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Abstract 
A new six-parameter continuous distribution called the Generalized Kuma- 
raswamy Generalized Power Gompertz (GKGPG) distribution is proposed in 
this study, a graphical illustration of the probability density function and 
cumulative distribution function is presented. The statistical features of the 
Generalized Kumaraswamy Generalized Power Gompertz distribution are 
systematically derived and adequately studied. The estimation of the model 
parameters in the absence of censoring and under-right censoring is perfor- 
med using the method of maximum likelihood. The test statistic for right- 
censored data, criteria test for GKGPG distribution, estimated matrix Ŵ , 
Ĉ , and Ĝ , criteria test 2

nY , alongside the quadratic form of the test statistic 
is derived. Mean simulated values of maximum likelihood estimates γ̂  and 
their corresponding square mean errors are presented and confirmed to agree 
closely with the true parameter values. Simulated levels of significance for 

( )2
nY γ  test for the GKGPG model against their theoretical values were rec-

orded. We conclude that the null hypothesis for which simulated samples are 
fitted by GKGPG distribution is widely validated for the different levels of 
significance considered. From the summary of the results of the strength of a 
specific type of braided cord dataset on the GKGPG model, it is observed 
that the proposed GKGPG model fits the data set for a significance level ε = 
0.05. 
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1. Introduction 

The Gompertz distribution is a continuous probability distribution often applied 
in lifetime data analysis to describe the distribution of the science such as biolo-
gy [1], gerontology [2], adult lifespans by demographers [3], actuaries [4], marketing 
[5], network theory [6] and computer science [7]. The Gompertz distribution has 
a convex hazard function. It is a flexible distribution, skewed to the right and the 
left, and a generalization of the exponential distribution. 

To produce a more flexible distribution for a highly skewed dataset, new fami-
lies of distributions are proposed daily. Some of these families of distributions 
include the Generalized Kumaraswamy generalized family by Nofal et al. [8], the 
Marshall-Olkin generalized family by Yousof et al. [9], the odd Dagum general-
ized family by Afify and Alizadeh [10], a new generalized Weibull-G family by 
Cordeiro et al. [11], a new Weibull-G family by Tahir et al. [12], the Gompertz 
generalized family by Alizadeh et al. [13], the Type II Power Topp-Leone gener-
ated family by Bantan et al. [14], the generated odd burr III family BY Hag et al. 
[15], Exponentiated-G (EG) by Cordeiro et al. [16], Weibull-X by Alzaatreh et al. 
[17], Weibull-G by Bourguignon et al. [18], Logistic-G by Torabi and Montazari 
[19], Gamma-X by Alzaatreh et al. [20], a Lomax-G family by Cordeiro et al. [21], 
Exponentiated T-X by Alzaghal et al. [22], a Beta Marshall-Olkin family of dis-
tributions by Alizadeh et al. [23], Logistic-X by Tahir et al. [24], the beta general-
ized family (Beta-G) by Eugene et al. [25], a Lindley G family by Cakmakyapan and 
Ozel [26], Odd Lindley-G family by Gomes-Silva et al. [27], Transmuted family of 
distributions by Shaw and Buckley [28], Gamma-G (type 1) by Zografos and Balak- 
rishnan [29], the Kumaraswamy-G by Cordeiro and de Castro [30], McDon-
ald-G by Alexander et al. [31], Gamma-G (type 2) by Ristic et al. [32], Gamma-G 
(type 3) by Torabi and Montazari [33], Log-gammaG by Amini et al. [34], and so 
on. 

Statistics show that a powerful transformation is a series of functions used to 
create a monotonous data transformation using power functions. Applied to the 
random variable, the technique is useful in stabilizing variance, making the data 
more normal distribution-like, improving the validity of association measures 
like the Pearson correlation between variables, and providing a more flexible 
model by adding a new parameter named power parameter. The works of Ieren 
et al. [35], Ghitany et al. [36], and Rady et al. [37] prove this fact. Ieren et al. [35] 
proposed the power Gompertz distribution, and derived certain properties of the 
new distribution. Estimated parameters by Maximum Probability Estimate (MLE) 
were provided. The application of the proposed model with other existing dis-
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tributions to a data set of remission times for a random sample of 128 patients 
with bladder cancer was done with the power Gompertz model providing better 
performance than the Gompertz model, Ghitany et al. [36] introduced the power 
Lindley distribution. This model provides more flexibility than Lindley distribu-
tion when applied to lifetime data, Rady et al. [37] proposed the Power Lomax 
distribution, when applied to bladder cancer data, the proposed Power Lomax 
distribution exhibited a much more flexible model than the Lomax distribution. 
To produce a more flexible distribution for a highly skewed dataset, our focus in 
this paper is to present an extension of the power Gompertz distribution using 
the generalized Kumaraswamy generalized family of distribution [8], the result-
ing distribution is a six-parameter continuous distribution called the generalized 
Kumaraswamy generalized power Gompertz distribution, various statistical prop-
erties will be looked at. The method of maximum likelihood is discussed for es-
timating the model parameter. We also construct and analyze the generalized Ni- 
kulin Rao-Robson goodness-of-fit statistic test 2

nY  (Bagdonavicius and Nikulin 
[38], Bagdonavicius and Nikulin [39]) for the generalized Kumaraswamy general-
ized power Gompertz distribution based on censored data.  

The remaining parts of this article are presented in sections as follows: formation 
of the new distribution is provided in Section 2. In Section 3, we analyzed the plots 
of the probability density and cumulative distribution function. Derivation of some 
properties of the new distribution such as asymptotic behavior, quantile function 
for median, Skewness and Kurtosis, and reliability analysis was discussed in Sec-
tion 4. The distribution of order statistics in Section 5, estimation of parameters 
based on censored and uncensored random samples using Maximum Likelihood 
Estimation (MLE) is provided in Section 6. We evaluate the new goodness-of-fit 
statistic test 2

nY , and investigate some criteria test for the generalized Kumaras- 
wamy generalized power Gompertz distribution in Section 7, a simulation study 
was carried out in Section 8, and an application of the new model to the dataset 
is illustrated in Section 9. 

2. Formation of the Generalized Kumaraswamy  
Generalized Power Gompertz Distribution (GKGPG) 

The Power Gompertz (PG) distribution [35] with positive parameter ,α β  and 
θ  has pdf and cdf given by: 

( )
e 1

1e e
x

xg x x
θβ

θ
α
βθ βαθ
 

− − −  =                        (1) 

and: 

( )
e 1

1 e
x

G x
θβα

β
 

− − 
 = −                           (2) 

where 0, 0, 0, 0x α β θ> > > >  
The cdf of the Generalized Kumaraswamy Generalized (GK-G) family is de-

fined (for 0x > ) by: 
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( )
( )

( )

1 1

1 1

ba

b

cG x
F x

c

 − − =
− −

                       (3) 

The corresponding pdf of the GK-G family is given by: 

( ) ( )
( )

( ) ( )
11

1
1 1

ba a
b

abcg x
f x G x cG x

c

−−  = −    − −
               (4) 

where 0 1c< ≤ , 0a >  and 0b >  are shape parameters. 
The hazard rate function (hrf) of the GK-G family is given by: 

( )
( ) ( ) ( )

( ) ( )

11
1

1 1

ba a

ba b

abcg x G x cG x
h x

cG x c

−−  −    =
 − − − 

               (5) 

Hence the pdf and cdf of the newly proposed Generalized Kumaraswamy Gen-
eralized Power Gompertz (GKGPG) distribution is given by: 

( )
( )

11e 1
1 e 1 e 1e e 1 e 1 1 e

1 1

x
x x

ba a
x

b

abc xf x c
c

θβ
θ θθ β β

α
α αβθ β
β βαθ

−  −− −     −   − − − −   
   

    
   = − − −   − −      

 (6) 

And: 

( )
( )

e 1
1 1 1 e

1 1

x
ba

b

c

F x
c

θβα
β
 

− − 
 

  
  − − −  

   =
− −

                  (7) 

where 0,0 1, 0, 0, 0, 0, 0x c a b α β θ> < ≤ > > > > > . 

3. Graphical Description of the Generalized Kumaraswamy  
Generalized Power Gompertz Distribution (GKGPG) 

Here, we graphically illustrate the probability density function, and cumulative 
distribution function of the generalized kumaraswamy generalized power Gompertz 
distribution at different parameter values.  

Remarks: Figure 1 represents the behavior of the density plot the effect of the 
different parameter values. The probability density function of the generalized 
kumaraswamy generalized power Gompertzdistribution is unimodal; it is also de-
creasing, and right skewed, depending on the indicated parameter values.  

Remarks: Figure 2 represents the cdf plot, clearly, the cdf approaches one (1) 
as X tends to infinity and equals zero when X tends to zero. 

4. Statistical Properties of the Generalized Kumaraswamy  
Generalized Power Gompertz Distribution (GKGPG) 

4.1. Asymptotic Behavior 

This section examines the limiting behavior of the GKGPG distribution as X →∞  
and as 0X → . 
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Figure 1. PDF plot of the Generalized Kumaraswamy Generalized Power Gom- 
pertz Distribution (GKGPG) at different parameter values. 

 

 
Figure 2. CDF plot of the Generalized Kumaraswamygeneralized Power Gom- 
pertz Distribution (GKGPG) at different parameter values. 

 
For the pdf, 

( )

( )

11e 1
1 e 1 e 1

lim

e elim 1 e 1 1 e
1 1

x
x x

x

ba a
x

bx

f x

abc x c
c

θβ
θ θθ β β
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α αβθ β
β βαθ

→∞

−  −− −     −   − − − −   
   

→∞

         = − − −    − −       
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( )

( )

11e 1
1 e 1 e 1
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e e 1 e 1 1 e 0
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x
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θβ
θ θθ β β
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α αβθ β
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∞
∞ ∞
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(8) 
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→
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(9) 

For the cdf, 

( )

( ) ( )

e 1 e 1

lim

1 1 1 e 1 1 1 e

lim 1
1 1 1 1

x

x

b ba a

b bx

F x

c c

c c

θ θβ βα α
β β

∞

→∞

   
− − − −   

   

→∞
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 
 
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 (10) 

( )
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0

0
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0
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1 1 1 e 1 1 1 e
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1 1 1 1

x

x

b ba a

b bx

F x
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c c

θ θβ βα α
β β

→

   
− − − −   

   

→

              − − − − − −                 = = = 
− − − − 

 
 
  

 (11) 

4.2. Quantile Function  

The quantile function (qf) of X, say ( ) ( )1Q u F u−=  can be obtained by inverting 
Equation (3) numerically, and it is given by: 

( ) ( )
1

1
1 1 1 1

a
bQ u G c ud− −  = − −    

                  (12) 

where ( )1 1 bd c= − − . 
Ieren et al. (2019) defined the quantile function of the power Gompertz dis-

tribution as: 
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( ) ( )
1

1 1 log 1 log 1qG u X u
θ

β
β α

−   = = − −    
             (13) 

By substituting Equations (12) in (13), we obtain the quantile function of the 
GKGPG distribution as: 

( ) ( )

1
1

1
11 log 1 log 1 1 1

a
bQ u c ud

θ

β
β α

−

   
     = − − − −             

        (14) 

This above derived function is used to obtain certain moments, such as Skew-
ness and Kurtosis, as well as the median of the distribution and generation of 
random variables from the distribution concerned. 

4.3. Skewness and Kurtosis 

The analysis of the Skewness and Kurtosis variability on the shape parameters can 
be examined on the basis of quantile action. The weaknesses of the conventional 
measure of Kurtosis are well known. Kenney and Keeping [40] gives the Bowely 
Skewness based on quantiles as: 

3 1 12
4 2 4

3 1
4 4

k

Q Q Q
S

Q Q

     − +     
     =

   −   
   

                   (15) 

Moors et al. [41] gave the Moors quantile based Kurtosis as: 

7 5 3 1
8 8 8 8

6 1
8 8

u

Q Q Q Q
K

Q Q

       − − +       
       =

   −   
   

                (16) 

With ( ).Q  is obtainable using the equation of the quantile function as given 
in Equation (14). 

4.4. Reliability Analysis of the GKGPG Distribution 

The Survival function of the generalized kumaraswamy generalized power Gom- 
pertz distribution is given as (Figure 3). 

( )
( )

e 1
1 1 1 e

1
1 1

x
ba

b

c

S x
c

θβα
β
 

− − 
 

      − − −       = −  
− − 

 
 
  

              (17) 

where 0,0 1, 0, 0, 0, 0, 0x c a b α β θ> < ≤ > > > > > . 
The Hazard failure of the generalized kumaraswamy generalized power Gom- 

pertz distribution is given as (Figure 4). 
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Figure 3. Survival plot of the Generalized Kumaraswamy generalized Power 
Gompertz Distribution (GKGPG) at different parameter values. 

 

 
Figure 4. Hazard function plot of the Generalized Kumaraswamy general-
ized Power Gompertz Distribution (GKGPG) at different parameter values. 
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      − − −             =
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 (18) 

where 0,0 1, 0, 0, 0, 0, 0x c a b α β θ> < ≤ > > > > > . 
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5. Order Statistics 

For 1, ,i n= 
 from an independent and identically distributed random varia-

bles, let 1, , nX X  denote a random sample from the Generalized Kumaraswamy 
generalized Power Gompertz Distribution with cdf ( )F x , and pdf given by Equa-
tions (3) and (4) respectively. Then the probability density function ( ):i nf x  of the 
ith order statistics of the GKGPG distribution is given by: 

( ) ( ) ( ) ( ) ( ) ( ) 1
:

0

! 1
1 ! !

n i
k K i

i n
k

n inf x f x F x
ki n i

−
+ +

=

− 
= −  − −  

∑          (19) 

By substituting Equations (6) and (7) into the ith order statistics of the GKGPG 
distribution, we have that: 
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1 1 e
1 1

x
x

x

x

a
xn i

k
i n b

k

ba

ba

b

n abc xn if x ki n i c

c

c
c

θβ
θθ β

θβ

θβ

α
αβθ β
β

α
β

α
β

αθ
  −− −   −−   − − 

 

=

 
− − 

 
−

 
− − 

 

 −   = − − − −    − −  
      − − −            ∗ − −    − −   


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1k i+ −








 
 
 

 

(20) 

Hence the minimum order statistics ( )1X  for the GKGPG distribution is given 
by: 

( ) ( )
( )

( )
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b

abc xnf x n k c
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c
c
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θθ β

θβ
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α
αβθ β
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  −− −   −−   − − 

 

=
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− − 
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−

 
− − 

 

 −   = − − 
   − −  

      − − −            − −     − −    

 

∗

∑
k






   (21) 

Similarly, the maximum order statistics ( )nX  for the GKGPG distribution is 
given by: 

( )
( )

( )

1e 1
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 

 
 = −
 − −  
      − − −            − −     − −      
 
  

∗

   (22) 
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6. Parameter Estimation  
6.1. Maximum Likelihood Estimation  

Here, the parameters of the GKGPG distribution are estimated using the method 
of maximum likelihood. Let 1 2, , , nX X X  be random samples distributed accor- 
ding to the GKGPG distribution, the likelihood function is obtained by the rela-
tionship: 

( ) ( )
1
ln ,

n

n
i

l f Xγ γ
=

= ∑                      (23) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

ln 1 ln e 1

ln 1 ln 1 1 ln

i
n n n

x
n i i

i i i

n n n

i i i
i i i

l n abc x x

s a b

θβθ αγ αθ θ β
β

ϕ ϖ

= = =

= = =

= + − + − −

− + − − + −

∑ ∑ ∑

∑ ∑ ∑
    (24) 

With ( )
e 1 e 1

1 1 , 1 1 e , e , e 1
x x

a

b x
i i i is c c v

θ θβ β
θ

α α
β β βϖ ϕ
   

− − − −   
   

 
 = − − = − − = = −
 
 

. 

The maximum likelihood estimators ˆ ˆˆ ˆ, , , ˆ,a b c α β  and θ̂  of the unknown pa-
rameters , , , ,a b c α β  and θ  are derived from the nonlinear following score 
equations: 

( ) ( )( ) ( )
1 1

1 1 ln 1
ln 1

an n
i i

i
i i i

c bL n
a a

ϕ ϕ
ϕ

ϖ= =

− − −∂
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( ) ( ) ( )
1 1

1 ln 1
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bn n

i
i ii

c cL n
b b s
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= =

− −∂
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( ) ( )

( ) ( ) ( )

2 2
1 1 1 1

1

2
1

1 e e1
e

1

1 e e 11

i i

i

i i

x x
n n n n i ixi

i i
i i i i i
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−

=

∂
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∑
   (30) 

6.2. Estimation under Right-Censored Data 

The hypothesizing test will be discussed under complete and censored data, how-
ever, the MPS is only defined for complete data, since the MLE is usually consid-
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ered for right-censored data, Let us consider 1 2, , , nX X X  a random right cen-
sored sample obtained from the GKGPG distribution with the parameter vector 

( )T, , , , ,a b cγ α β θ= . The censoring time τ  is fixed. So, the observation iX  is 
equal to ( ),i i iX x δ=  where: 

0 if is a censoring time
1 if is a failure time

i
i

i

x
x

δ


= 


                 (31) 

In this case, the log-likelihood is obtained as follow: 

( ) ( ) ( ) ( )
1 1

ln , 1 ln ,
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L f x S xγ δ γ δ γ
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∑

∑

        (33) 

The maximum likelihood estimators ˆ ˆˆ ˆ, , , ˆ,a b c α β  and θ̂  of the unknown pa-
rameters , , , ,a b c α β  and θ  are derived from the nonlinear following score 
equations: 
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  (39) 

Monte Carlo technique or other iterative methods can be used to determine 
the values of ˆ ˆˆ ˆ, , , ˆ,a b c α β  and θ̂ . 

7. Test Statistic for Right Censored Data 

Let 1, , nX X  be n i.i.d. random variables grouped into r classes iI . To assess 
the adequacy of a parametric model F₀: 

( ) ( ) ( )T
0 0 0 1H : ; , 0, , , s

i sP X xH F x x Rγ γ γ γ≤ = ≥ = ∈Θ ⊂      (40) 

When data are right censored and the parameter vector β is unknown, Bagdo- 
navicius and Nikulin [38] proposed a statistic test Y2 based on the vector: 

( )1 , 1,2, , with .j j jZ U e j r r s
n

= − =               (41) 

This one represents the differences between observed and expected numbers 
of failures ( jU  and je ) to fall into these grouping intervals ( 1,j j jI p p− =   with 

0 0p = , rp τ= , where τ is a finite time. The authors considered jp  as random 
data functions such as the r intervals chosen have equal expected numbers of fai- 
lures je . 

The statistic test Y2 is defined by: 

( )2

2 T

1

ˆ
r j j

i j

U e
Y Z Z Q

U
−

=

−
= Σ = +∑                  (42) 

where ( )T
1, , rZ Z Z=   and ˆ −Σ  is a generalized inverse of the covariance ma-

trix Σ̂  and: 

T

:

ˆ ,ˆ ,
i j

j
j j i

i X I

U
Q W W A U

n
G δ−

∈

= = = ∑  
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( ) [ ]T 1
1
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ˆ ˆˆˆ ˆ, , , ˆ ˆ,
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s ll ll ll lJ l J Js s
j

W W W g g i CG G A−
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∂ ∂ ∂
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1
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l lJ J j
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W C A Z l l s−

=

′= =∑   

γ̂  is the maximum likelihood estimator of γ  on initial non-grouped data. 
Under the null hypothesis H₀, the limit distribution of the statistic Y2 is a chi- 

square with ( )r rank= Σ  degrees of freedom. The description and applications of 
modified chi-square tests are discussed in Voinov et al. [42]. 

The interval limits jp  for grouping data into j classes jI  are considered as data 
functions and defined by: 

( )
( )( )

1
1 1
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ˆˆ ˆ, , max ,
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j ll
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E H x
p H p X

n i
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γ τ
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∑         (43) 

Such as the expected failure times je  to fall into these intervals are r
j

Ee
r

=   

for any j, with ( )1 ,r
n

iiE H x γ
=

= ∑ . The distribution of this statistic test 2
nY  is 

chi-square (see Voinov et al., 2013). 

7.1. Criteria Test for GKGPG Distribution  

For testing the null hypothesis H₀ that data belong to the GKGPG model, we 
construct a modified chi-squared type goodness-of-fit test based on the statistic 
Y2. Suppose that τ is a finite time, and observed data are grouped into r s>  
sub-intervals ( 1,j j jI p p− =   of [ ]0,τ . The limit intervals jp  are considered as 
random variables such that the expected numbers of failures in each interval jI  
are the same, so the expected numbers of failures je  are obtained as: 

1

1
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j
i i

jE j r
r s

ϖ

=

 −
= − − = − 

−  
∑             (44) 

7.2. Estimated Matrix Ŵ  and Ĉ  

The components of the estimated matrix Ŵ  are derived from the estimated ma-
trix Ĉ  which is given by: 
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And: 
1

1
ˆ ˆˆ , , 1, 2,3, 4,5,6; 1, ,r

l lJ J jjW C A Z l l j r−
=

′= = =∑ 
 

7.3. Estimated Matrix Ĝ  

The estimated matrix [ ]6 6
ˆ ˆllgG ′ ×
=  is defined by: 

1
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ll ll lJ l J J
j
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= −∑  

where:  
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ll ii

l l

h x h x
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γ γ
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=
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∑  

Therefore the quadratic form of the test statistic can be obtained easily: 
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2 T 1

1 1
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r rj j

n ll lJ l J J
j jj

U e
Y i C AW G W

U
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−
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 
∑ ∑         (51) 

8. Simulations 
8.1. Maximum Likelihood Estimation  

We generated 10000N =  right censored samples with different sizes  
( 25,50,130,350,500n = ) from the GKGPG model with parameters 2a = , 1b = , 

0.9c = , 0.2α = , 0.7β =  and 1.5θ = . Using R statistical software and the Bar- 
zilai-Borwein (BB) algorithm (Ravi, [43]), we calculate the maximum likelihood 
estimators of the unknown parameters and their Mean Squared Errors (MSE). The 
results are given in Table 1. 

The maximum likelihood estimated parameter values, presented in Table 1, 
agree closely with the true parameter values. 
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Table 1. Mean simulated values of MLEs γ̂  their corresponding square mean errors. 

10000N =  25n =  50n =  130n =  350n =  500n =  

â  
1.9532 

(0.0092) 
1.9679 

(0.0067) 
1.9706 

(0.0059) 
1.9756 

(0.0042) 
1.9896 

(0.0033) 

b̂  
0.9686 

(0.0079) 
0.9713 

(0.0052) 
0.9876 

(0.0038) 
0.9903 

(0.0025) 
0.9982 

(0.0012) 

ĉ  
0.9236 

(0.0084) 
0.9186 

(0.0061) 
0.9106 

(0.0047) 
0.9086 

(0.0037) 
0.9023 

(0.0029) 

α̂  
0.1775 

(0.0088) 
0.1823 

(0.0073) 
0.1897 

(0.0041) 
0.1902 

(0.0027) 
0.1976 

(0.0016) 

β̂  
0.7361 

(0.0098) 
0.7253 

(0.0079) 
0.7126 

(0.0053) 
0.7098 

(0.0034) 
0.7012 

(0.0018) 

θ̂  
1.5364 

(0.0068) 
1.5231 

(0.0057) 
1.5134 

(0.0033) 
1.5037 

(0.0018) 
1.5003 

(0.0009) 

8.2. Criteria Test 2
nY  

For testing the null hypothesis H₀ that right censored data become from GKGPG 
model, we compute the criteria statistic ( )2

nY γ  as defined above for 10,000 sim-
ulated samples from the hypothezised distribution with different sizes (30, 50, 150, 
350, 500). Then, we calculate empirical levels of significance, when ( )22Y rεχ> , 
corresponding to theoretical levels of significance ( 0.10ε = , 0.05ε = , 0.01ε = ), 
We choose 7r = . The results are reported in Table 2. 

The null hypothesis H₀ for which simulated samples are fitted by GKGPG dis-
tribution is widely validated for the different levels of significance. Therefore, the 
test proposed in this work, can be used to fit data from this new distribution. 

9. Application 

In this section, we apply the results obtained through this study to real data set 
from reliability (Crowder et al. [44]), previously used by [45] [46] [47]. In an 
experiment to gain information on the strength of a certain type of braided cord 
after weathering, the strengths of 48 pieces of cord that had been weathered for a 
specified length of time were investigated. The observed right-censored streng- 
th-values are given below: 

26.8*, 29.6*, 33.4*, 35*, 36.3, 40*, 41.7, 41.9*, 42.5*, 43.9, 49.9, 50.1, 50.8, 51.9, 
52.1, 52.3, 52.3, 52.4, 52.6, 52.7, 53.1, 53.6, 53.6, 53.9, 53.9, 54.1, 54.6, 54.8, 54.8, 
55.1, 55.4, 55.9, 56, 56.1, 56.5, 56.9, 57.1, 57.1, 57.3, 57.7, 57.8, 58.1, 58.9, 59, 59.1, 
59.6, 60.4, 60.7  

We use the statistic test provided above to verify if these data are modelled by 
GKGPG distribution, and at that end, we first calculate the maximum likelihood 
estimators of the unknown parameters: 

( ) ( )T T, , , , , 2.5134,1.6384,0.9467,0.3796,0.5931,1.7649a b cγ α β θ= =    (52) 
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Table 2. Simulated levels of significance for ( )2
nY γ  test for GKGPG model against their 

theoretical values ( 0.01,0.05,0.10ε = ). 

10000N =  1 30n =  2 50n =  3 150n =  4 350n =  5 500n =  

1%ε =  0.0062 0.0067 0.0078 0.0086 0.0095 

5%ε =  0.0412 0.0433 0.0442 0.0458 0.0476 

10%ε =  0.0953 0.0972 0.0986 0.0998 0.1012 

 
Table 3. Values of 1 2 3 4 5 6

ˆ ˆ ˆ, , , , , , ˆ ˆ ˆ, ,j j j j j j j j jp e C C C C C CU . 

jp  43.5 51 52.5 53.5 54.5 56.7 58 60.7 

jU  9 4 5 3 5 9 6 7 

je  0.9896 0.9896 0.9896 0.9896 0.9896 0.9896 0.9896 0.9896 

1
ˆ

jC  1.1635 1.0856 −2.067 1.0856 −2.0345 1.8562 1.3462 1.0374 

2
ˆ

jC  2.0845 1.5623 1.4326 0.9764 1.0844 0.9134 1.4393 1.0563 

3
ˆ

jC  −2.1373 −3.5162 −1.846 −4.1862 −0.9463 −0.7485 −2.6314 −1.8462 

4
ˆ

jC  0.9347 1.0236 −4.1632 1.0536 0.8326 −2.6351 −3.7486 1.0536 

5
ˆ

jC  1.4963 2.0846 1.8631 0.9713 1.3719 1.6431 2.7931 2.1937 

6
ˆ

jC  −0.9384 1.0746 2.0314 −1.5393 1.4639 1.7469 −1.0352 2.0845 

 
Data are grouped into 7r =  intervals jI . We give the necessary calculus in 

Table 3. 
Then we obtain the value of the statistic test 2

nY : 
2 2 5.6317 4.1237 10.7554nY X Q= + = + =             (53) 

For significance level 0.05ε = , the critical value 2
7 14.0671χ =  is superior 

than the value of 2 10.7554nY = , so we can say that the proposed model GKGPGfit 
these data. 

10. Conclusion 

This research has successfully introduced and studied a six-parameter continu-
ous distribution called the generalized Kumaraswamy generalized power Gompertz 
distribution. The plots of the probability density and cumulative distribution func-
tion have been analyzed. We have also derived some properties of the new dis-
tribution such as asymptotic behavior, quantile function for median, Skewness, 
and Kurtosis, and reliability analysis. The distribution of order statistics estima-
tion of parameters based on censored and uncensored random samples using Maxi- 
mum Likelihood Estimation (MLE) has been provided. We evaluated the new 
goodness-of-fit statistic test 2

nY  and investigated some criteria tests for the gene- 
ralized Kumaraswamy generalized power Gompertz distribution. A simulation study 
was carried out in applying the new model to datasets. The newly proposed model 
GKGPG adequately fits the data. 
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Formation of the Generalized Kumaraswamy Generalized 

Defined in this paper has three shape parameters which control its Skewness, 
Kurtosis and tails. It can therefore be applied in more real-life situations. Maxi-
mum likelihood estimates are discussed, and modified chi-square goodness-of-fit 
tests for right censoring are constructed. The statistical test provided in this arti-
cle can be used to fit unknown parameters and censorship into this model and its 
sub-models. The results and efficacy of the proposed test are shown in an impor- 
tant simulation study. 
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