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Abstract 
The purpose of this paper is to consider 1D Riemann shock tube to investi-
gate the formation and propagation of compression waves leading to formation, 
propagation and reflection of 1D normal shocks using simplified mathemati-
cal models commonly used in the published work as well as using complete 
mathematical models based on Conservation and Balance Laws (CBL) of clas-
sical continuum mechanics and constitutive theories for compressible viscous 
medium derived using entropy inequality and representation theorem. This work 
is aimed at resolving compression waves, the shock structure, shock formation, 
propagation and reflection of fully formed shocks. Evolutions obtained from 
the mathematical models always satisfy differentiability requirements in space 
and time dictated by the highest order of the derivatives of the dependent va- 
riables in the mathematical models investigated. All solutions reported in 
this paper including boundary conditions and initial conditions are always 
analytic. Solutions of the mathematical models are obtained using the space- 
time finite element method in which the space-time integral forms are space- 
time variationally consistent ensuring unconditionally stable computations 
during the entire evolution. Solution for a space-time strip or slab is calculat-
ed and is time marched upon convergence to obtain complete evolution for 
the desired space-time domain, thus ensuring time accurate evolutions. The 
space-time local approximation over a space-time element of a space-time 
strip or slab is p-version hierarchical with higher-order global differentiability 

in space and time, i.e., we consider ( ),k p e
xtH Ω  scalar product approxima-

tion spaces in which ( )1 2,k k k=  are the order of the space in space and time 

and ( )1 2,p p p=  are p-levels of the approximations in space and time. Model 
problem studies are presented for different mathematical models and are com-
pared with solutions obtained from the complete mathematical model based 
on CBL and constitutive theories for viscous compressible medium to illustrate 
the deficiencies and shortcomings of the simplified and approximate models 
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in simulating correct physics of normal shocks. 
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1. Introduction, Literature Review and Scope of Work 

The study of 1D normal shocks in Riemann shock tube has been a subject of 
study and investigation for a long time. In published works, there are two fun-
damentally different prevailing approaches employed in the study of 1D normal 
shocks in Riemann shock tube. In the first approach, the medium (a gas, gener-
ally air) is assumed inviscid. With this assumption, the mathematical model for 
1D case reduces to a system of partial differential equations in space and time 
that can admit Heaviside function as a possible solution state for the shock. Such 
solutions are referred to as delta shock waves. The 1D normal shock investiga-
tions reported by mathematicians are primarily focused on delta shocks. In the 
second approach, we consider the medium to be viscous. In these mathematical 
models, the physics of compression of the medium is quite complex. For exam-
ple, total deformation physics consists of volumetric and distortional deformation 
which requires decomposition of Cauchy stress tensor into equilibrium and devia- 
toric stress tensors. The constitutive theory for equilibrium stress tensor describes 
volumetric deformation physics and the distortional deformation physics is de-
scribed by the constitutive theory for deviatoric Cauchy stress tensor. The con-
stitutive theory for the equilibrium stress tensor is well-known equation of state 
for thermodynamic pressure that depends on density and temperature while the 
deviatoric stress tensor depends on the symmetric part of the velocity gradient ten-
sor. The rate of entropy production physics is essential to describe correct and 
physical shock structure and shock evolution which only exists when the medi-
um is viscous. This clearly points out the hypothetical and nonphysical nature of 
the mathematical models and associated solutions for the inviscid case. We remark 
that a fluent continuum cannot be inviscid as viscosity is essential for the fluid to 
exist. In the absence of viscosity, we merely have a volume containing discrete 
particles. 

In the following sections, we present a literature review and the scope of the 
present work. The mathematical models for shock wave studies are too complex 
for analytical solutions, thus methods of approximation are often used to obtain 
their solutions. Choice of the method reported in the published works depends 
upon the outcome of interest: 1) Shock capturing or shock fitting methods aimed 
at obtaining shock relations without paying attention to shock structure and shock 
evolution. 2) Artificial viscosity methods in which the actual viscosity is increased 
to avoid actual small shock widths. These methods can give shock relations but 
shock structure and shock evolutions become nonphysical. 3) The third group of 
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methods is aimed at the study of true shock structure, shock evolution, propaga-
tion and reflection. Such methods use actual values of fluid properties and are aimed 
at resolving shock structure in which the shock width is of the order of viscosity. 
Such methods are excellent in understanding and resolving shock physics but are 
naturally prohibitive for large spatial domains. 

A good literature review and discussion of various approaches, their merits 
and shortcomings can be found in references [1] [2] [3] [4] [5]. We discuss some 
published work in the following that is perhaps foundational for works described 
in [1] [2] [3] [4] [5]. Rayleigh [6] and Taylor [7] used thermodynamic considera-
tions to show that dissipation, by necessity, is present in shock waves. Neumann 
and Richtmyer [8] used artificial viscosity to obtain 1D shock thickness compa-
rable to finite difference discretization and presented stability studies based on 
CFL number [9]. Cole [10] and Lax [11] [12] presented studies similar to [8]. In the- 
se studies, for the most part, the goal was to match numerical solutions with Ran- 
kine-Hugoniot solution. 

The idea of generalized solutions of partial differential equations first proposed 
by S.L. Sobolev constitutes the mathematical backbone of the finite element method. 
Godunov [13] discussed the problem of generalized solutions of quasilinear equa-
tions in gas dynamics. A rigorous mathematical discussion of the solutions of quasi- 
linear hyperbolic equations is presented by Rozhdestvenskii [14]. Discussion of 
various aspects and the solutions of nonlinear hyperbolic systems, quasilinear 
equations, nonlinear conservation laws, a single conservation law, hyperbolic 
conservation laws and Riemann problem for hyperbolic systems of two conser-
vation laws can be found in references [15]-[24]. Noh [25] and Menikoff [26] 
reported errors introduced in the calculation of strong shocks using artificial vis-
cosity of the type [6]. Surana et al. [1] presented details of compression waves, 
shock formation, propagation and reflection for 1D Riemann shock tube for 
viscous, compressible gas and correlation with experimental results of reference 
[27].  

1.1. Motivation for Present Work  

The first author came across a recently published paper by Sen, Sekhar, Zeidan 
[28] in Sadhana, Indian academy of sciences. After going through the paper it 
was rather straight forward to realize three major issues in the work of reference 
[28] and many other similar works.  

1) The mathematical models used in the studies do not describe the shock physics 
correctly. That is the mathematical models generally are in violation of conser-
vation and balance laws, constitutive theories and shock physics.  

2) Insistence (especially by mathematicians) on obtaining analytical solution 
has led to significant corruption of correct mathematical models, in some cases 
to the extent that they no longer describe the intended physics.  

3) Reference [28] only investigates delta shocks using various mathematical 
models, some of which are incorrect, but there are many other published works 
including CFD books that use inadequate computational methods to obtain so-
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lutions of gas dynamics equations, the end result being disappointment and con-
tinued endless, non-fruitful pursuit to look elsewhere for better computational 
methods.  

In the present work we address various issues related to mathematical models 
as well as their solutions with the goal of establishing: correct mathematical model 
with sound and accurate solution methodology for 1D normal shocks in Riemann 
shock tube. We consider the following:  

1) Establishing correct mathematical models based on 1D normal shock phys-
ics in Riemann shock tube using CBL of CCM and the constitutive theories de-
rived using entropy inequality and representation theorem.  

2) Viscous as well as inviscid considerations and associated mathematical mo- 
dels.  

3) Solutions of mathematical models using space-time coupled finite element 
method with unconditionally stable space-time integral form.  

1.2. Scope of Work  

Before we present details of the scope of work in this paper, we set up some gen-
eral guidelines that we follow throughout the paper.  

1) We always consider the fluent continua to be viscous. As discussed in the 
introduction, viscosity is required for a fluid to exist and as pointed out in ref-
erences [6] [7] viscosity, by necessity, is present in shock waves.  

2) The correct and valid mathematical models are those that are derived using 
conservation and balance laws of Classical Continuum Mechanics (CCM) in 
Eulerian description in which the constitutive theories are derived using entropy 
inequality and representation theorem [29]-[45].  

3) Solutions of the mathematical models are considered in minimally con-
forming approximation spaces where minimum continuity and differentiability 
requirements based on the highest order of the derivatives of the dependent var-
iables in space and time appearing in the mathematical models can be ensured. 
Thus, discontinuous solutions such as delta shock waves are completely ruled 
out as possible solutions of the mathematical models for viscous compressible 
medium.  

4) As well known, the mathematical models are nonlinear Partial Differential 
Equations (PDEs) that do not easily permit determination of analytical solutions. 
Thus, we employ numerical methods, space-time finite element method to ob-
tain the solutions of the mathematical models. We discuss merits and details of 
finite element method used in this paper in a later section of the paper.  

Keeping in mind the above four guidelines, we describe the work presented in 
this paper in the following:  

1) We consider various mathematical models that are currently used to inves-
tigate 1D normal shock waves in Riemann shock tube, especially those in [28], 
and investigate their validity, merits and shortcomings by comparing them with 
the mathematical model based on CBL and constitutive theories based on entropy 
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inequality and representation theorem.  
2) Investigation in (1) establishes which mathematical models permit solutions 

with minimally conforming continuity and differentiability requirements on the 
dependent variables dictated by the highest orders of their derivatives appearing in 
the mathematical models.  

3) Numerical solutions (evolutions) of the mathematical models (those that per-
mit solutions) are obtained using space-time finite element method for single 
space-time strip with time marching [46]. Details are given in a later section.  

4) Numerical solutions are obtained for various models in (3), when possible, 
and are compared and discussed with those of the mathematical model based on 
CBL and constitutive theories based on entropy inequality and representation the-
orem for viscous compressible medium. Influence of various assumptions and sim-
plifications in the various mathematical models on the resulting solution is illus-
trated and discussed.  

5) In all numerical solutions, the computed evolutions show the first and sub-
sequent compression waves as well as the formation, propagation and reflection 
of compression and/or shock waves. 

6) All reported evolutions in the paper for all mathematical models are almost 
time accurate. This is achieved by ensuring that the integrated sum of squares of 
the residuals from all equations in the mathematical model is of the order  

( )610O −  or lower, a reasonably low tolerance for computed zero.  
7) We choose continuum mechanics notation of references [47] [48], i.e. co-

ordinates , ,x y z  are ix ; velocities are iv . In the Eulerian description all quanti-
ties are expressed with an over bar on them.  

2. Definition of a Shock  

We define a sustained wave in a compressible viscous medium that does not 
disperse anymore during further evolution as a shock. In the Riemann shock 
tube, upon rupture of the diaphragm, compression waves with progressively in-
creased speed pile up in the lower density region. This results in steepening of 
the front or traveling wave. On the other hand, the mechanism of dispersion or 
diffusion comes into play due to viscosity of the medium which results in elon-
gation of the base of the wave or front and attenuation of the peak of the wave. 
If the steepening process is stronger than the diffusion process, then the wave 
begins to steepen as evolution proceeds and eventually we reach a time during 
evolution when both processes equilibrate. At this point we have a wave or a front 
that would neither steepen nor disperse during further evolution. We refer to 
this wave or front as a shock. This process can be quantified by examining the 
rate of entropy production per unit volume for each space-time strip. This 
basic mechanism of rate of entropy production in shocks is due to dissipation 
or conservation of mechanical energy into entropy due to viscosity of the me-
dium. If rS  is the dimensionless rate of entropy production per unit volume, 
then: 
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( )
2 2

1

1 1

1 12r
v kS
x ReBr x

θµ λ
θ θ

    ∂ ∂ = + +    ∂ ∂    
 

We note that rS  must be constant for a fully developed shock to exist. rS  
provides a thermodynamic map that quantitatively establishes when the shocks 
are formed for the first time as well as their existence upon further evolution. 
Secondly, if a numerical process has numerical dispersion (artificial dissipation), 
then accurate prediction of shock formation, shock structure resolution, its prop-
agation and sustained existence cannot be established using the computations. 
Surana et al. [49] have shown that the finite element formulation, based on re-
sidual functional for BVPs and IVPs, can be made relatively free of numerical dis-
persion with appropriate choices of h, p and k, characteristic length, degree of 
approximation and the order of approximation space. In the present work, this as-
pect is critical in ensuring that shock structure and rS  reported have physical 
and true behavior based on the mathematical model. 

3. Mathematical Models  
3.1. Model A of [28]  

First we consider the mathematical model used in reference [28]. The authors 
state that the following Riemann problem arises in nonlinear elasticity and gas 
dynamics. We follow notations of references [47] [48], thus use over bar on all 
equations to indicate Eulerian description.  

( )1
1 1

0v
t x x
ρ ρρ∂ ∂ ∂
+ − =

∂ ∂ ∂
                      (1) 

1 1
1

1

0
v vv
t x

∂ ∂
+ =

∂ ∂
                          (2) 

Equation (1) is obviously continuity equation in 1  and Equation (2) is bal-
ance of linear momenta (BLM) in 1 , both are in Eulerian description. 

Remarks:  
1) As a point of clarification, Eulerian descriptions are rarely used in elasticity, 

linear or nonlinear, as elasticity problems require motion of material points 
which is discarded in Eulerian description used in fluent continua.  

2) Use of 
1x
ρ∂
∂

 term in the continuity equation (conservation of mass (CM))  

is invalid based on conservation of mass in classical or non-classical continuum 
mechanics [47] [48]. This term also doesn’t have same dimensions or units as the 
other two terms, thus obviously is erroneous.  

3) Balance of linear momenta in continuum mechanics is a statement of New-
ton’s second law for a deforming volume of compressible viscous matter in which 
the rate of change or the material derivative of linear momenta must be equal to 
the body forces ( b

VF ) for volume V  and tractions P  on the boundary of V∂  
of V . Thus we can write: 
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d db

V V V

D dV V A
Dt

ρ ρ
∂

= +∫ ∫ ∫v F P                   (3) 

After using transport theorem for the first term, Cauchy principle for the last  

term, 
t
ρ∂
∂

 from CM, decomposition of Cauchy stress ( )0σ  into equilibrium  

and deviatoric stress and using constitutive theories for equilibrium stress tensor 
and linear constitutive theory for deviatoric stress, (3) can be written in the fol-
lowing form in 1  for constant viscosity.  

( )
2

*1 1 1
1 1 2

1 1 1
*

0 BLM

where 2

bv v vpv F
t x x x

ρ ρ ρ µ

µ µ λ

∂ ∂ ∂∂
+ − + − =

∂ ∂ ∂ ∂

= +

           (4) 

First two terms are due to rate of linear momentum, 1
bFρ  is due to body forc-

es, p  is due to equilibrium stress (thermodynamic pressure) and the last term 
is due to dissipation (deviatoric stress). Upon comparing (4) with (2) of reference 
[28], we note that (2) is a statement of: 

1d 0
V

D v V
Dt

ρ =∫                          (5) 

after 
t
ρ∂
∂

 from corrected continuity equation is used in (5) to simplify it for  

1 . This is totally meaningless based on the physics needed in BLM as shown in 
(4). It is obvious that (1), (2) don’t support any physics related to 1D shocks in 
Riemann shock tube. Their solution may not be possible to compute, but if pos-
sible, are bound to be meaningless. Here µ  and λ  in (4) are first and second 
viscosities.  

3.2. Model B  

In this section, we consider a simplified model that is still representative of the 
shock physics. Thermodynamic pressure p  and viscous medium are a neces-
sity, thus 4th and 5th terms in (4) must be retained. We assume that the body 
forces are absent, implying that 1 0bFρ = . We assume that even though entropy 
production is present due to viscosity, we neglect it in this model. That is, we 
assume the process to be isothermal. This is hypothetical, but the mathematical 
models with this assumption will support shocks without thermal effects, i.e. is-
entropic shocks. In this case, we don’t need energy equation, hence the mathe-
matical model consists of continuity equation and BLM (4) in the absence of 
body force.  

( ) ( )1

1

0 CM
v

t x
ρρ ∂∂

+ =
∂ ∂

                    (6) 

( )
2

*1 1 1
1 2

1 1 1

0 BLM
v v vpv
t x x x

ρ ρ µ
∂ ∂ ∂∂

+ + − =
∂ ∂ ∂ ∂

             (7) 

( ) ( ),, 0, 0,x t x tx t L τ∀ ∈Ω = Ω ×Ω = × . The thermodynamic pressure p  in 
this case (assuming ideal gas law): 
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p Rρ θ=                            (8) 

where θ  is constant and will be eliminated when we nondimensionalize Equa-
tions (6)-(8). This mathematical model has volumetric deformation physics (physics 
of compression) due to p  and dispersion or diffusion physics due to viscosity, 
hence this mathematical model can support isentropic shocks. 

3.3. Model C  

In this section, we consider complete mathematical model for one dimensional 
compressible flow for a viscous, conducting medium based on CBL of CCM in 
Eulerian description. This mathematical model consists of continuity equation, 
balance of linear momenta, first and second laws of thermodynamics and the 
constitutive equations derived using conjugate pairs in the entropy inequality and 
representation theorem. For the Cauchy stress tensor, we choose contravariant 
Cauchy stress tensor ( )0σ  (see references [47] [48] for details). Since the Cauchy 
Stress ( )0σ  describes both volumetric and distortional deformation physics that 
are mutually exclusive, a single constitutive theory for ( )0σ  cannot describe both 
volumetric and distortional deformation physics. This requires that we consider 
additive decomposition of ( )0σ  into equilibrium Cauchy stress tensor ( )0eσ  and 
deviatoric Cauchy stress tensor ( )0dσ . The constitutive theory for ( )0eσ  addresses 
volumetric deformation physics whereas the constitutive theory for ( )0dσ  describes 
distortional deformation physics.  

( ) ( ) ( )0 0 0e d= +σ σ σ  

Constitutive theories for ( )0dσ  and q  are derived using entropy inequality 
and representation theorem. In the present work we consider linear constitutive 
theories for both ( )0dσ  and heat vector q . The constitutive for ( )0eσ  is de-
rived using Helmholtz free energy density Φ  and the entropy inequality [47] 
[48]. We consider the following mathematical model in 1  consisting of equa-
tions resulting from CM, BLM, Balance of Angular Momenta (BAM), First Law 
of Thermodynamics (FLT), i.e., the energy equation, the Second Law of Thermo-
dynamics (SLT), the constitutive theories for ( )0dσ , ( )0eσ  and q .  

( ) ( )1

1

0 CM
v

t x
ρρ ∂∂

+ =
∂ ∂

                      (9) 

( )( )
( )

0
111 1

1
1 1

0 BLM
v vv
t x x

σ
ρ ρ

∂∂ ∂
+ + =

∂ ∂ ∂
               (10) 

( ) ( )( ) ( )
T0 0 BAM=σ σ                    (11) 

( ) ( )01 1
11

1 1

0 FLT
q vDe

Dt x x
ρ σ

∂ ∂
+ − =
∂ ∂

                (12) 

Reduced form of SLT (after deriving constitutive theories) is given by: 

( )01 1 1
11

1

0dq g v
x

σ
θ
⋅ ∂

− ≤
∂

                    (13) 
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( ) ( ) ( )

( ) ( )
( )

0 0 0
11 11 11

0
11

0 *1 1 1
11

1 1 1

*

,

2

22 ;
3

e d

e

d

p

v v v
x x x

u

σ σ σ

σ ρ θ

σ µ λ µ

µ λ λ µ

= +

= −
∂ ∂ ∂ = + =
∂ ∂ ∂

= + = − 

                  (14) 

1 1
1

q k kg
x
θ∂

= − = −
∂

                        (15) 

The specific internal energy e  is related to the total energy tE  and the ki-
netic energy: 

( )2
1

2t

v
E eρ

 
 = +
 
 

                       (16) 

We consider simple ideal gas law to define dependence of e  on ρ  and θ  
and consider e  to be proportional to temperature θ .  

ve c θ=                             (17) 

( ),p Rρ θ ρ θ=                          (18) 

in which R is the gas constant, µ  and λ  are first and second viscosities, k is 
thermal conductivity and vc  is constant specific heat. Using (17), we can write:  

1
1

v v
De Dc c v
Dt Dt t x

θ θ θρ ρ ρ
 ∂ ∂

= = + ∂ ∂ 
               (19) 

Substituting (19) and ( )0
11σ  into FLT (Equation (12)), we obtain the following 

for energy equation: 
2

*1 1 1
1

1 1 1 1

0v
q v vc v p

t x x x x
θ θρ µ

   ∂ ∂ ∂∂ ∂
+ + + − =   ∂ ∂ ∂ ∂ ∂   

           (20) 

The final mathematical model consists of (9), (10), (14), (15), (18) and (20). 
For all ( ) ., x t x tx t ∈Ω = Ω ×Ω : 

( )

( )( )

( )

1

1

0
111 1

1
1 1 1

2
*1 1 1

1
1 1 1 1

0 * 1
11

1

1

0

0

0

d

v

d

v
t x

v v pv
t x x x

q v vc v p
t x x x x

v
x

q k
t

p R

ρρ

σ
ρ ρ

θ θρ µ

σ µ

θ

ρ θ

∂ ∂
+ = ∂ ∂ 

∂∂ ∂ ∂ + + − = ∂ ∂ ∂ ∂ 
   ∂ ∂ ∂∂ ∂ + + + − =    ∂ ∂ ∂ ∂ ∂    
∂

= ∂ 
∂
= −

∂ 
= 

          (21) 
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4. Dimensionless Form of the Mathematical Models:  
Computation of Evolution  

Dimensionless form of the mathematical models is helpful and many times nec-
essary when constructing finite element processes for obtaining numerical solu-
tions of the mathematical models. We define the following dimensionless varia-
bles.  

( )
( )

( )
( )

0

1
1

0 0 0 0

0 0
0 011 11

11 11
0 0 0 0

0 0 0 0

ˆˆ ˆˆ
, , ,

ˆ ˆ ˆˆ
, , ,

ˆ ˆ ˆˆˆ
, , ,

d
d

v
v

v

xL vL x v
L L v

ck t pk c t p
k c t p

ρρ
ρ

σ σµ λµ λ σ σ
µ µ τ τ

θθ
θ


= = = =


= = = = 


= = = = = 


          (22) 

Quantities with the subscript zero are reference values of the quantities. Using 
the reference quantities we can define the following dimensionless parameters: 
Reynolds number, Re ; Brinkman number, Br ; and Eckert number Ec .  

2 2
0 0 0 0 0 0

0 0 0 00

; ;
v

v L v v
Re Br Ec

k c
ρ ρ
µ θ θ

= = =               (23) 

We nondimensionalize the mathematical models: Model A, Model B and Model 
C in the following.  

4.1. Model A  

Consider Equations (1) and (2). Expressing all quantities with hat ( ∧ ) and using 
(22), we obtain the following dimensionless form of the mathematical model A.  

( )1
1 0 1

1 0v
t x v x
ρ ρρ∂ ∂ ∂
+ − =

∂ ∂ ∂
                   (24) 

1 1
1

1

0
v vv
t x

∂ ∂
+ =

∂ ∂
                        (25) 

4.2. Model B  

Consider Equations (6)-(8) constituting mathematical model B. Expressing all quan-
tities with hat ( ∧ ) and using (19), we obtain the following dimensionless form of 
mathematical model B.  

( )1

1

0
v

t x
ρρ ∂∂

+ =
∂ ∂

                      (26) 

2*
01 1 1

1 2 2
1 10 0 1

0
pv v vpv

t x x Rev x
µρ ρ

ρ
 ∂ ∂ ∂∂

+ + − = 
∂ ∂ ∂ ∂ 

           (27) 

0 0 0
0

0

ˆ; if , then 1
R

p R
p

ρ θ
ρ θ θ θ

 
= = = 
 

           (28) 

( ) ( ),, 0, 0,x t x tx t L τ∀ ∈Ω = Ω ×Ω = × . From (28), we have: 
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1 1

p p
x x

ρ
ρ

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

                         (29) 

From (29) we can substitute in (27). Equations (26)-(29) is the dimensionless 
form of the mathematical model. 

4.3. Model C  

Consider Equations (21), using (22), we can obtain following dimensionless form 
of the mathematical model ( ) ( ), 0,xt x t xx t τ∀ ∈Ω = Ω ×Ω = Ω × : 

( )

( )( )

( )

1

1

0
110 01 1

1 2 2
1 1 10 0 0 0
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∂∂
+ =

∂ ∂

∂   ∂ ∂ ∂
+ + − =   
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    ∂ ∂ ∂∂ ∂
+ + + − =    ∂ ∂ ∂ ∂ ∂    

  ∂
=   ∂ 
∂

= −
∂


=


Rρ θ




















 
  

 

     (30) 

If we choose: 
2

0 0 0 0 ckep vτ ρ τ= = = ; stress based on characteristic kinetic energy       (31) 

then: 

0 0 0 0
2 2

0 00 0 0 0

11 and
p v

L Rev v
τ µ

τρ ρ
= = =                  (32) 

If we choose: 

0 0
0 0

0
cvs

v
p

L
µ

τ τ= = = ; characteristic viscous stress                    (33) 

then: 

0 0 0 0
2 2

0 0 0 0 0 0

11 and
v p

L Rev v
µ τ
τ ρ ρ

= = =                  (34) 

and: 

0
0

0 0 0

ˆ
,

pRR R
R ρ θ

= =                        (35) 

We generally use greater of ckeτ  or cvsτ . In the present work cke cvsτ τ , hence 
we use ckeτ , i.e., (31), to nondimensionalize p̂  and ( )0

11
ˆdσ . We note that: 

( ), ,p p Rρ θ=                          (36) 

hence: 
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1 1 1

p p p
x x x

ρ θ
ρ θ

 ∂ ∂ ∂ ∂ ∂ = +   ∂ ∂ ∂ ∂ ∂  
                    (37) 

in which 
p
ρ
∂
∂

 and p
θ
∂
∂

 are explicitly defined using equation of state (36). We  

can substitute 1p x∂ ∂  from (37) in BLM (second equation in (30)). Thereby elimi-
nating p  from the mathematical model. Thus, have the following final equa-
tions (will be referred to as Model C-I). 

Model C-I: 

( )

( )( )

( )

( )

1

1

0
110 01 1

1 2 2
1 1 1 10 0 0 0

2*
01 1 1
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0 0 0
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ρ θ θ µρ θ
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∂∂
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∂ ∂

∂    ∂ ∂  ∂ ∂ ∂ ∂ + + + − =       ∂ ∂ ∂ ∂ ∂ ∂ ∂      

    ∂ ∂ ∂∂ ∂
+ + + − =    ∂ ∂ ∂ ∂ ∂    

= * 1
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q k
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R p
p R
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ρ θ












  ∂
  ∂  
∂ = −
∂


  =   
  

 (38) 

( ), xt x tx t∀ ∈Ω = Ω ×Ω  where: 

* 22 and
3

µ µ λ λ µ= + = −                     (39) 

Equations (38) is a system of first order nonlinear partial differential equations 
in five dependent variables ρ , 1v , ( )0

11
dσ , 1q  and θ , hence the mathematical 

model has closure. We note that ( )0
11

dσ  and 1q  can be substituted in the BLM 
and energy equation, thereby reducing the number of dependent variables to 
three: ρ , 1v  and θ , but increasing the order of the spatial derivatives of 1v  
and θ  by one compared to model C-I. Assuming *µ  and k are constant, we 
can obtain the following from (38): 

Model C-II: 

( )

( )

1

1

2*
01 1 1

1 2 2
1 1 10 0 1

22 *
0 1 1

1 2 2
1 1 11 0 0

0

0

, , 0v

v
t x

pv v vp pv
t x x x Rev x

c p v vkv p R
Ec t x ReBr x Re xx v

ρρ

ρ θ µρ ρ
ρ θρ

ρ θ θ θ µρ θ
ρ

∂∂ + =
∂ ∂ 


    ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + + − =        ∂ ∂ ∂ ∂ ∂ ∂ ∂       


    ∂ ∂∂ ∂ ∂ + − + − =     ∂ ∂ ∂ ∂∂     

 (40) 

( ) ( ), 0,xt x t xx t τ∀ ∈Ω = Ω ×Ω = Ω × .  

We note that Equation (40) contain up to second order derivatives of velocity 
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1v  and temperature θ . Both mathematical models ((38) and (40)) are suitable 
for obtaining numerical solutions using finite element method. 

5. Space-Time Finite Element Processes  

In case of mathematical Model A, we have a system of two first order partial dif-
ferential equations in ρ  and 1v . In model B we have two PDEs with up to se-
cond order derivatives of 1v  with respect to 1x  in BLM. In case of Model C, 
we have two choices, Model C-I or Model C-II. Both choices are admissible choic-
es. But the choice of Model C-I or Model C-II dictates the choice of admissible 
approximation space. In the present work we consider Model C-II mathematical 
model. 

All three mathematical models describe evolution, hence Initial Value Prob-
lems (IVPs). Thus, numerical solutions can be obtained using space-time cou-
pled or space-time decoupled methods of approximation. In the present work we 
consider space-time coupled finite element method. Details and benefits of using 
this approach can be found in references [46]. We present mathematical details 
of the space-time finite element method for Model C-II. Using these details, 
space-time finite element processes for Model A and Model B can be easily con-
structed. 

5.1. Space-Time Finite Element Method for Model C-II  

As we remarked earlier, the choice of minimally conforming approximation spac-
es is different for Model C-I and Model C-II. If we choose Model C-I, then the 
space-time local approximation is of class 1C  is minimally conforming for which 
the space-time integrals over the space-time discretization are Riemann. When 
the solutions are sufficiently smooth, as in this case, Lebesgue space-time inte-
grals suffice. Thus, in case of Model C-I, we could choose space-time local approxi-
mation of class 0C  in space and time for all dependent variables. In case of 
Model C-II, the local approximation for ρ  of class 1C  in space and time, and 
for 1v  and θ  of class 2C  in space and 1C  in time are minimally conform-
ing for which the space-time intergrals over the space-time discretization are 
Riemann. When the approximation for ρ  is of class 0C  in space and time 
and for 1,v θ  is of class 1C  and 0C  in space and time, then the space-time 
integrals over the discretization are in Lebesgue sense. See references [46] for more 
details. 

All three mathematical models (Model A, Model B and Model C-II) contain 
nonlinear space-time differential operator. For such space-time differential op-
erators the space-time integral form based on space-time residual functional 
yields space-time variationally consistent integral form [46] that yields positive 
definite coefficient matrices in the resulting algebraic systems provided: 1) The 
second variation of the residuals are neglected in the second variation of the re-
sidual functional; and 2) the nonlinear condition resulting from the first varia-
tion of the residual functional are satisfied using Newton’s linear method (New-
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ton Raphson Method). We present details in the following for Model C-II. For 
other mathematical models the details can be easily obtained using Model C-II. 

Let the Equation (40) in Model C-II be defined over a space time domain  
( )0,xt x t x τΩ = Ω ×Ω = Ω × , with τ  being final value of time and zero being 

initial value of time. Let xt xt xtΩ = Ω ΓU  be closure of xtΩ . The space-time 
domain xtΩ  is divided into space-time strips (or slabs in case of 2 ) as shown 
in Figure 1(b) corresponding to time increments it∆ ; 1, 2, ,i n= L  which can be  

 

 
Figure 1. Space-time domain, space-time strips, and discretization for nth space-time strip. 
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uniform or nonuniform. We consider typical nth space-time strip n
xtΩ  corre-

sponding to nth time increment ( 1n nt t t− ≤ ≤ ) and its discretization Tn
xtΩ  using 

p-version nine-node space-time elements: 
Tn n e
xt xt

e
Ω = ΩU                             (41) 

in which n e
xtΩ  is the space-time element “e” in the discretization Tn

xtΩ  of the 
nth space-time strip domain n

xtΩ . The mathematical model C-II contains ρ , 

1v  and θ  as dependent variables. Let: 

{ } T
1, ,vφ ρ θ =                              (42) 

where { }φ  is the vector of dependent variables. Let: 

{ } ( )
T

1, ,e en n e n n e
h hh hvφ ρ θ =                         (43) 

be approximation of { }φ  over a space-time element with domain n e
xtΩ . In 

general for local approximations n e
hρ , ( )1

en
hv , n e

hθ  we can consider the follow-
ing: 

( )( ) { }
( ) ( )( ) ( ){ }

( )( ) { }
{ } { } { }

1 2 1 2

1 2 1 2
1

1 2 1 2

1, 1 ,

1, 1 ,
1 1

1, 1 ,

the approximation of over

k k p pn e n e
h

e ek k p pn n
vh

k k p pn e n e
h

en n n T
xth h

e

N

v N v

N

ρ

θ

ρ ρ

θ θ

φ φ φ

− −

− −

− −

 =   
 =   


 =   
= Ω




         (44) 

in which { }n e
hρ , ( ){ }1

en
hv  and { }n e

hθ  are nodal degrees of freedom for n e
hρ , 

( )1
en
hv  and n e

hθ . By substituting (44) in (40) we obtain residual equations n e
iE ; 

1, 2,3i =  ( ), n e
xtx t∀ ∈ Ω . We note that equal order, equal degree interpolation 

for all dependent variables is admissible. We can also write (44) in more compact 
form: 

{ } ( )( ) { }1 2 1 21, 1 ,e k k p pn n e
h Nφφ δ− − =                       (45) 

in which ( )( )1 2 1 21, 1 ,k k p pNφ
− − 

   are local approximation functions for the three de-
pendent variables and { }n eδ  are nodal degrees of freedom for all dependent 
variables. The orders of continuity in space and time are ( )1 1k − , ( )2 1k −  and 

1p , 2p  are the degrees of local approximations in space and time. In general 

1k , 2k , 1p  and 2p  can be chosen different for each dependent variable. Let 

( )n e
h xtV Ω  be approximation space. Then: 

( ) ( ) ( ) ( ), T
1 2 1 2; , ; ,n e k p n e n e n n e

h xt xt xt xt xt
e

V H k k k p p pΩ ⊂ Ω = = ∀ Ω ⊂ Ω = ΩU  (46) 

( ) ( ) ( ) ( ) ( ){
( ) ( )

}

1 2 1 2 1 2

1 2

, , , ,

,

T
1 1 2 2

:

: ;

2 1, 2 1

n e
xt

n e
xt

k k p p k kn e n e
xt xt

p p n e
xt

n e n
xt xt

H w w C

w w p

p k p k

Ω

Ω

Ω = ∈ Ω

∈ Ω

≥ − ≥ − ∀ Ω ⊂ Ω

       (47) 

We note that if we consider equal order, equal degree local approximation, 
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then for 1 2k = , 2 2k =  the space-time integrals over Tn
xtΩ  are Lebesgue. When 

1 2 2k k= > , the local approximations over Tn
xtΩ  are Riemann sense. For this mo- 

del problem we can choose 1 2 2k k= =  due to smoothness of the solution, i.e., 
local approximation of class 1C  for all variables. 

We construct a space-time residual functional { }( )n
hI φ  over Tn

xtΩ .  

{ }( ) { }( ) { }( ) { }( )( )3

1
,

n e
xt

e e en e n n e n n e n
ih h h h

e e i
I I E Eφ φ φ φ

Ω=

= =∑ ∑∑      (48) 

Assuming that ( )I ⋅  is differentiable in its arguments, the first variation ( )( )Iδ ⋅  
of ( )I ⋅  is unique and ( ) 0Iδ ⋅ =  is a necessary condition for an extremum of 
( )I ⋅ .  

{ }( ) { }( ) { }( )( )( )3

1
, 0

n e
xt

e en n e n n e n
i ih h h

e i
I E Eδ φ φ δ φ

Ω=

= =∑∑         (49) 

Sufficient condition or extremum principle [46] is given by: 

{ }( ) ( ) ( )( )2 , 0n n e n e n e
i i xth

e
I E Eδ φ δ δ= Ω >∑              (50) 

Clearly the Euler’s equation resulting from (49) is the mathematical Model 
C-II. A solution { }n

hφ  must satisfy necessary condition (49). Since the spa- 
ce-time differential operator is nonlinear, { }g  is a nonlinear function of 

{ } { }n n e

e
δ δ=U . We use Newton’s linear method with line search to obtain a  

solution that satisfies (49). Let { }0n
hδ  be an assumed solution, then an improved 

solution { }n
hδ  is obtained using: 

{ } { } { } { }( ){ }
0

12
0 0n

n n nI g
δ

δ δ δ δ
−

 ∆ = −                  (51) 

and:  

{ } { } { }0 0
n n nδ δ α δ= + ∆                     (52) 

where α  is determined such that { }( ) { }( )0
n nI Iδ δ≤ . Convergence of the  

iterative solution method is checked using { }( ) 1; 1, 2,n
ig iδ ≤ ∆ = L  in which  

1∆  is a preset tolerance for computed zero (generally ( )610O −  or lower). 
Computations are commenced with the first space-time strip corresponding 

to first time increment t∆  using BCs and ICs. Upon convergence of the solution 

{ }1δ  for 1 T
xtΩ  the computations are time marched to second space-time strip us-

ing ICs obtained from solution at t t= ∆  from the converged solution for the first 
space-time strip. For each space-time strip converged solutions are obtained be-
fore time marching the solution. We generally consider a solution converged for 
an nth space-time strip when { }( ) ( )610nI Oδ −≤  or lower. This ensures time accu-
racy of evolution when the approximation spaces are minimally conforming or of 
order(s) higher than minimally conforming. 

5.2. Space-Time Finite Element Method for Model A and B  

These mathematical models also contain nonlinear space-time operators. Com-
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pared to Model C-I or Model C-II, in these models we have only two dependent 
variables, 1,vρ  and both mathematical models only contain up to first order de-
rivatives of ρ  and 1v  with respect to 1x  and time t. Thus, the space-time fi-
nite element process for these models is exactly same as that described in Section 
5.1, except that in this case we only have two residual equations 1

n eE  and 2
n eE  

over n e
xtΩ  corresponding to the two PDEs. Remaining details can be obtained fo- 

llowing Section 5.1. 

6. Computations of 1D Normal Shocks in Riemann Shock  
Tube Using Space-Time Finite Element Method 

In this section we consider numerical studies for computing 1D normal shocks 
in Riemann shock tube of dimensionless length of two units (Figure 2(a)). The 
medium is air with the following properties at Normal Temperature and Pressure 
(NTP).  

5 3

2

ˆˆ 1.983 10 Pa s, 1.225412 kg m
ˆ ˆ2.8854 10 W m K , 717.0 J kg K
ˆ 286.9965 J kg K

vk c

R

µ ρ−

−

= × ⋅ =

= × ⋅ = ⋅

= ⋅

 

The following reference values are chosen:  

0

6
0 0 0

0 0

9
0 0 0 0

2 5
0 0 0 0 0

ˆˆ1.50348 10 m, ,
ˆ ˆ, , 410.52 K

343.0 m s, 4.3833 10 s
ˆ1.4417 10 ,

v v

L

k k c c

v t L v

p v R R

µ µ ρ ρ

θ

τ ρ

−

−

= × = =

= = =

= = = ×

= = = × =

 

With these reference values, various characteristic numbers have the values: 

0

0

2
0 0 0 0

0 0

2
00 0

0 0 0

0 0 0

0 0

31.868, = 0.3997

0.19696, 0.49276

ˆ
1.0014 , 1

v

v

v L v
Re Ec

c

cv
Br Pr

k k

R Rp R R R
p R

ρ
µ θ

µµ
θ

ρ θ
ρ θ ρ θ

= = =

= = = =

 
= = = = 
 

 

We use dimensionless time interval of 0.02t∆ =  which corresponds to a 
dimensional time interval 118.767 10t −∆ = ×  seconds. We chose a density ratio 
of 10, i.e., 10h lρ ρ = , hρ  and lρ  being densities of air in the high pressure 
region (right of the diaphragm) and low pressure region (left of the diaphragm). 
In reference [27], Surana et al. investigates the influences of different choices of 

hL  and lL , length of high and low pressure region on the normal shock struc-
ture. In the present work we choose 1h lL L= = . Figure 2(b) shows boundary 
conditions at the two ends of the shock tube and the initial conditions at time 

0t =  for the first space-time strip. The initial condition for temperature θ  is 
given by 1θ = , 11 1x− ≤ ≤  but is not used in Model B. The initial conditions on 
density consist of 1ρ =  for 11 0x− ≤ <  and 10ρ =  for 10 1x< ≤ . At 1 0x = , 
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Figure 2. Schematic, boundary conditions and initial conditions. 
 

location of hypothetical diaphragm separating low and high density region, ρ  
makes a transition from 1 to 10 over a space-time element in continuous and 
differentiable manner, i.e., it is of class 1C  or 2C  etc. in space depending up-
on local approximation (Figure 2(c)). The initial conditions for the second 
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space-time strip ( 2t t t∆ ≤ ≤ ) at t t= ∆  are obtained from the computed and con-
verged solution of the first space-time strip. The space time domain 2 t×∆  of a 
space-time strip is uniformly divided into 101 nine node p-version hierarchical 
space-time elements with higher order global differentiablility local approxima-
tion. We consider local approximation of class 1C  in space and time with p- 
level of 11 in space and time. With this choice of discretization, p-levels and the 
order of the approximation space in space and time, the residual functional I for 
the space-time strip remains ( )610O −  or lower for the entire evolution, con-
firming that the Governing Differential Equations (GDEs) in the mathemat-
ical model are satisfied accurately. We consider the following two mathematical 
models: 

1) In the first study we use Model B; 
2) In the second study we consider Model C-II. 
We present computed evolutions and discuss results for both studies in the 

following sections. 

6.1. Model B  

Equations (26)-(29) describe isothermal processes. The compression due to pres-
sure (resulting in steepening of fronts) and the base elongation and amplitude de-
cay due to viscosity permit existence, formation and propagation of an isentrop-
ic shock. Since the model does not consider entropy generation due to dissipa-
tion, thermal effects and their influence on shock formation, shock structure and 
shock propagation is not present in this mathematical model. Thus, these shocks 
can be called “isentropic shocks”. Keeping in mind that in experiments these can-
not be generated as entropy generations is inherent in a viscous medium. None-
theless, we want to demonstrate that in spite of this shortcoming, the mathemat-
ical model is capable of simulating isentropic shocks. This study demonstrates con-
sistency of the required physics for shocks in the mathematical model and power 
of the relatively diffusion free computational method in obtaining almost time ac-
curate solutions of the mathematical model.  

Discussion of results: Figure 3(a) shows evolution of pressure p  along the 
shock tube for first six time increments. The importance of these results is to il-
lustrate oscillation free evolution and gradual formation of the initial stages of the 
pressure shock waves. Figure 3(b) shows evolution of p  for first twenty five in-
crements of time. At 25t t= ∆ , the pressure wave is almost incident at the im-
permeable boundary at 1 1.0x = − . The reflected pressure wave and its propaga-
tion for 26 50t t t∆ ≤ ≤ ∆  are shown in Figure 3(c). Evolution of pressure p  
along the shock tube length for 50 150t t t∆ ≤ ≤ ∆  is shown in Figure 3(d). Evo-
lution for all values of time is oscillation free (smooth). Formation, propagation, 
and reflection of the pressure shock wave are simulated using the mathematical 
model (Model B) without any difficulty. Evolution in the rarefaction region remains 
smooth and oscillation free as well. 

Similar evolutions of velocity 1v  for 6t t t∆ ≤ ≤ ∆ , 25t t t∆ ≤ ≤ ∆ ,  
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Figure 3. Evolution of pressure p : Model B. 

 
26 50t t t∆ ≤ ≤ ∆  and 50 150t t t∆ ≤ ≤ ∆  are shown in Figures 4(a)-(d) respec-
tively. The evolution of density ρ  is not presented, because due to isothermal phy- 
sics and 1θ = , pρ ∝  (density is proportional to pressure). We note that so-
lutions of p  and 1v  for all time steps are smooth and the residual functional I 
remains ( )610O −  or lower for all space-time strips, ensuring accuracy of the com-
puted results. From Figure 3(a), we note that pressure shock wave forms within 
six time steps, sharp increases in pressure upon reflection at 1 1.0x = −  (Figure 
3(c)) is simulated quite well. 

6.2. Model C-II  

In this study, we consider model “Model C-II” in which constitutive theory for 
deviatoric Cauchy stress has been substituted in the balance of linear momenta, 
thus giving rise to only ρ , 1v  and θ  as dependent variables in the mathe-
matical model. This model accounts for dissipation and entropy generation due 
to viscosity, hence, influencing the pressure field and velocity field. Boundary con-
ditions, initial conditions and the time marching procedure using a space-time strip 
are same as described earlier. In this study 1θ =  for 11 1x− ≤ ≤  is used as an ini-
tial condition (at 0t = ). 

Figure 5(a) shows evolution of pressure p  for first six time steps. Evolution 
at the end of first time steps quickly form into a shock front in just six time steps  
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Figure 4. Evolution of velocity 1v : Model B. 

 

 
Figure 5. Evolution of pressure p : Model C-II. 
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due to piling up of compression waves. Evolution is smooth and accurate with 
space-time residual functional I of the order ( )610O −  or lower for each time 
step. Figures 5(b)-(d) show evolution of p  along the length of the shock tube 
for 25t t t∆ ≤ ≤ ∆ , 26 50t t t∆ ≤ ≤ ∆  and 50 150t t t∆ ≤ ≤ ∆ , respectively. Evolu- 
tion of ρ , 1v  and θ  for the values of time increment as presented for p  are 
given in Figures 6(a)-(d), Figures 7(a)-(d) and Figures 8(a)-(d). 

6.3. Rate of Dissipation and Rate of Entropy Production  

Since Model B has isothermal physics, shocks generated in this case are isen-
tropic. This model does not consider entropy generation, hence in this case we 
can only study evolution of dissipation ( )( )0tr d Dσ      , D    being symmetric 
part of the velocity gradient tensor. In case of 1D Riemann shock tube this  

reduces to ( )( )0 1
11

1

d v
x

σ
 ∂
 ∂ 

. In case of Model C-II we have both dissipations as well  

as rate of entropy generation rS . Figure 9(a) shows a space-time plot of the 
evolution of rate of dissipation for Model B. Figure 9(b) and Figure 9(c) show 
plots of evolution of dissipation and rate of entropy generation rS  for model 
C-II. 

We note that incident shock at impermeable boundary at 1 1.0x = −  has higher 
value of rate of dissipation in Model B compared to Model C-II, since in Model 
 

 
Figure 6. Evolution of density ρ : Model C-II. 
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Figure 7. Evolution of temperature θ : Model C-II. 
 

 
Figure 8. Evolution of velocity 1v : Model C-II. 
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Figure 9. Space-time plots of evolution of ( )( )0tr d Dσ       and rate of entropy for Model B and Model C-II. 

 
C-II energy is converted into entropy. Due to dependence of p  on ρ  and θ  
shock wave paths after reflection are different in case of Model B and Model C-II 
(Figure 9(a) and Figure 9(b)) as expected due to nonisothermal physics in Model 
C-II. Space-time plots of the evolution of dissipation and rS  (Figure 9(b) and 
Figure 9(c)) are quite similar indicating that addition to rate of entropy due to tem-
perature gradient is not very significant. 

Sustained widths of the plots in Figure 9 confirm sustained shocks in case of 
Model B as well as Model C-II. The straight line path for 0 to 0.5 values of t is 
due to the fact that shocks are moving in virgin medium. Upon first reflection, 
in both models, the shock paths are not straight anymore as they are moving in 
compressed medium with varying density along the path. Graphs in Figure 9 con-
clusively establish existence and propagation of sustained shocks in both Model B 
and Model C-II. 

We point out that in generating graphs in Figure 9, dissipation and rS  val-
ues for first few time steps was not considered as these values are naturally very 
high due to spontaneous rupture of the diaphragm, hence their consideration in 
the data overshadows the remaining data presented in Figure 9. 

6.4. Discussion of Results and Comparison with Model B  

In the following, we discuss solutions obtained from Model C-II and compare 
these results with those of Model B.  

1) The shock relations in Model C-II are 2.85 to 1 for pressure, 2.08 to 1 for 
density where as in case of Model B we have 3.05 to 1 for p . In case of Model B, 
the shock relation for ρ  is same as for p  due to isothermal physics. 
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2) Comparing evolution in Figure 3(a) and Figure 5(a), we note that pressure 
waves in case of Model C-II are shallower than in case of Model B. This of course 
is due to conversion of part of the energy into entropy in Model C-II whereas in 
case of Model B, entire energy is used in compression waves as in this model there 
is no entropy generation. 

3) Upon reflection from the impermeable boundary at 1 1x = − , higher peak 
pressure values are observed in Model B compared to Model C-II due to the same 
reason as described in (2). 

4) Dramatically different evolution of density evolution in Model C-II is quite 
obvious from Figure 6 compared to Model B Figure 3 due to non-isothermal phys-
ics that permits interaction of p , ρ  and θ . 

5) Results obtained for Model C-II have been verified by Surana et al. [27] with 
experimental measurements. Model B is hypothetical academic study to demon-
strate that isothermal shock physics can be described mathematically and that the 
solutions of the mathematical model are possible without any artificial (nonphysi-
cal) adjustments or changes in the mathematical model. 

6) Initial condition on density at 1 0x =  only influences initial couple of time 
steps. The evolution for the subsequent time steps remains unaffected due to non-
linear PDEs in the mathematical model. 

7) Rate entropy production plots (Figure 9(a) and Figure 9(b)) clearly demon-
strate sustained rate of entropy during evolution for both isothermal and noniso- 
thermal physics, thus confirming sustained shocks in both cases.  

7. Summaries and Conclusions 

In this section, we summarize the work presented in this paper and draw some 
conclusions.  

1) It is shown that the mathematical model for compressible matter (as in Rie-
mann shock tube) must contain physics associated with acceleration of the vol-
ume of matter, physics of compression described by equilibrium stress (thermo-
dynamic pressure) and dissipation mechanism described by deviatoric stress. In 
the choice of isothermal compression physics, entropy generation and thermal ef-
fects are neglected. The mathematical model is hypothetical but provides a math-
ematical description that supports isentropic shocks.  

2) Mathematical Model C-II (or Model C-I) is based on CBL of CCM and the 
constitutive theories based on entropy inequality and representation theorem. This 
model contains complete non-isothermal physics for compressible viscous medium. 
Such mathematical models, consisting of nonlinear PDEs, do not permit analytical 
solutions. Thus, methods of approximation are necessary for obtaining their solu-
tions. In choosing such a method, we must ensure that the methods are uncondi-
tionally stable [46] and permit posteriori computations of error in the computed 
solutions as is the case in the present work.  

3) We have shown that the mathematical models used in [28] and many other 
works as well as those reporting delta shocks are either incorrect or are nonphysi-

https://doi.org/10.4236/am.2022.133022


K. S. Surana et al. 
 

 

DOI: 10.4236/am.2022.133022 320 Applied Mathematics 
 

cal. Such models are generally deficient in diffusion, dissipation and entropy physics 
due to the lack of viscosity of the medium. We have shown that the mathematical 
models reported and used in reference [28] are either incorrect or nonphysical based 
on CBL of CCM.  

4) The space-time finite element method based on space-time residual functional 
is Space-Time Variationally Consistent (STVC) [46], hence the associated com-
putational processes remain unconditionally stable during evolution regardless of 
the complexities of the equations in the mathematical model. This provides the 
incentive to consider more precise physics in deriving mathematical models. The 
method permits accurate a posteriori error computation when minimally con-
forming approximation spaces are used [46].  

5) The space-time residual functional (zero for theoretical solution) and its 
proximity to zero is an absolute and accurate measure of the errors in the solu-
tion when the approximation spaces are minimally conforming. Thus, all evolu-
tions reported in this paper are almost time accurate. This is an incomparable 
strength of the method used for obtaining numerical solutions for Model B and 
Model C-II.  

6) Rate of entropy generation graphs confirm the existence of sustained shocks 
and their propagation for both isothermal and non-isothermal physics.  

7) In conclusion, we have demonstrated in this paper that: first, the mathemati-
cal model describing correct shock physics is necessary and secondly, the uncondi-
tionally stable solution methods for obtaining solutions of the PDEs in the math-
ematical models, regardless of the nonlinearity and complexity of models, with 
accurate a posteriori error computations are essential and equally important. Both 
of these aspects are used in the paper to demonstrate that actual shock physics can 
be simulated accurately without any modifications or approximations in the math-
ematical models and/or without any stability and accuracy concerns in the solutions 
of the mathematical models. 
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