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Abstract 
Collapse is a geological disaster second only to landslides and occurs in large 
numbers every year in the northern foothills of the Tianshan Mountains in 
Xinjiang, China. We collected a variety of data such as topography, geological 
vegetation coverage, and human activities, and used spatial correlation analy-
sis to eliminate factors with strong correlations. The frequency of collapse was 
calculated by the frequency ratio method and a hierarchical map was made. 
The result shows, in low susceptibility zone (LSI = 0 - 4), only 3 collapses 
happened, and 0.39% of total collapses. In middle susceptibility zone (LSI = 4 
- 7.5), 35 collapses happened, and 5.66% of total collapses. In high suscepti-
bility zone (LSI = 7.5 - 10), 64 collapses happened, and 10.36% of total col-
lapses. In extremely high susceptibility zone (LSI = 10 - 14), 516 collapses 
happened, and 83.5% of total collapses. Using the GIS-based frequency me-
thod, the susceptibility to collapse was calculated and mapped, which was in 
good agreement with the actual landslide data. Collapse susceptibility results 
provide guidance for engineering construction. 
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1. Introduction 

In 2021, a total of 4727 geological disasters will occur in China, causing 70 deaths 
and direct economic losses of 3,158,050,100 yuan RMB. In terms of disaster types, 
there were 2320 landslides, 1733 collapses, 369 debris flows, 274 ground subsi-
dence, 21 ground fissures, and 10 ground subsidence, with collapse accounting 
for 36.7% of the total (data from Ministry of Natural Resources of the People’s 
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Republic of China, http://www.mnr.gov.cn/). The bedrock on the northern slope 
of the Tianshan Mountains is exposed, and faults and structural joints are de-
veloped, forming the basic conditions for collapse. The temperature difference 
between day and night is large, and the precipitation infiltrates along the joints 
and fissures, causing the rocks to freeze and crack into blocks. It is an area prone 
to collapse disasters. 

Evaluating the susceptibility of geological hazards and setting up warning areas 
are important tasks to reduce losses. There have been many studies carried out 
evaluation of collapse susceptibility using GIS with the assessment model such as 
statistical model (Van Den Eeckhaut M., et al., 2012; He Shuangshuang et al., 2019), 
artificial neural network (Poudyal C.P. et al., 2010; Polykretis et al., 2018; Bragag-
nolo L. et al., 2020), support vector machine (Li Y. et al., 2020), random forest 
model (Shi Hui et al., 2021), machine learning (Huang F. et al., 2020), logistic re-
gression model (Xu Xianghua, 2010; Fang Miao et al., 2011; Xing X.F. et al., 2021). 

In the study, the frequency ratio model (Lee et al., 2006; Li Langping et al., 
2017; Li Wenyan, 2020) was used to evaluate the collapse susceptibility in the 
northern foot of the Tianshan Mountains. The frequency ratio (FR) model is a 
well accepted and popular quantitative approach for the preparation of collapse 
susceptibility maps (Lee & Talib, 2005; Intarawichian et al., 2011). Most of the 
work was done using ArcGIS software, which was used for spatial process and 
mapping. Python with ArcPy module and Hydrological tools intergraded in Arc-
GIS finished data batching process and Watershed Hydrological Analysis. 

2. Materials  
2.1. Description of Study Area 

The study area is located in the northern part of the Tianshan Mountains, in-
cluding Changji City, Hutubi County, Manas County, and Wusu City. The geo-
graphic coordinates are between 84˚18' - 87˚18' longitude and 43˚18' - 44˚12' la-
titude (Figure 1), and the study area covers 3660.9 km2. 

The study area is located at the northern foot of Xinjiang and the southern 
margin of the Junggar Basin. The terrain is generally high in the south and low 
in the north, high in the east and low in the west, and slopes from southeast to 
northwest. The south is the middle and high mountains, which is about 4000 - 
5000 m, and the highest peak, Heyuan Peak, is 5289 m; the northern part is a 
desert area, with an altitude of about 370 - 500 m. The northwestern part is a 
fine soil plain and the edge of the desert, and the lowest point is 280 m. It is a 
typical continental arid and semi-arid climate, with an average annual tempera-
ture of 6.8˚C. The average temperature in July is 24˚C - 28˚C, and the average 
temperature in January is −10˚C - 20˚C. The average annual precipitation is 167.2 
- 220 mm, and the average annual evaporation is about 400 - 1088.2 mm. 

There are a total of 618 collapse points in the study area, and the collapse is 
mainly distributed in the low mountain area where erosion and denudation are in-
volved and the middle mountain area where the fault block rises and is moderately  
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Figure 1. Location of study area. 
 

cut. In addition, in the upper reaches of the Bayingou River Basin, the Bayingou 
river Pasture in Wusu City and the middle and upper reaches of the Kuitun Riv-
er Basin are densely distributed along the Duku highway. Rock collapse mainly 
threatens the surrounding township residents, livestock, township roads, No.101 
provincial highway, water conservancy facilities, etc. 

2.2. Data and Method 
2.2.1. Data 
The factors that affect the collapse include terrain slope, including slope, aspect, 
and relief, and geological factors include lithology, faults, vegetation coverage, 
and human activities. In this paper, we collect data related to collapses (Table 1). 

The collapse disaster point data comes from the document data of the field 
survey. Terrain data from USGS SRTM (Tom G. Farr et al., 2007). Slope, aspect, 
water system and relief maps were data is derived from SRTM DEM. lithology 
and fault map were from Regional Geological Survey Map of 1:50,000. Road map 
is from Gaode digital Map (2020). Landuse data is from database of China 2nd 
National Land and Resources Survey (2018). Vegetation index is calculated from 
Landsat 8 remote sensing data of 2020. 

The following factors are formed: slope, aspect, relief, distance to drainage 
network, drainage network density, lithology, distance to fault, vegetation cov-
erage, landuse, distance to road. All the data were processed in ArcGIS 10.1. 

2.2.2. Correlation Analysis 
In order to judge the correlation between the disaster-pregnant factors, the cor-
relation coefficient (Corrij) can be used to represent the correlation between the 
two. The formula is as follows: 
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Table 1. Data of study area. 

Classification scale Data type Data source 

Collapse hazard 1:10,000 Point Field Survey 

Topological map 30 m GRID SRTM 

Slope map 30 m GRID From SRTM 

Aspect map 30 m GRID From SRTM 

Water system map  line From SRTM 

Terrain relief  GRID From SRTM 

Fault map 1:50,000 line from geological map 

lithology 1:50,000 polygon from geological map 

Land use map 1:10,000 polygon 
China 2nd National Land 

and Resources Survey (2018) 

Road map 1:50,000 Line Gaode digital Map(2020) 

Vegetation Index 30 m GRID From landsat NDVI (2020) 

 

ij
ij

i j

Cov
Corr =

δ δ
                         (1) 

1( )( )
1

ik i jk jk
ij

N Z u Z u
Cov

N
=

− −
=

−
∑                  (2) 

where, Covij , covariance matrix, are the covariances between all pairs of factors, 
Z, value of a cell, I, j are factors, μ is the mean of factors; N is the number of cells, 
k denotes a particular cell. δ is standard deviation of factors i and j. 

The value of C ranges from −1 to 1. C = 1 means that the two raster images 
are completely correlated, and C = 0 means that the two raster images have no 
correlation. C = −1 means that the two raster images are negatively correlated. 

2.2.3. Frequency Ratio Method 
The formation of geological disasters is affected by a variety of factors, and the 
frequency ratio method reflects the combination of the most hazard-prone fac-
tors and their subdivisions in a certain geological environment; specifically, the 
frequency and region of geological disasters under the action of a certain factor 
in a specific evaluation unit. The frequency of geological disasters can be com-
pared. Corresponding to a certain factor, the information quantity formula of 
geological disasters under a specific state can be expressed as: 

Fri i

i

N N
S S

=                           (3) 

where, Fri is the frequency of rock collapse corresponding to a specific factor in i 
domain, Ni is the rock collapse area or the number of collapse points corres-
ponding to specific factors in i domain, Si is the distribution area corresponding 
to a specific factor in i internal, N is the total collapse area or the total number of 
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collapse points in the survey area, S is the total area of the survey area. 
Since each evaluation unit is affected by many factors, and each factor has 

several states (domain), the total frequency of collapse under the combined con-
ditions of each state factor can be determined by the following formula: 

LSI
i

n i
i

N N
S S

= ∑                         (4) 

LSI is the total frequency of collapse under various factors in a specific unit, 
indicating the possibility of collapse, which can be used as a collapse susceptibil-
ity index. 

According to the calculated LSI value interval and the actual situation of the 
collapse, the collapse susceptibility of the study area is divided into four grades: 
extremely high, high, medium and low. 

3. Results 
3.1. Correlation Coefficient 

In ArcGIS, the rock collapse-pregnant factor layers are grouped into stacks (ma-
kestack command), and then the correlation coefficient between layers is calcu-
lated (stackstats command). The correlation coefficient matrix of disaster-pregnant 
factors is obtained (Table 2). The data shows that the correlation between slope 
and terrain fluctuation is very high, and the correlation coefficient c = 0.8858. 
Therefore, one of the two should be eliminated, and we will eliminate the fluctu-
ation factor. The correlation between the remaining factors is very low, and the 
largest correlation coefficient (c) is the distance between the road and the water 
system, c = 0.02438. 

Through correlation analysis, the disaster-pregnant factors are determined as 
 

Table 2. The relation of rock collapse-pregnant factors. 

 
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 1 0.0104 0.8858 0.0378 −0.1221 −0.1445 −0.0439 −0.0062 −0.0107 −0.0157 

X2 
 

1 0.0434 0.0052 0.1234 0.0457 −0.0429 −0.0443 0.1674 0.1196 

X3 
  

1 −0.0330 −0.1521 −0.1767 −0.0477 −0.0537 −0.0344 −0.0314 

X4 
   

1 −0.1217 −0.0400 −0.1468 0.1636 0.0321 0.2438 

X5 
    

1 0.1635 −0.0479 −0.0649 0.1742 −0.0274 

X6 
     

1 0.2210 −0.1298 −0.0810 0.0829 

X7 
      

1 0.0734 −0.3143 −0.0987 

X8 
       

1 −0.2318 0.0640 

X9 
        

1 −0.0970 

X10 
         

1 

Note: X1) slope, X2) aspect, X3) relief, X4) distance to drainage, X5) drainage density, 
X6) lithology, X7) distance to fault, X8) vegetation coverage, X9) landuse, distance to 
road. 
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9 factors including slope, slope aspect, fault distance, engineering rock forma-
tion, water system distance, water system density, vegetation coverage, land use 
type, and road distance. And use these factors as the impact factors of collapse 
susceptibility evaluation. 

3.2. Calculate the Collapse Frequency Ratio of Each Factor 

The statistical analysis of the collapse frequency of each factor (Table 3) shows  
 

Table 3. Frequency ratio—spatial relationship between collapse and related factors. 

Factor Class 
No of pixels  
in domain 

% of  
domain 

No of  
collapse 

% of  
collapse 

Frequency  
ratio 

slope 0˚ - 7˚ 1,073,644 0.26 80 0.13 0.51 

 8˚ - 15˚ 1,198,235 0.29 165 0.27 0.94 

 16˚ - 25˚ 1,003,687 0.24 189 0.31 1.29 

 26˚ - 35˚ 584,757 0.14 109 0.18 1.28 

 >35˚ 342,937 0.08 70 0.11 1.40 

aspect flat 32,863 0.01 3 0.00 0.63 

 N 642,052 0.15 67 0.11 0.72 

 NE 692,751 0.16 60 0.10 0.59 

 E 622,710 0.15 82 0.13 0.90 

 SE 420,737 0.10 105 0.17 1.71 

 S 291,204 0.07 79 0.13 1.86 

 SW 343,071 0.08 64 0.10 1.28 

 W 496,177 0.12 73 0.12 1.01 

 NW 661,695 0.16 80 0.13 0.83 

Rock formation γ 6633 0.00 1 0.00 1.03 

P 148,296 0.04 9 0.01 0.42 

 D 125,551 0.03 17 0.03 0.93 

 C 525,137 0.13 87 0.14 1.13 

 T 37,800 0.01 4 0.01 0.72 

 J 1,437,427 0.34 310 0.51 1.48 

 K 337,300 0.08 38 0.06 0.77 

 E-N 407,080 0.10 16 0.03 0.27 

 Q3pl-Q1 944,836 0.22 69 0.11 0.50 

 Q4 229,234 0.05 62 0.10 1.85 

Distance to fault 0 - 1500 1,706,529 0.41 262 0.43 1.05 

1500 - 3000 969,084 0.23 164 0.27 1.16 

 3000 - 4500 576,434 0.14 90 0.15 1.07 
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Continued 

 4500 - 6000 314,183 0.07 40 0.07 0.87 

 >6000 637,030 0.15 57 0.09 0.61 

Distance to  
drainage 

0 - 400 1,347,761 0.32 462 0.75 2.35 

400 - 800 1,057,751 0.25 61 0.10 0.40 

800 - 1200 770,110 0.18 38 0.06 0.34 

1200 - 1600 493,007 0.12 26 0.04 0.36 

 1600 - 2000 298,034 0.07 19 0.03 0.44 

 2000 - 2400 152,031 0.04 1 0.00 0.05 

 > 2400 83,953 0.02 6 0.01 0.49 

 <0.9 340,394 0.08 28 0.05 0.56 

Drainage density 0.9 - 1.1 1,467,727 0.35 303 0.49 1.42 

1.1 - 1.3 1,622,182 0.39 220 0.36 0.93 

1.3 - 1.5 535,987 0.13 51 0.08 0.65 

Vegetation  
coverage 

>1.5 236,970 0.06 11 0.02 0.32 

0 - 10 52,106 0.01 18 0.03 2.37 

10 - 20 204,481 0.05 134 0.22 4.49 

20 - 50 1,342,133 0.32 250 0.41 1.28 

 50 - 75 1,256,607 0.30 129 0.21 0.70 

 75 - 100 1,347,933 0.32 82 0.13 0.42 

landuse farmland 76,034 0.02 0 0.00 0.00 

 forest 465,553 0.11 45 0.08 0.68 

 grass 715,834 0.17 125 0.21 1.23 

 water 50,268 0.01 0 0.00 0.00 

 reservoir 9289 0.00 0 0.00 0.00 

 tidal flat 30,096 0.01 15 0.03 3.52 

 snow 8361 0.00 0 0.00 0.00 

 buildup 24,498 0.01 13 0.02 3.75 

 bare soil 1,402,056 0.33 90 0.15 0.45 

 gravel 138,930 0.03 45 0.08 2.29 

 rock 1,278,393 0.30 262 0.44 1.45 

Distance to road 0 - 500 1,244,095 0.30 488 0.80 2.69 

500 - 1000 993,747 0.24 37 0.06 0.26 

 1000 - 1500 750,692 0.18 28 0.05 0.26 

 1500 - 2000 511,891 0.12 25 0.04 0.33 

 2000 - 2500 322,199 0.08 13 0.02 0.28 

 >2500 380,636 0.09 22 0.04 0.40 
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that the slope of collapse is also concentrated between 7˚ and 15˚, with a total of 
354 places, accounting for 57.75% of the total number of collapses, while the 
slope aspect does not affect the distribution of collapses, relatively uniform in all 
directions. The closer the collapse is to the fault, the greater the number of oc-
currences, with 42.74% occurring within 1500 m. The influence of lithology on 
the collapse is obvious, and 50% is concentrated in the layered hard conglome-
rate, sandstone, shale and coal rock areas. The distance between the water sys-
tem and the collapse has a linear relationship. The closer to the water system, the 
easier it is to collapse. Collapses are more likely to occur in areas with vegetation 
coverage of 20% - 50%, accounting for 40.78% of the total number of collapses. 
The influence of the distance to the water system on the collapse is very obvious. 
There are 462 collapses within 400 m. The farther the distance is, the smaller the 
probability of occurrence is. There is no obvious correlation between the influ-
ence of the water system density on the collapse. Among the collapse types, 
grassland and tidal flats have a significant impact on landslides. The influence of 
tidal flats on collapse is closely related to the water system. 

Using the frequency ratio (Table 3) and Equation (4), the LSI values were 
computed. The LSI values were reclassified to 4 grades by 7.5, 10, 13 (Figure 2). 
The LSI value is high, there is a higher susceptibility to collapses; a lower value 
indicates a lower susceptibility to collapses. low susceptibility zone (LSI = 4 - 
7.5), covering area 584.04 km2, only 3 collapses happened, and 0.39% of total 
collapses. Middle susceptibility zone (LSI = 7.5 - 10), covering area 1241.15 km2, 
35 collapses happened, and 5.66% of total collapses. High susceptibility zone 
(LSI = 10 - 13), covering area 751.95 km2, 64 collapses happened, and 10.36% of 
total collapses. Extremely high susceptibility zone (LSI = 13 - 22), covering area 
1206.34 km2, 516 collapses happened, and 83.5% of total collapses. 

 

 
Figure 2. Collapse susceptibility index LSI spatial distribution map. 
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4. Discussion and Conclusion 

Collapse is a geological disaster second only to landslides and occurs in large 
numbers every year. Using the GIS-based frequency method, the susceptibility to 
collapse was calculated and mapped, which was in good agreement with the ac-
tual landslide data. Collapse susceptibility results provide guidance for engineer-
ing construction. 

In the evaluation process, the main problem encountered is that the scales of 
the collected data are different and come from different departments. How much 
will affect the final result, a correlation study is needed. 
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