 EMSC mn 10 67.2 12 51.7 11 58.6 

Table 6. Prediction of pesticide concentration for combined 
data (1.25 - 100 ppm), where RMSEP represents the root 
mean squared error of prediction of the independent test 
set and nlv the number of latent variables used in the PLSR 
model. 

  1300 - 1600 1600 - 1900 1300 - 1900
Pesticide  nlv RMSEP nlv RMSEP nlv RMSEP
Alachlor Raw 10 23.5 10 19.5 10 32.8 

 Raw mn 10 23.4 10 17.6 9 28.1 
 SNV 10 25.8 12 27.2 9 44.9 
 SNV mn 10 25.7 11 27.3 8 45 
 SG1 10 23.1 11 21.1 11 18.8 
 SG1 mn 11 23.4 11 12.5 11 6.4 
 SG2 9 26.9 10 23.5 12 19 
 SG2 mn 10 25.9 9 22.6 12 15.7 
 EMSC 11 74.2 10 15.6 10 59.7 
 EMSC mn 10 82.6 10 15.5 9 57.2 

Atrazine Raw 9 21.9 10 29.3 9 22.7 
 Raw mn 9 25.3 9 26.9 9 18.8 
 SNV 8 21.1 9 22.3 9 20.7 
 SNV mn 8 16.6 8 24 8 20 
 SG1 9 24.7 11 18.9 11 21 
 SG1 mn 9 24.1 10 19.3 11 18.2 
 SG2 8 22 11 27 10 27 
 SG2 mn 9 23.9 11 23.4 10 17.9 
 EMSC 9 49.3 9 36.5 10 61.3 
 EMSC mn 9 57.5 9 37 11 94.3 
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first overtone of the OH stretching and bending modes of 
the solvent was important for their identification and 
quantification. The proposed method shows potential for 
direct measurement of low concentrations of pesticides 
in aqueous solution. However, the limits of detection 
achieved by analysis of combined low and high concen-
tration experiments (12.6 ppm for Alachlor and 46.4 ppm 
for Atrazine) are high compared with the maximum con-
taminant level of each allowed under the SDWA (2 and 3 
ppb), respectively. It is also important to note that these 
experiments were carried under artificial laboratory con-
ditions. It is well known that the NIR spectrum of aque-
ous samples is susceptible to changes in the environment 
(e.g. temperature, humidity) and sample (e.g. pH, turbid-
ity). Therefore, further experiments to test the effect of 
such perturbations on predictive ability should be carried 
out. 
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